
FLINT: A PLATFORM FOR FEDERATED LEARNING INTEGRATION

Ewen Wang * 1 Ajay Kannan 1 Yuefeng Liang 1

Boyi Chen * 1 Mosharaf Chowdhury * 2 3

ABSTRACT
Cross-device federated learning (FL) has been well-studied from algorithmic, system scalability, and training
speed perspectives. Nonetheless, moving from centralized training to cross-device FL for millions or billions of
devices presents many risks, including performance loss, developer inertia, poor user experience, and unexpected
application failures. In addition, the corresponding infrastructure, development costs, and return on investment
are difficult to estimate. In this paper, we present a device-cloud collaborative FL platform that integrates with
an existing machine learning platform, providing tools to measure real-world constraints, assess infrastructure
capabilities, evaluate model training performance, and estimate system resource requirements to responsibly
bring FL into production. We also present a decision workflow that leverages the FL-integrated platform to
comprehensively evaluate the trade-offs of cross-device FL and share our empirical evaluations of business-critical
machine learning applications that impact hundreds of millions of users.

1 INTRODUCTION

With increasing computation power and storage capacity in
end-user devices, there is a rising trend to move machine
learning (ML) toward the edge where data is generated. One
incentive behind this trend is latency reduction in moving
computation to the device. For instance, for real-time CV
and NLP tasks in search and content understanding, sending
data in the form of video, audio, or text between user devices
and the server is a major bottleneck (Lv et al., 2022). Addi-
tionally, increasing demands for data protection and privacy
in the forms of government regulations (e.g., GDPR) and
platform restrictions (e.g., App Tracking Transparency from
Apple) introduce challenges in performing traditional cen-
tralized ML on sensitive data. These motivate applications
like messaging, content recommendation, and advertising,
which often rely on potentially sensitive user data to achieve
high accuracy, to move ML tasks to the device.

Cross-device federated learning (FL) has captured the zeit-
geist as an effective mechanism to address the aforemen-
tioned challenges both in industry and academia (Kairouz
et al., 2021). Federated learning allows distributed ML train-
ing on user data on their own devices. Indeed, federated
learning has been successfully deployed on a case-by-case
basis throughout the industry. Examples include query sug-

*Equal contribution 1LinkedIn Corporation 2University of
Michigan and RightScope Inc. 3Work done at LinkedIn. Cor-
respondence to: Ewen Wang <yuxwang@linkedin.com>, Boyi
Chen <bochen@linkedin.com>.

Proceedings of the 6 th MLSys Conference, Miami, FL, USA, 2023.
Copyright 2023 by the author(s).

gestions on Google Keyboard (Hard et al., 2018a; Yang
et al., 2018; Chen et al., 2019; Ramaswamy et al., 2019),
Android smart text selection (Hartmann, 2021), applications
at Meta (Nguyen et al., 2022; Wu et al., 2022), and several
ML tasks on Apple’s iOS devices (Paulik et al., 2021b).
Prior work in cross-device FL has mainly focused on algo-
rithmic improvements (Li et al., 2020; Horvath et al., 2021),
system scalability (Bonawitz et al., 2019; Huba et al., 2022),
secure aggregation techniques (So et al., 2022), and model
convergence speeds (Yu et al., 2019).

However, unlike centralized machine learning, where model
architecture and parameters can be tuned and tested in an
offline setting, cross-device FL relies on online training
systems that require a large population of users to produce
utility. At LinkedIn, close to 8,000 types of user devices
with more than 150 different OS versions have been ob-
served from use cases in its mobile application. Having
a comprehensive understanding of the impact of different
model architectures and hyperparameters on all user de-
vices before deployment is crucial to successful FL training
and user satisfaction. Running resource-intensive ML tasks
on user devices can negatively impact user experience and
degrade user trust and product experiences.

Building a cross-device FL system and migrating central-
ized training to that FL system is non-trivial, especially with
millions of users. Forecasting and optimizing infrastructure
requirements like resource consumption, data payload re-
strictions, and model complexity limits for different design
choices (e.g., how to collaboratively manage features from
cloud and devices, whether to use synchronous or asyn-

FLINT: A Platform for Federated Learning Integration

chronous training modes and what hyperparameters to use
for training) are critical to production success. A systematic
decision workflow to empirically evaluate production design
choices is missing in the existing literature. Many compa-
nies have established ML platforms for centralized training,
yet do not have the platform and process to estimate the
benefits, constraints, and implications of FL. Vice-versa, ex-
isting FL platforms today are independent platforms without
a close integration with their centralized counterparts.

Contributions. This paper describes the architecture of a
novel device-cloud collaborative platform for FL integration,
“FLINT,” that augments LinkedIn’s well-established central-
ized ML platform. Moreover, it presents a cost-effective
decision workflow that leverages the platform to practically
assess cross-device FL in LinkedIn’s context.

In Section 2, we describe the traditional ML systems at
LinkedIn, followed by motivations and challenges of cross-
device FL. Then, Section 3 describes a detailed FL platform
design that closely integrates with the centralized compo-
nents. This includes an experimental framework that ex-
tends the simulation capabilities of FedScale (Lai et al.,
2022), which uses device profiles, traces and a virtual clock
to provide realistic FL simulations. We have contributed
some of our innovations back upstream to the open-source
repository.1 In Section 4, we apply the decision workflow on
real use cases at LinkedIn that could benefit from FL, demon-
strating how the FLINT platform can provide ML practition-
ers with the tools to estimate impact, de-risk projects, and
clarify modeling assumptions using a combination of cloud
and device resources. We show how a close integration
with LinkedIn’s centralized ML platform can help modeling
teams evaluate FL in a familiar environment.

Throughout the sections, we share real-world measurements
produced by the platform tools, providing insights into an
FL system’s constraints such as device availability and data/-
compute heterogeneity. This includes on-device bench-
marks of critical, low-latency models on popular device
hardware. We demonstrate how these measurements can
help forecast model performance under observed real-world
constraints and estimate cloud and device resource costs.

2 BACKGROUND

2.1 Centralized ML at LinkedIn

LinkedIn applies ML to tackle business-critical problems
in numerous domains, including advertising, search, mes-
saging, news feed, notifications, and more. Like many tra-
ditional ML platforms, a typical ML workflow at LinkedIn
consists of data generation, model training and inference. In
data generation, data collected in the cloud from multiple

1https://github.com/SymbioticLab/FedScale

sources are anonymized, analyzed, sanity-checked and con-
flated to extract features and labels for training. The data
is then used as input for the model training step to perform
offline model training and testing. The resulting model is
deployed by production systems to serve users (both con-
sumer and enterprise). At the end, the impressions and
actions from users are then logged via tracking events for
future data analysis and model iterations. For each of these
steps, LinkedIn’s platform uses a combination of reputable
open-source and bespoke tools to meet business needs.

2.2 Motivations for Cross-Device FL

Increasing demand for privacy and performance is driving
the industry to consider moving away from centralized-only
ML solutions and instead incorporating computations at
the data sources. Similarly, LinkedIn is considering using
cross-device FL for some of its applications.

Privacy and Security. The centralized raw data collection
and data mixing between users needed to generate training
data introduce privacy and security risks. With user privacy
a priority and a key consideration in LinkedIn’s product
design, there are strong incentives to explore moving some
business-critical model training (such as those in the adver-
tising and messaging domains) to user devices to reduce
tracking and merging sensitive data.

Performance. Moving ML computations closer to their
data sources provides better user experiences via improved
systems performance. Many applications (such as search)
at LinkedIn require low latency and high adaptability for
recency. Models for these applications need to be constantly
retrained to adopt the most recent user actions; model infer-
ence needs to spend minimal time to deliver predictions. Un-
der the centralized model training paradigm, large payloads
of user events and inference results have to be transmitted
back and forth between devices and the centralized server,
which can sometimes introduce significant delays in model
freshness and inference speed.

2.3 Challenges of Cross-Device FL

Despite the benefits, cross-device FL comes with unique
challenges and isn’t an end-all solution for all scenarios.
In centralized ML systems, parameter tuning can optimize
the model performance assessed by offline evaluations on
centralized testing data; system performance can be exam-
ined by running trained models using designated hardware;
centralized data can be validated, sampled, and shuffled in
scalable data pipelines (Baylor et al., 2017). In contrast,
on-device data processing, training, and inference require
significantly more careful offline evaluations and system
design to responsibly leverage user hardware. Parameter
tuning using user devices can be resource-consuming and
deploying faulty or resource-hogging jobs to user devices

FLINT: A Platform for Federated Learning Integration

can harm user trust and negatively impact product reputation
and business metrics.

Systems and data heterogeneity present another major chal-
lenge. User device heterogeneity (Figure 1) results in sig-
nificant differences in computation power across various
training tasks (Figure 4). Moreover, user behavior differ-
ences between devices lead to uneven data availability (Fig-
ure 2), diverse data distribution, and violations of feature
independence.

These practical challenges put constraints on key aspects of
machine learning like model complexity and convergence
speed. Ensuring high-quality user experience – for both the
model engineers of the ML platform and users whose de-
vices would participate in training and inference – requires
a comprehensive evaluation framework that considers these
system constraints.

Figure 1. Distribution of iOS-based (left) and Android-based
(right) mobile devices in the user base of an example applica-
tion at LinkedIn. The gray regions contain device models outside
of the legend. Note that Android hardware is much more diverse
than iOS hardware, making compute capability challenging to
estimate.

Figure 2. Normalized device availability of an example applica-
tion at LinkedIn over a one-week period, demonstrating the high
fluctuation in client availability. The predominant trend is that the
number of available devices peaks each day and drops to 15% of
the weekly peak at the troughs.

3 SYSTEM DESIGN

3.1 The Integrated FL Platform at LinkedIn

We propose an FL system that works in collaboration with
the centralized ML platform (Figure 3). It shares common
components like model stores, job scheduling, monitoring,
and visualization tools with the centralized ML platform de-
scribed by (Baylor et al., 2017), and introduces FL-specific
components to enable cross-device FL.

On the device side, an on-device runtime library encodes
the FL training and inference tasks and is consumed by 1st
party or 3rd party applications. On the server side, there
is an FL server that performs model parameter aggregation
and client coordination. The model store, which is shared
by centralized training, can store and retrieve versioned pa-
rameters during FL training. The overall mechanism of the
FL server and the device side library works in similar fash-
ions as discussed in other FL system literature (Bonawitz
et al., 2019; Paulik et al., 2021a; Huba et al., 2022; Lv et al.,
2022).

Our proposed FL integration platform, FLINT, builds on top
of these well-known FL and centralized ML platforms. This
section focuses on 1) tools to leverage centralized data and
resources for analyzing FL’s impact and viability, 2) a fea-
ture catalog that manages both cloud and device-based data,
3) an experimental framework to optimize model perfor-
mance and system requirements, and 4) a decision workflow
that enables decision-makers to understand the constraints,
costs, and effectiveness of FL for their business needs.

3.2 Real World Measurements

Measuring system constraints from different perspectives
helps provide realistic evaluation contexts and guides the de-
sign of production systems. Running on-device benchmarks
before deployment enables engineers to ensure viability
of models embedded in heterogeneous software/hardware
stacks. Most existing web services log session metrics and
device information during user requests. Our platform tools
can analyze this data to produce metrics and visualizations
around user device availability patterns and device compu-
tation capabilities.

On-Device Benchmarks. In cross-device FL, the bulk of
the computation is offloaded to the clients. Edge devices act
as worker nodes in a large computing cluster. Importantly,
each worker’s underlying CPU, GPU, storage, memory, and
OS are heterogeneous and could consume vastly different
resources to achieve the same task (Figure 4). This makes
the runtime of an FL task difficult to estimate and could lead
to inconsistent user experiences. Before allocating such
workloads to a heterogeneous population of mobile workers,
FLINT’s device benchmark step packages models into a
benchmark app and deploys it to a pool of test-purposed

FLINT: A Platform for Federated Learning Integration

Figure 3. A device-cloud collaborative ML platform with FL integration.

mobile devices in the cloud, including older and newer gen-
erations of popular phones and tablets from Figure 1. The
collected results (Table 5) help modelers understand their
FL model’s worst-case impact on users to derive compatible
device models and OS versions for FL participation.

Figure 4. A comparison of two business-critical models’ on-device
training times and max compute usage percentage over 5,000
examples. This benchmark on 27 device models shows the effects
of diverse hardware, and how devices that are optimized for one
task might be worse for another. Note the magnitudes difference
in training time between FL tasks A and B.

User Device Availability. We define device availability
as pairs of start and end times during which a device can
participate in FL training. This availability, which fluctu-
ates widely over time (Figure 2), can affect client selection,
model fairness, and convergence. Our tool helps modelers
generate device availability from existing session logs by
specifying a set of availability criteria. The criteria can
include conditions from three categories; 1) compute capa-
bility: based on the device benchmark results, the modeler
can generate a list of devices and OS versions that have ac-
ceptable worst-case device impact and are compatible with
the model architecture; 2) device state: WiFi connection,
battery level, and whether the app is open in the foreground;
3) user attributes: account reputation, account age, and last
participation time, etc. These criteria should be iteratively re-
fined to meet the desired model, system, and security needs
while ensuring that the model performance is fair among

different sub-populations of clients. For instance, if a device
hardware criterion introduces biased model performance on
users of older phones, then the hardware requirement needs
to be relaxed. And while device charging isn’t required for
smaller models, a CPU-intensive model (such as Model E
in Table 5), should require a higher battery level (>80%)
for participation.

Table 1. Mobile device availability of an example mobile use case
at LinkedIn after applying each participation criteria, showing that
only a subset of all users is FL-eligible in practice.

TRAINING CRITERIA DEVICES AVAILABLE

A: CONNECTED TO WIFI 70%
B: BATTERY LEVEL ≥ 80% 34%
C : OS RELEASE ≥ SEPT. 2019 93%
A ∩B ∩ C 22%

In Table 1, we specify a restrictive scenario where conditions
A, B, and C must all be met, leaving only 22% of the clients
available for FL participation. In this scenario, the training
task may require various permissions from the device that
may not be available in the background to complete all the
sub-tasks (model download/upload, data processing, model
evaluation, metrics reporting, etc.). This worst-case assump-
tion helps to de-risk potential platform-specific changes to
background task permissions. Naturally, app usage duration
is tail-heavy and poses a challenge in completing training
during short durations of availability.

3.3 Proxy Data Generator

To benchmark existing models in FL under realistic hetero-
geneous conditions, we provide the modeler with a tool to
generate per-device proxy datasets from training data in our
centralized catalog. In our experiments, the proxy datasets
need to be no bigger than centralized training to achieve
similar performances. When available, the modeler selects
a partitioning field such as obfuscated member or device
identifier. The generator uses this field to map records to FL
clients. When privacy is a concern, the centralized dataset’s

FLINT: A Platform for Federated Learning Integration

client-level identifier is discarded. In these cases, synthetic
partitioning strategies (Li et al., 2022) can inject label and
data quantity skew between the partitions modeled by a
Dirichlet distribution. To evaluate the model under vary-
ing data heterogeneity, developers can generate multiple
versions of a synthetically-split proxy dataset. After gen-
erating a proxy, the tool stores it back to the data catalog,
adding FL-specific metadata describing feature distributions,
client data quantity, label distribution, and client population.
These characteristics provide an important understanding
of the data heterogeneity between clients (Figure 5 and
Table 2).

Figure 5. The quantity distribution of key proxy datasets from
different domains used in the evaluation, showing that the data
sizes between clients in different domains can greatly vary.

Data Locality. Though FL can effectively move compute
to the data source, the device runtime should still be able to
access cloud-based data through network communication
when doing so provides systems and model performance
benefits. For some tasks, it may be optimal to pull ready-
to-use features from the cloud on-demand and join them
with device-based contextual features. This reduces the stor-
age and compute footprint of storing and processing large
features like embeddings on the device. Meanwhile, infer-
ence records containing smaller cloud-based features can
be cached on the device to reduce network-induced latency
during training data processing. Additionally, many models
require vocabulary files, which contain a set of string to
integer ID mappings for features in a dataset, to encode
strings into vector values during data processing. The de-
vice runtime can pull or cache these files depending on
storage usage, WiFi connectivity, and the resource and la-
tency requirements of the task. To allow experimenting with
combinations of feature management strategies for various
applications, FLINT provides a feature catalog (Figure 6)
that manages 1) the device-based features’ retention policies
and data size limits through cloud-based metadata, 2) the
caching strategy of cloud-based features on user devices,
and 3) where feature transformations happen. The device
feature management and caching also allow multiple appli-
cations to use overlapping features without duplicated work;
when a feature value is created for one task, the runtime can

cache it for reuse to reduce latency.

Table 2. Characteristics of sample proxy datasets that are heav-
ily down-sampled on a client level. The max/avg/std values are
calculated from client data quantity.

DATASET A DATASET B DATASET C

CLIENT POP. 700,000 1,024,950 16,422,290
MAX RECORDS 39,731 103,471 406
AVG RECORDS 99 184 1.53
STD RECORDS 667 374 1.47
LABEL RATIO 0.28 0.05 0.06
LOOKBACK DAYS 90 28 61

Figure 6. The architecture of a device-cloud feature catalog that
manages both device-side and cloud-side features. Certain features
and mapping vocabulary can be pulled from the cloud and cached
during inference and training. Processed features can also be
cached for reuse.

3.4 Experimental Framework

A holistic experimental framework for FL should not only
produce model metrics, but also system metrics under re-
alistic constraints. One goal is to understand the return on
investment of FL applications under measured system con-
straints. Another is to predict the infrastructure needs of
such a system. An added benefit is that modelers can better
understand and tune the FL parameters before deploying
jobs to devices because offloading all the hyper-parameter
tuning workloads to production leads to wasted user re-
sources. Our framework builds on top of and significantly
extends an open-source FL benchmarking platform to fit
our requirements. Deployed on centralized ML clusters,
a group of executors poll tasks to run from a leader node,
which manages client selection, tracks virtual time, and
calculates systems metrics.

Inputs and Assumptions. In practice, the systems con-
straints discussed earlier all affect FL’s training performance.
As such, our framework takes multiple real-world inputs
to incorporate the complex interactions among these fac-
tors in its simulations. First, each executor loads a parti-
tion of the proxy dataset and maps its records to clients.
Then, the leader loads and uses device availability records
for client selection and task completion decisions. It then

FLINT: A Platform for Federated Learning Integration

consumes the model’s on-device benchmarks (model foot-
print, processing-time, network usage, etc.), along with the
hardware/OS distribution of the users. With these detailed
inputs, our framework can report model and system metrics
over both virtual clock time and communication rounds to
account for data heterogeneity, model complexity, device
availability, and hardware capability.

Synchronous and Asynchronous Training. Our frame-
work supports synchronous FedAvg (McMahan et al., 2017)
and asynchronous FedBuff (Nguyen et al., 2022) training
modes. In practice, client selection is largely dictated by
client arrival and availability. Hence, our framework directly
selects the next available device from the input sessions at a
given virtual time and dispatches a task to an executor. The
framework reports results over a virtual time that’s calcu-
lated independently of the underlying hardware clock. This
allows for a better representation of the system in practice
when estimating how long a job needs to run, or how much
compute time needs to be spent on the device. Even before
a client task is dispatched to an executor, the task’s duration
is calculated using the inputs provided. To estimate client
k’s task duration, we sample t ← T , the distribution of
time to train a single example from on-device benchmarks;
we also sample a network bandwidth N from Puffer (Yan
et al., 2020), an open-source dataset containing edge device
network speeds. Let E be the number of local epochs, M be
the size of a gradient update, and |Dk| be client k’s partition
size, taskDuration(k) = t ∗ E ∗ |Dk|+ 2∗M

N .

While the asynchronous mode is simpler to implement in a
real-time system, it is more difficult to schedule tasks in the
right order in a fast-forwarded and distributed simulation.
To resolve this, the leader node uses a priority queue-based
task scheduler to generate tasks in a streaming fashion and
dispatch them to workers in the correct order. From evalu-
ations of different models, we observe that the benefits of
an asynchronous system depend on the spread of the client
task durations. We offer two explanations on why FedBuff
(Nguyen et al., 2022) offers faster convergence (Table 3):
1) fewer client tasks have to be started because the aggrega-
tion tolerates stale updates, while FedAvg (McMahan et al.,
2017) throws away all stragglers; 2) more client tasks can be
started due to the asynchronous task scheduling. The effects
of 1) and 2) are greater when the client task durations are
heavy-tailed and the staleness limit is higher.

Scalability and Fault Tolerance. Using large existing ML
clusters and a familiar job management tool, developers
can easily simulate millions of clients with our framework.
To increase parallelism, a nuance of our proxy data gener-
ator tool from Section 3.3 is that it outputs one partition
per executor rather than one file per FL client; each par-
tition contains a set of unique clients for an executor to
load into memory, which speeds up the random access of

Table 3. Projected training time speedup of FedBuff over FedAvg.
The “client tasks started” statistic includes failed and stale tasks
which are not aggregated. Client computation is the projected sum
of processing time on all devices.

TASK A TASK B TASK C

FEDBUFF SPEED-UP 1.2X 6X 2X
CLIENT TASKS STARTED 48.8K 32.3K 610K
CLIENT COMPUTATION 7.5 HRS 6.8 DAYS 25.9 DAYS

client records during training. To support multi-versioned
proxies with millions of clients, this strategy prevents an
explosion of namespaces on the pipeline storage, which is
typically HDFS or cloud blob stores. Furthermore, storing
many clients’ records together in a file improves the com-
pression ratio. If each partition still exceeds the memory of
the executor, the data can be additionally split by timestamp
and swapped in and out during the simulation. This allows
a cluster of 20 executors to process over 60,000 client tasks
per hour for Task C in Table 3; the system scales horizontally
and can gracefully handle millions of clients (Table 2).

For very large experiments, a job could run for days on more
than 100 machines. At this scale, the job needs to be fault-
tolerant and self-healing. To recover from executor failures,
the leader node halts dispatching tasks until all executors
have pinged it with a healthy status-code. If a leader node
fails, all the executors wait until it is back online to proceed
polling for tasks. Since the leader frequently checkpoints
the virtual time and recent model weights to the pipeline
storage, any restarted leader and executor can resume from
the checkpoints without losing more than one round of work.

Parameter Tuning. An FL system introduces many more
parameters to tune, e.g. cohort size, asynchronous buffer
size and staleness limits. For example, cohort size is a key
parameter that can determine data efficiency and model con-
vergence (Charles et al., 2021), but may have a different
optimal value for each application. However, once a model
is deployed, parameter tuning should be done sparingly to
responsibly leverage users’ device resources. Additionally,
our empirical results (Figure 10) show that model perfor-
mance under random client sampling can be unstable be-
cause clients selected in earlier rounds heavily impact a
model’s final performance. Our experimental framework
runs multiple trials of each configuration to report error-
bounded metrics. Though such noise can still complicate
parameter tuning, parameters selected from proxy datasets
can often effectively translate to real FL tasks (Kuo et al.,
2022). Our framework also provides users with an under-
standing of the relationship between different parameters
and model/system metrics. Figure 7 shows the relation-
ship between FedBuff’s buffer size parameter and estimated
round duration. Figure 10 shows how learning rate sched-

FLINT: A Platform for Federated Learning Integration

ules can affect training stability.

3.5 Forecasting System Resource

Besides model performance, the FL platform should fore-
cast the overall resource needs from the cloud and user
devices, helping engineers optimize the resource efficiency
of the system and prevent overloading the finite device and
infrastructure capacity. This can help manage the carbon
footprint of edge training jobs, since they can be less energy
efficient than centralized training. Moreover, renewable
energy access at the edge is much more limited due to geo-
graphical diversity (Wu et al., 2022).

Figure 7. Buffer size settings vs time duration to populate the
buffer during a sample model’s FL training with max concurrency
= 180; having a realistic estimation of time during offline evalua-
tion help modelers understand the impact of different parameters.

Reducing Device Resource Consumption. In addition to
cloud infrastructure costs, a device-cloud platform should
account for total edge resource utilization in its notion of
budget. As more FL-enabled apps begin sharing the same
finite amount of device resources, imposing such a budget
can incentivize teams to reduce both cloud and device re-
source footprint. Centralized ML jobs typically specify the
workers needed to complete the workload in a reasonable
amount of time. While more workers may increase par-
allelism, it could reduce per-worker utilization, resulting
in wasted budget. Similarly in FL, if concurrency is too
high, more updates become stale and discarded (see Figure
8). The efficiency of an FL system can be measured with
task completion, stragglers, and total device computation
time. Our framework reports model performance over these
variables so that parameters can be adjusted to reduce the
overall user resource footprint. Due to differences in model
and data complexity discussed earlier, the sample model for
Task C from Table 3 consumes 620 hours (25.9 days) of
client compute time to converge, while the sample model
from Task A only takes less than 8 hours. The total device
time is calculated as

∑K
k taskDuration(k), where K is

the sequence of clients that had performed training.

Infrastructure Requirements. Since the trainer in a cross-

Figure 8. Succeeded, interrupted, and stale client tasks under dif-
ferent concurrency and max staleness settings in FedBuff. Higher
concurrency can increase both client tasks started and the amount
of wasted tasks. Higher staleness tolerance can decrease stale tasks
but could slow down learning with older gradients.

device FL pipeline is online by nature and handles requests
in real-time, a projection of each training job’s infrastruc-
ture needs is necessary for the modeler to ensure there are
enough resources to handle their FL job throughout heavy
load swings (Figure 2). When multiple FL applications coex-
ist, it is likely for resource contention to occur if they share
the same pool of workers for aggregation and coordination.
The training duration projected by the experimental frame-
work helps to schedule FL workloads efficiently and prevent
overloading the service workers due to task overlaps, espe-
cially when Trusted Execution Environments (TEE) with
limited bandwidth (Huba et al., 2022) are used for secure
aggregation. In Task C in Table 3, an asynchronous setting
where we assume client arrival is uniform, the model takes
48 hours to aggregate 610k tasks (3.53 updates/s). Multi-
plied by the size of each gradient update (Table 5), a TEE
needs to receive and aggregate only 2.68MB/second of up-
dates. This demonstrates the framework’s ability to project
cloud resource needs ahead of deployment based on factors
like model size and concurrency.

3.6 Privacy and Security

Although FL greatly improves user privacy and security
by leaving sensitive data on the device, achieving desired
privacy properties may still require introducing additional
privacy enhancing technologies (PETs) into the system
(Kairouz et al., 2021). Currently, developers/security engi-
neers audit the system on a case-by-case basis, since each
project has different risk tolerance and privacy budgets. Our
experimental framework can help developers and security
experts evaluate the model and resource trade-offs of tech-
niques like FL with differential privacy (FL-DP) (Kairouz
et al., 2021), secure aggregation (SecAgg) (Mo et al., 2021),
and robust training (Wong et al., 2020) against adversarial
attacks (Sun et al., 2019). Our SecAgg uses TEEs for re-

FLINT: A Platform for Federated Learning Integration

Figure 9. The proposed decision workflow to analyze and bring cross-device FL into production.

mote attestation (Huba et al., 2022), making it compatible
with async FL.

3.7 Decision Workflow

A standard process to bring FL projects to life at LinkedIn
simplifies many of the production ML operations (MLOps)
complexities introduced by FL. We propose a decision work-
flow in Figure 9 that uses the components of the hybrid FL
platform to ensure that the important risks and challenges of
each FL project are practically assessed before deployment
reaches the users. This covers all aspects of the system, from
understanding the client data, compute, and availability, to
estimating resource impact, model performance, and priva-
cy/security risks. The process complements the proposed
FL/ML platform, leveraging the platform’s tools in each of
the steps.

4 CASE STUDIES

We apply our decision workflow on three business-critical
domains: advertising, messaging, and search. We present
the empirical results (Tables 4 and 5), discussing the benefits,
systems/performance trade-offs and newfound challenges in
the context of the evaluations. Each model is at parity with
the centralized model or suffers slight performance loss due
to 1) FL’s constraints and 2) proxy datasets exclude some
features that are only available on-device.

Table 4. Projected FL training time to reach convergence for each
domain’s representative model. The performance difference is
the median of the FL model’s offline metric over N=15 trials
compared to the centralized model. We measure ads and messaging
performance with Area Under Precision-Recall Curve (AUPR),
and search with Normalized Discounted Cumulative Gain (NDCG).
In all cases, performance can reach an acceptable range under FL’s
constraints when compared with centralized training.

ADS MESSAGING SEARCH

TRAINING TIME 4.2 DAYS 18.9 HRS 2.58 HRS
PERFORMANCE DIFF. -1.85% -0.18% -1.64%

4.1 Advertising

Privacy in machine learning has received significant atten-
tion in recent years. Traditional machine learning in the
digital advertising industry relies on collecting user data for
measurement, targeting, and click/conversion predictions.
By reducing sensitive data tracking, cross-device FL enables
private model training that can improve advertising qual-
ity, member trust and safety. In this section, we describe
the detailed steps we took to evaluate FL on an advertising
use case, and the results that demonstrate the potential of
moving to cross-device FL while revealing several practical
challenges.

Client Participation and Availability. First, we define
our client participation criteria: (a) app is open in the fore-
ground, (b) battery level > 80%, and (c) connected to WiFi.
Our criteria are designed to be conservative, choosing to err
on the side of classifying a device as not FL-ready when
in doubt. For example, we require (a) because if for some
reason CPU or battery usage spikes when the app is in the
background, a phone OS could choose to kill our training
process. To eliminate this possibility altogether, we do not
count any app background time as time we can use for
FL. We then use these filters to generate device availability
traces. We query for two weeks of anonymized session
data from the LinkedIn app, since usage tends to exhibit
weekly periodicity. Short gaps where the app is in the back-
ground are subtracted from the availability session duration,
whereas longer gaps split a session into two. Since we only
have battery level and WiFi connectivity data for a smaller
subset of mobile usage, we calculate empirical probabilities
of WiFi connection and high battery level over time (Table
1). For each session from our query, we perform a weighted
coin-flip based on the session’s start time to decide whether
to include or exclude it from the output device traces.

Building a Proxy Dataset. Next, we use a centralized
dataset in advertising that is down-sampled on a client level
to preserve the natural quantity and label skew. We then
analyze the feature locality of the data to move it into an
on-device setting. In this domain, a candidate is typically a

FLINT: A Platform for Federated Learning Integration

Table 5. On-device evaluation of device-capable model architectures selected to represent common ML tasks at LinkedIn. We report mean
training times and CPU utilization % for each model over 5,000 records, aggregated across 27 devices with diverse hardware.

Model Description Trainable
Params

Storage
(MB)

Network
(MB)

Memory
(MB)

Mean
Time (s)

Stdev
Time (s)

Mean
CPU (%)

A Tiny Neural Net 1.51k 0.057 0.11 3.08 4.98 3.37 1.63
B MLP w/ sparse features 189k 0.76 1.52 10.64 61.81 44.17 3.91
C MLP w/ medium embedding 208k 0.85 1.88 0.85 3.26 2.23 5.29
D CNN w/ large embedding 390k 10.79 3.12 8.37 70.13 50.82 4.72
E Multi-task MLP 922k 7.52 7.38 43.14 238.38 178.13 6.43

potential advertisement to display or an targeting-segment
that is scored in the context of the user. This application
retrieves 184 candidates in a single request on average from
the server, which includes some server-side features. Af-
terwards, each candidate is decorated with client-side fea-
tures and similarity scores are calculated. To create a proxy
dataset, we create a client id field based on the member id,
and map each unique id to an integer for further anonymiza-
tion. Then, we run a Spark job that groups the examples by
client ids and computes inter-client statistics. Through this
analysis, we find that client data is non-IID and extremely
tail-heavy due to users engaging disproportionately more on
the app (std. of 667, and max of 39,731 records).

Selecting a Mobile-Ready Model. Next, we analyze three
model architectures that are tested in a centralized setting.
Models that need to be deployed in third-party apps via
an SDK have stricter size requirements (<1MB), while
critical models in the first-party app have looser storage
constraints (<10MB). Thoroughly evaluating resource foot-
print requires taking measurements on device, since model
complexity alone is not a good predictor (compare the re-
source footprints between Models A, B, and C in Table 5).
We convert our three candidate models to a TFLite format,
and deploy them for training on dummy data to 27 different
devices on AWS Device Farm in our benchmarking app.
Out of the three architectures, we picked the model that
satisfies the size requirement mentioned earlier at 0.76MB
and consumed the least network and memory. This also
helps us validate that the ops bundled with the ML runtime
are sufficient to execute the model training.

While we observe that the model training footprint is ac-
ceptable, model assets may pose a challenge. During data
processing, the feature transformer must map more than
70% of its features from categorical values to unique indices
through vocabulary files during the data pre-processing step.
Though these mappings work well in a centralized setting,
the device must refresh and store vocab files as assets, which
could be as big as 1.28MB for high-cardinality variables. To
overcome the memory and disk constraints, feature hashing
(Weinberger et al., 2009) can perform the mapping through
a hash function, trading less storage space with lower pre-

dictive power (due to hash collisions).

Systems and Model Performance. Next, we partition the
proxy dataset for 20 workers by client id in a round-robin
fashion to enable faster job execution time in a cluster. This
number is picked roughly based on the total data size divided
by the memory available per worker. Our job config speci-
fies the device traces, on-device performance distributions
produced earlier, and other hyper-parameters to realistically
evaluate the FL training. Shown in Figure 10, model perfor-
mance under random client sampling can be highly variable
due to data heterogeneity, as the clients selected in the ear-
lier rounds can determine the model’s convergence. We use
such experiments to tune parameters (such as the learning
rate schedule in Figure 10) before production deployment.
With the scalability of the framework, we repeat each trial
5 times to estimate an error bound. We decide that the
projected training time of 4.2 days is an acceptable SLA
when FedBuff async training is enabled, as the centralized
counterpart only needs to be retrained weekly. The perfor-
mance difference in Table 4 is also acceptable; since this
on-device deployment helps meet critical compliance and
regulation requirements in the ads industry, there is a higher
tolerance for accuracy degradation (up to 5%). Moreover,
the proxy dataset is only a subset of all the signals that can
be consumed on device; hence it’s a worst-case estimation.

Figure 10. AUPR of an example model trained using two different
exponential decay LR schedules on N=5 trials each. This shows a
good learning rate schedule can improve training stability.

Security and Privacy. Transitioning from a centralized

FLINT: A Platform for Federated Learning Integration

setting where signals are collected, the data minimization al-
ready greatly improves the product’s privacy budget without
any additional PETs. Nonetheless, we project the data trans-
fer bandwidth needed from a TEE is under 3MB/s, which is
sufficiently within the limit. From the security evaluation
of this case study, in which the model is distributed via an
SDK, we identify a new attack scenario if it is possible for
the SDK’s host application to control a significant portion of
the FL participants, hence poisoning the data or selectively
blocking the updates (Severi et al., 2022) of specific group
of clients. This unique hub-and-spoke setup prompts further
security research on detection and defenses.

4.2 Messaging

Consumer messaging applications often contain highly con-
fidential data and are encrypted end-to-end. This poses
restrictions on the data that on-premise ML tasks like abuse
detection and smart-inbox features could use. Cross-device
FL enables message data to be used for training in its orig-
inal state on the device. To create a proxy dataset without
data decryption, we partition a dataset of synthetic messages
used for centralized training. The FL training achieves a
promising performance compared to the centralized train-
ing, with only a 0.18% difference in the test metrics. This
difference is negligible given the improved freshness of the
training data, which helps the global model quickly adapt
to user feedback. Lastly, the evaluation process helps us
identify practical on-device challenges in this domain.

Size of Text Embeddings. Large mobile apps can discour-
age downloads and increase uninstalls. Many deep NLP
models contain word embedding tables to map text tokens
into fixed-size embeddings that are fed into the rest of the
layers. One of our centralized models in the messaging do-
main initially has a 150 million parameter embedding layer
greater than 500MB, prohibiting on-device deployment. Re-
ducing the vocabulary from 500K words to 50k and the
embedding dimension from 300 to 50 leads to a 60-fold size
decrease, fitting the 10MB size constraint. Other solutions
include embedding compression methods like TT-Rec (Yin
et al., 2021) or MEmCom (Pansare et al., 2022). Finally,
the application can bundle a text embedding that’s shared
by NLP models in different domains (search, recommenda-
tions, etc.), and download a smaller language-specific subset
of the corpus based on the user’s language.

Security. Evasion attacks involve adversaries carefully craft-
ing samples fed into the model to change the inference re-
sult, presenting a practical concern for message abuse and
scam detection models during inference time. Access to the
model is especially a concern if a bad actor could decrypt
the weights stored on the device. Existing defenses involve
robust training, but generating adversarial examples during
training can be expensive, (Wong et al., 2020; Hao et al.,

2022) even more so on the device. This introduces a tradeoff
between model robustness and resource consumption. Data
poisoning attacks are another concern when enough users
coordinate to generate fake messages and corresponding
actions, though this usually requires adversaries controlling
an impractical portion of the population (Shejwalkar et al.,
2022). Using the FLINT platform, our decision workflow
enables evaluating new mitigation strategies; for instance,
a more robust client selection criteria that incorporates the
user’s reputation score and account age.

4.3 Search

In industry, FL has been used in browser URL bar sugges-
tions by locally training on private browsing history (Hart-
mann et al., 2019) and ranking keyboard suggestions (Hard
et al., 2018a). Naturally, training ranking tasks on device
allows directly using the displayed candidates and user feed-
back to generate training data directly on the device. At
LinkedIn, most production search workflows are bounded
by strict latency budgets in the sub-100ms range (Guo et al.,
2021). Query autosuggestion and completion require instant
predictions to feel responsive; search ranking models need
regular retraining to reflect search trends. On-device ML
has the potential to improve model freshness and reduce
inference latency. In ranking tasks, the application can lo-
cally cache, retrieve, and rank frequent documents without
any network communication. For language generation tasks
like query completion, locally-trained LSTMs can generate
more personalized search suggestions using partial queries.

Our evaluation of a low-latency model in the search domain
shows a performance difference of only 1.64% (Table 4)
when trained on FL under realistic system constraints, with
minimal device resource usage. Moreover, FL training can
reduce the resources needed to store/ETL data and regularly
retrain models in data centers. However, similar to adver-
tising, training data in search can have a very high quantity
skew because of “superusers”.

5 RELATED WORK

Systems for Federated Learning. Several large-scale cross-
device FL systems have been proposed in recent years, most
notably Google’s GFL system (Bonawitz et al., 2019), Ap-
ple’s FL system (Paulik et al., 2021a), and Meta’s PAPAYA
(Huba et al., 2022). The designs of our service and client
run-time draw inspiration from all of them. Our design
echoes PAPAYA by supporting both sync and async, se-
lecting clients based on demand by active tasks. Our sync
mode is similar to GFL’s round-based design and uses client
over-commitment to handle dropouts.

Evaluation Frameworks. To build the experimental frame-
work, which to the best of our knowledge is first described

FLINT: A Platform for Federated Learning Integration

in this paper, we considered many existing open-source
FL toolkits that provide simulation capability, e.g., TFF
(Bonawitz et al.), FLUTE (Dimitriadis et al., 2022), Flower
(Beutel et al., 2022), and FedML (He et al., 2020). While
they provide a variety of models, datasets, and algorithms
for benchmarks, they report results over communication
rounds. Our design expands on FedScale (Lai et al., 2022),
reporting both model and system metrics reported over a vir-
tual time and communication rounds to account for model
complexity, device availability, compute and network, etc.

FL Benchmarks. Many popular cross-device FL bench-
marks (Caldas et al., 2018) are focused on CV and NLP tasks
(FEMNIST, CIFAR10, Reddit, Shakespeare etc.), and have
helped drive FL research and algorithmic improvements in
the recent years. In general, our work prompts the design
of more tabular FL datasets with sparse features, noisy and
imbalanced labels, and heavy data quantity skew. This is
representative of in-app user behavior in the wild, where
data is often scarce and noisy, and superusers dominate. An
equally important consideration for realistic benchmarks is
whether the models that are benchmarked can be deployed
to lower-end user devices (and be small enough to co-exist
with other models in a mobile app). We suggest researchers
report a measure of model size and on-device resource usage
with the benchmarks of FL models.

The open-source benchmarks implemented in FedScale (Lai
et al., 2022) are close proxies for our case studies given
the naturally-partitioned datasets. The Taobao Ad Display /
Click dataset (label ratio: 5.4%, clients: 1.1 mil, mean: 23,
std: 65) is a good proxy for our advertising scenario because
it captures the scarcity of user response. Models B and C
from Table 5 fit in the ballpark in terms of architecture, size
and performance requirements. For message classification
tasks, the Amazon Review dataset is a good proxy (clients:
256,059, mean: 2.2, std: 4.4). Section 4.2 describes the
model architecture deployed in a typical message classifi-
cation task. As for next-word query prediction in search,
we believe there are already mature benchmarks such as
Stackoverflow and Reddit, modeled by on-device LSTMs
(Hard et al., 2018b). In search ranking, there is a gap for a
federated learning-to-rank dataset with a natural partition-
ing. Lastly, FedScale incorporates device availability traces
from (Yang et al., 2021), which captures a similar weekly
fluctuation pattern with a difference of 4x between peak and
low, given the device is plugged-in and idle. Our availabil-
ity in Figure 2 fluctuates by a factor of 14x due to strict
participation requirements and geographically-based usage
patterns, serving as an upper-bound. The device traces an be
re-sampled and adjusted based on the deployment scenario.

ML Platforms. The learning algorithm itself is only one
component of an ML platform (Sparks et al., 2017). Sys-
tematically deploying ML in production has received large

attention over the past decade with many available MLOps
and platform solutions (Baylor et al., 2017; Zaharia et al.,
2018) because gluing together disjoint components may
do a job once, but often leads to significant technical debt
(Sculley et al., 2015). With increasing data and model sizes,
many parallelism techniques require the orchestration of dis-
tributed systems (Sergeev & Del Balso, 2018; Moritz et al.,
2018). Lastly, ML platforms need to be user-friendly via au-
tomation and declarative solutions so that even non-experts
can leverage ML (Kraska et al., 2013).

FL Platforms. The concept of device-cloud collaborative
ML platforms is not new. Alibaba’s Wall-E (Lv et al., 2022)
provides a deployment platform and high-performance mo-
bile compute runtime for on-device tasks. To the best of our
knowledge, FLINT is the first to fill the important gaps to
allow an effective coexistence of centralized and on-device
ML applications. We believe such a platform should per-
form all the tasks of an ML platform while providing the
tools to analyze and make decisions based on the systems
and data challenges inherent to FL.

6 CONCLUDING REMARKS

As shown by our evaluations of three business-critical ML
applications, a cloud-device collaborative FL platform can
help ML developers and decision makers practically assess
the systems constraints, costs, and benefits of production
FL projects. Leveraging the platform, a systematic decision
workflow can help teams responsibly bring FL projects to
hundreds of millions of users at LinkedIn. Our results also
confirm that in industry scenarios where users could benefit
from improved system performance and data privacy, FL
has the potential to replace centralized training.

In literature, most cross-device FL benchmarks and systems
are designed to process purely device-generated data (text,
voice, image), and their components operate in standalone
FL platforms. As shown in our practical scenarios, the mod-
el/system performance and user experience in FL can greatly
benefit from a collaboration of device-side and cloud-side
data and systems. Hence we emphasize further innovations
in the device-cloud platform space.

ACKNOWLEDGEMENTS

We would like to thank Lu An, Sudhanshu Arora, Oscar
Bonilla, Ting Chen, Alexey Dubovkin, Ebrahim Emami,
Humberto Gonzalez, Ankit Goyal, Mingyang Hu, Abelino
Jimenez, Raghavan Muthuregunathan, Haowen Ning, Ray
Ortigas, Yafei Wang, YuanKun Xue, Hao Yu, Leighton
Zhang, Haifeng Zhao, and Tong Zhou for their valuable
feedback on this work. Further, we thank Siyao Sun, Rahul
Tandra, Zheng Li and Souvik Ghosh for their continuous
support throughout this project.

FLINT: A Platform for Federated Learning Integration

REFERENCES

Apple. App tracking transparency. URL https:
//developer.apple.com/documentation/
apptrackingtransparency. Accessed: 2022-10-
20.

Baylor, D., Breck, E., Cheng, H.-T., Fiedel, N., Foo, C. Y.,
Haque, Z., Haykal, S., Ispir, M., Jain, V., Koc, L., et al.
Tfx: A tensorflow-based production-scale machine learn-
ing platform. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 1387–1395, 2017.

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Fernandez-
Marques, J., Gao, Y., Sani, L., Li, K. H., Parcollet, T.,
de Gusmão, P. P. B., et al. Flower: A friendly federated
learning framework. 2022.

Bonawitz, K., Eichner, H., Grieskamp, W., et al. Tensorflow
federated: machine learning on decentralized data.(2020).

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Mazzocchi,
S., McMahan, B., et al. Towards federated learning at
scale: System design. Proceedings of Machine Learning
and Systems, 1:374–388, 2019.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Charles, Z., Garrett, Z., Huo, Z., Shmulyian, S., and Smith,
V. On large-cohort training for federated learning. Ad-
vances in neural information processing systems, 34:
20461–20475, 2021.

Chen, M., Mathews, R., Ouyang, T., and Beaufays, F. Feder-
ated learning of out-of-vocabulary words. arXiv preprint
arXiv:1903.10635, 2019.

Dimitriadis, D., Garcia, M. H., Diaz, D. M., Manoel, A.,
and Sim, R. Flute: A scalable, extensible framework for
high-performance federated learning simulations. arXiv
preprint arXiv:2203.13789, 2022.

GDPR. General data protection regulation. URL https:
//gdpr-info.eu/. Accessed: 2022-10-25.

Guo, W., Liu, X., Wang, S., Kazi, M., Wang, Z., Fu, Z.,
Jia, J., Zhang, L., Gao, H., and Long, B. Deep natural
language processing for linkedin search. arXiv preprint
arXiv:2108.13300, 2021.

Hao, W., Awatramani, A., Hu, J., Mao, C., Chen, P.-C.,
Cidon, E., Cidon, A., and Yang, J. A tale of two models:
Constructing evasive attacks on edge models. Proceed-
ings of Machine Learning and Systems, 4:414–429, 2022.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018a.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018b.

Hartmann, F. Predicting text selections with
federated learning, 2021. URL https:
//ai.googleblog.com/2021/11/
predicting-text-selections-with.html.

Hartmann, F., Suh, S., Komarzewski, A., Smith, T. D., and
Segall, I. Federated learning for ranking browser history
suggestions. arXiv preprint arXiv:1911.11807, 2019.

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., Wang,
X., Vepakomma, P., Singh, A., Qiu, H., et al. Fedml: A
research library and benchmark for federated machine
learning. arXiv preprint arXiv:2007.13518, 2020.

Horvath, S., Laskaridis, S., Almeida, M., Leontiadis, I.,
Venieris, S., and Lane, N. Fjord: Fair and accurate feder-
ated learning under heterogeneous targets with ordered
dropout. Advances in Neural Information Processing
Systems, 34:12876–12889, 2021.

Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M.,
Yousefpour, A., Wu, C.-J., Zhan, H., Ustinov, P., Srinivas,
H., et al. Papaya: Practical, private, and scalable federated
learning. Proceedings of Machine Learning and Systems,
4:814–832, 2022.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

Kraska, T., Talwalkar, A., Duchi, J. C., Griffith, R., Franklin,
M. J., and Jordan, M. I. Mlbase: A distributed machine-
learning system. In Cidr, volume 1, pp. 2–1, 2013.

Kuo, K., Thaker, P., Khodak, M., Ngyuen, J., Jiang, D., Tal-
walkar, A., and Smith, V. On noisy evaluation in federated
hyperparameter tuning. arXiv preprint arXiv:2212.08930,
2022.

Lai, F., Dai, Y., Singapuram, S., Liu, J., Zhu, X., Mad-
hyastha, H., and Chowdhury, M. FedScale: Benchmark-
ing model and system performance of federated learning
at scale. In International Conference on Machine Learn-
ing, pp. 11814–11827. PMLR, 2022.

https://developer.apple.com/documentation/apptrackingtransparency
https://developer.apple.com/documentation/apptrackingtransparency
https://developer.apple.com/documentation/apptrackingtransparency
https://gdpr-info.eu/
https://gdpr-info.eu/
https://ai.googleblog.com/2021/11/predicting-text-selections-with.html
https://ai.googleblog.com/2021/11/predicting-text-selections-with.html
https://ai.googleblog.com/2021/11/predicting-text-selections-with.html

FLINT: A Platform for Federated Learning Integration

Li, Q., Diao, Y., Chen, Q., and He, B. Federated learning
on non-iid data silos: An experimental study. In 2022
IEEE 38th International Conference on Data Engineering
(ICDE), pp. 965–978. IEEE, 2022.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine Learning and Systems,
2:429–450, 2020.

Lv, C., Niu, C., Gu, R., Jiang, X., Wang, Z., Liu, B., Wu, Z.,
Yao, Q., Huang, C., Huang, P., et al. Walle: An end-to-
end, general-purpose, and large-scale production system
for device-cloud collaborative machine learning. arXiv
preprint arXiv:2205.14833, 2022.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mo, F., Haddadi, H., Katevas, K., Marin, E., Perino, D., and
Kourtellis, N. Ppfl: privacy-preserving federated learning
with trusted execution environments. In Proceedings
of the 19th Annual International Conference on Mobile
Systems, Applications, and Services, pp. 94–108, 2021.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I.,
et al. Ray: A distributed framework for emerging {AI}
applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pp. 561–
577, 2018.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Malek, M., and Huba, D. Federated learning with
buffered asynchronous aggregation. In International Con-
ference on Artificial Intelligence and Statistics, pp. 3581–
3607. PMLR, 2022.

Pansare, N., Katukuri, J., Arora, A., Cipollone, F., Shaik, R.,
Tokgozoglu, N., and Venkataraman, C. Learning com-
pressed embeddings for on-device inference. Proceedings
of Machine Learning and Systems, 4:382–397, 2022.

Paulik, M., Seigel, M., Mason, H., Telaar, D., Kluivers, J.,
van Dalen, R., Lau, C. W., Carlson, L., Granqvist, F.,
Vandevelde, C., et al. Federated evaluation and tuning for
on-device personalization: System design & applications.
arXiv preprint arXiv:2102.08503, 2021a.

Paulik, M., Seigel, M., Mason, H., Telaar, D., Kluivers, J.,
van Dalen, R., Lau, C. W., Carlson, L., Granqvist, F.,
Vandevelde, C., et al. Federated evaluation and tuning for
on-device personalization: System design & applications.
arXiv preprint arXiv:2102.08503, 2021b.

Ramaswamy, S., Mathews, R., Rao, K., and Beaufays, F.
Federated learning for emoji prediction in a mobile key-
board. arXiv preprint arXiv:1906.04329, 2019.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T.,
Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F., and
Dennison, D. Hidden technical debt in machine learning
systems. In NIPS, 2015.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Severi, G., Jagielski, M., Yar, G., Wang, Y., Oprea, A., and
Nita-Rotaru, C. Network-level adversaries in federated
learning. In 2022 IEEE Conference on Communications
and Network Security (CNS), pp. 19–27. IEEE, 2022.

Shejwalkar, V., Houmansadr, A., Kairouz, P., and Ramage,
D. Back to the drawing board: A critical evaluation of
poisoning attacks on production federated learning. pp.
1354–1371, 2022.

So, J., Nolet, C. J., Yang, C.-S., Li, S., Yu, Q., E Ali, R.,
Guler, B., and Avestimehr, S. Lightsecagg: a lightweight
and versatile design for secure aggregation in federated
learning. Proceedings of Machine Learning and Systems,
4:694–720, 2022.

Sparks, E. R., Venkataraman, S., Kaftan, T., Franklin, M. J.,
and Recht, B. Keystoneml: Optimizing pipelines for
large-scale advanced analytics. In 2017 IEEE 33rd in-
ternational conference on data engineering (ICDE), pp.
535–546. IEEE, 2017.

Sun, Z., Kairouz, P., Suresh, A. T., and McMahan, H. B. Can
you really backdoor federated learning? arXiv preprint
arXiv:1911.07963, 2019.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., and
Attenberg, J. Feature hashing for large scale multitask
learning. In Proceedings of the 26th annual international
conference on machine learning, pp. 1113–1120, 2009.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than
free: Revisiting adversarial training. arXiv preprint
arXiv:2001.03994, 2020.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani,
N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai, C.,
et al. Sustainable ai: Environmental implications, chal-
lenges and opportunities. Proceedings of Machine Learn-
ing and Systems, 4:795–813, 2022.

Yan, F. Y., Ayers, H., Zhu, C., Fouladi, S., Hong, J., Zhang,
K., Levis, P., and Winstein, K. Learning in situ: a ran-
domized experiment in video streaming. In 17th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 20), pp. 495–511, 2020.

FLINT: A Platform for Federated Learning Integration

Yang, C., Wang, Q., Xu, M., Chen, Z., Bian, K., Liu, Y.,
and Liu, X. Characterizing impacts of heterogeneity in
federated learning upon large-scale smartphone data. In
Proceedings of the Web Conference 2021, pp. 935–946,
2021.

Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong,
N., Ramage, D., and Beaufays, F. Applied federated
learning: Improving google keyboard query suggestions.
arXiv preprint arXiv:1812.02903, 2018.

Yin, C., Acun, B., Wu, C.-J., and Liu, X. Tt-rec: Tensor train
compression for deep learning recommendation models.
Proceedings of Machine Learning and Systems, 3:448–
462, 2021.

Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd with
faster convergence and less communication: Demystify-
ing why model averaging works for deep learning. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 33:5693–5700, 2019.

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong,
S. A., Konwinski, A., Murching, S., Nykodym, T.,
Ogilvie, P., Parkhe, M., et al. Accelerating the machine
learning lifecycle with mlflow. IEEE Data Eng. Bull., 41
(4):39–45, 2018.

