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ABSTRACT
Achieving high performance for compute-intensive operators in machine learning (ML) workloads is a crucial but
challenging task. Many ML and system practitioners rely on vendor libraries or auto-schedulers to do the job.
While the former requires large engineering efforts, the latter only supports static-shape workloads in existing
works. It is difficult, if not impractical, to apply existing auto-schedulers directly to dynamic-shape workloads, as
this leads to extremely long auto-scheduling time.

We observe that the key challenge faced by existing auto-schedulers when handling a dynamic-shape workload
is that they cannot construct a unified search space for all the possible shapes of the workload, because their
search space is shape-dependent. To address this, we propose DietCode, a new auto-scheduler framework that
efficiently supports dynamic-shape workloads by constructing a shape-generic search space and cost model.
Under this construction, all shapes jointly search within the same space and update the same cost model when
auto-scheduling, which is therefore more efficient compared with existing auto-schedulers.

We evaluate DietCode using state-of-the-art machine learning workloads on a modern GPU. Our evaluation
shows that DietCode has the following key strengths when auto-scheduling an entire model end-to-end: (1)
reduces the auto-scheduling time by up to 5.88× less than the state-of-the-art auto-scheduler on the uniformly
sampled dynamic shapes (94.1× estimated if all the possible shapes are included), (2) improves performance by
up to 69.5% better than the auto-scheduler and 18.6% better than the vendor library. All these advantages make
DietCode an efficient and practical solution for dynamic-shape workloads.

1 INTRODUCTION

Deep neural networks (DNNs) form an important class
of ML algorithms (He et al., 2016; Vaswani et al., 2017;
Amodei et al., 2016; Devlin et al., 2019). They are made
of tensor operators which are often executed for tens of
thousands of iterations to capture the pattern of the training
data samples. Because of this, it is crucial to guarantee the
efficiency of every operator during the execution on real
hardware, as even an improvement of 5% in performance
could mean a cost reduction of up to $4000 in training a
single DNN model end-to-end (Sharir et al., 2020).

However, it is a challenging task to implement all operators
efficiently, because extensive expertise is needed across the
software and hardware stack in order for those operators to
be programmed efficiently. Therefore, most state-of-the-art
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ML frameworks rely on heavily optimized, hand-crafted
vendor libraries (e.g., oneDNN (oneAPI, 2021) on Intel
CPUs; cuDNN (Chetlur et al., 2014) and cuBLAS (NVIDIA,
2021) on NVIDIA GPUs) to provide highly optimized op-
erators (Abadi et al., 2016; Paszke et al., 2019; Chen et al.,
2015). Despite delivering high performance, the develop-
ment time and release cycle for vendor libraries to sup-
port new operators on new hardware platforms could be
extremely long (e.g., there is roughly a one year gap be-
tween each cuBLAS major release (NVIDIA, 2021b)).

To address these challenges, auto-scheduler frameworks
have been proposed to bridge the gap between high-level
compute definition and low-level implementation details
(e.g., Ansor (Zheng et al., 2020a), TVM (Chen et al., 2018a),
Halide auto-scheduler (Adams et al., 2019), and Tensor
Comprehensions (Vasilache et al., 2020)). Although be-
ing powerful, the existing auto-schedulers can only support
static-shape workloads where all shapes have to be known
at compile-time because they need this information to con-
struct the search space that describes all possible operator
implementations (i.e., schedules) under consideration.
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However, real world workloads can take on different shapes
from time to time, such as in the following scenarios: (1)
neural architecture search (Zoph & Le, 2017), (2) dynamic
by design (e.g., models in the sequence learning domain
have to dynamically fit to the input sequence length at run-
time (Wu et al., 2016; Vaswani et al., 2017; Amodei et al.,
2016; Devlin et al., 2019)), and (3) varying shapes depend-
ing on the layer position in the model (He et al., 2016; Devlin
et al., 2019). A straightforward way for the existing auto-
schedulers (Zheng et al., 2020a; Chen et al., 2018a; Adams
et al., 2019; Vasilache et al., 2020) to support those cases is
by tuning for all the possible shapes, but this can take days
to complete (i.e., up to 42 hours for a single BERT (Devlin
et al., 2019) layer on a modern CPU), which is therefore not
a practical solution.

In this work, we observe that if we group the same type of
operators with different shapes together as a single dynamic-
shape workload and only auto-schedule the workload once,
we can significantly reduce the overall auto-scheduling time.
However, existing auto-schedulers (Zheng et al., 2020a;
Chen et al., 2018a; Adams et al., 2019; Vasilache et al.,
2020) cannot collectively schedule for different shapes of
the same operator directly, because those auto-schedulers
construct different search spaces for different shapes. To
address this shape-dependent search space construction, we
propose DietCode, a new auto-scheduler framework that effi-
ciently supports dynamic-shape workloads by constructing a
shape-generic search space that is made up of micro-kernels,
incomplete programs that carries out a tile of the complete
computation. Because every micro-kernel can be ported to
every shape of the workload, this gives DietCode a unified
space to search for efficient schedules for all the shapes.

With this change in the search space foundation, DietCode
designs a cost model that is made up of a convoluted shape-
generic component and a simple shape-dependent compo-
nent to guide its exploration in the search space. While the
former requires extracting program features from the micro-
kernels (e.g., loop structures, memory access patterns) and
constantly learning on real hardware measurements to be
accurate, the latter does not. This design allows for efficient
cost model predictions, as to adapt a micro-kernel to all the
possible shapes of the workload, only the shape-dependent
component needs to be updated for each shape.

We highlight that DietCode has all the shapes of a work-
load explore the same search space and learn the same cost
model jointly, therefore making the auto-scheduling process
have a constant-time runtime complexity with respect to the
number of shapes, which is much more efficient compared
with the existing auto-schedulers (Zheng et al., 2020a; Chen
et al., 2018a; Adams et al., 2019; Vasilache et al., 2020).

Our contributions can be summarized as follows:

(1) We find and address the key challenges in making auto-
scheduling practical for the important class of dynamic-
shape workloads by using a shape-generic search space.

(2) We build DietCode, a new auto-scheduler framework
for dynamic-shape workloads that adopts the joint learn-
ing approach that optimizes all the possible shapes of the
workload collectively within the same shape-generic search
space, and learns the same shape-generic cost model.

(3) We evaluate DietCode on BERT (Devlin et al., 2019), a
state-of-the-art language modelling application, and show
that DietCode can greatly reduce the auto-scheduling time
by up to 5.88× compared with Ansor (Zheng et al., 2020a),
a state-of-the-art auto-scheduler, on the uniformly sampled
dynamic shapes (94.1× estimated if all the possible shapes
are included). At the same time, DietCode improves the
runtime performance by up to 69.5% better than Ansor and
18.6% better than the vendor library (cuBLAS and cuDNN
(NVIDIA, 2021; Chetlur et al., 2014)) on a modern GPU.

2 BACKGROUND AND MOTIVATION

In this section, we present an overview of the key charac-
teristics and shortcomings of both vendor libraries (oneAPI,
2021; Chetlur et al., 2014; NVIDIA, 2021) and state-of-the-
art auto-schedulers (Zheng et al., 2020a; Chen et al., 2018a;
Adams et al., 2019; Vasilache et al., 2020) on dynamic-shape
workloads to motivate DietCode.

2.1 Vendor Libraries and Existing Auto-Schedulers

Achieving high performance for compute-intensive opera-
tors (e.g., convolution and matrix multiplication) has always
been a challenging task. Therefore, most state-of-the-art ma-
chine learning frameworks (e.g., TensorFlow (Abadi et al.,
2016), PyTorch (Paszke et al., 2019), and MXNet (Chen
et al., 2015)) rely on heavily optimized, hand-crafted ven-
dor libraries (e.g., oneDNN (oneAPI, 2021) on Intel CPUs;
cuDNN (Chetlur et al., 2014) and cuBLAS (NVIDIA, 2021)
on NVIDIA GPUs). Despite providing high performance
for a pool of operators, those libraries come with a non-
trivial price: developing the efficient implementations often
requires (1) in-depth expertise across the software and hard-
ware stacks; and (2) significant amount of engineering effort
which lead to prolonged release cycle for vendor libraries to
support new operators on new hardware.

To deliver high-performance tensor programs on diverse
hardware in a relatively short time, auto-scheduler frame-
works (e.g., Ansor (Zheng et al., 2020a), TVM (Chen et al.,
2018a), Halide auto-scheduler (Adams et al., 2019), and
Tensor Comprehensions (Vasilache et al., 2020)) have been
proposed. The input to the auto-scheduler is a tensor ex-
pression, which includes an operator specification and input
shape descriptions (see Figure 2(a)). The auto-scheduler
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Figure 1. Code-generation comparison between (a) existing auto-schedulers and (b) DietCode. Existing approaches auto-schedule each
shape individually. DietCode solves the problem by having all shapes jointly search within the same shape-generic search space and
update the same micro-kernel cost model.

Y = XW⊤
(a) X : [1024, 768],W : [2304, 768]

(b)
X : [16×T, 768],W : [2304, 768],

T ∈ [1, 128]

Figure 2. (a) A static-shape workload where all shapes are compile-
time constants. (b) A dynamic-shape workload (T is dynamic).

automatically constructs high-performance programs by an-
alyzing the expression. This is done by first formulating
a search space that consists of numerous possible imple-
mentations (i.e., schedules, ❶ in Figure 1(a)) derived from
the tensor expression, and then building a cost model that
can predict the runtime performance of each schedule (❷).
Throughout the auto-scheduling process, the cost model
is constantly updated by real hardware measurements and
used to guide the exploration within the search space (❸).
The schedule delivered at the end of the process can lead
to operator implementations that are up to 3.8× faster than
their counterparts in vendor libraries.

2.2 Dynamic Tensor Programs

Despite having different implementations, to the best of
our knowledge, those existing auto-schedulers (Zheng et al.,
2020a; Chen et al., 2018a; Adams et al., 2019; Vasilache
et al., 2020) have a common limitation: they require work-
loads to be static (i.e., all shapes must be known at com-
pile time) to perform analysis. Such a restriction makes it
hard and even impractical to use them for many real world
scenarios, as large amount of time has to be spent on auto-
scheduling (can be around 42 hours on a single operator as
we will demonstrate later). Those scenarios include:

(1) Neural architecture search (Zoph & Le, 2017): NAS
aims to deliver a DNN that fits the given training dataset in

a predefined search space of hyperparameters (e.g., batch
sizes, hidden dimensions). Each hyperparameter can lead to
a network of layers with distinct shapes. To achieve the best
search results, a large number of network architectures have
to be explored (e.g., 12, 800 architectures are examined in
Zoph & Le (2017)).

(2) Dynamic by design: Although machine learning practi-
tioners usually choose to freeze the models for deployment,
certain models, especially those in the sequence learning
domain, are dynamic by nature. For instance, machine trans-
lation (Wu et al., 2016; Vaswani et al., 2017), speech recog-
nition (Amodei et al., 2016), and language modeling (De-
vlin et al., 2019) all involve dynamic sequence lengths that
vary depending on the input data samples. Each sequence
length again corresponds to a network of layers with distinct
shapes. For example, in the case of BERT (Devlin et al.,
2019), a state-of-the-art language modelling application, the
sequence length can take on any value from 1 to 128.1

(3) Varying shapes with different layer positions: Even if
the model is static, one operator class can exhibit distinct
shapes at different positions of the model. Take the BERT
model (Devlin et al., 2019) again as an example: the hid-
den dimension of a dense layer can take on the value of
{768, 2304, 3072} depending on where it is in the model.

Consequently, tensor programs of the same operator type in
these scenarios can take on various shapes. The restriction
that only static-shape workloads are accepted by the existing
auto-schedulers (Zheng et al., 2020a; Chen et al., 2018a;

1Although padding can be used to pad the dynamic sequence
lengths to static values, this nevertheless leads to performance
degradation (can be as much as 2× (Kosec et al., 2021)).
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Adams et al., 2019; Vasilache et al., 2020) poses challenges
in using them in these scenarios, as their compilation time
can be extremely long (roughly estimated to be 4200, 42,
and 1 hour(s) respectively on a modern CPU for a single
layer type, 20× more for an entire network (Zheng et al.,
2020a)). We observe, however, that if those programs can
be grouped together as a single dynamic-shape workload
and auto-scheduled once, the compilation time can be sig-
nificantly shortened by up to 5.88× (94.1× projected if all
the possible shapes are included).

2.3 Why A New Auto-Scheduler Framework?

This work proposes a new auto-scheduler framework that
efficiently supports dynamic-shape workloads. However, a
reasonable question to ask is why such a new framework
is needed in the first place, or in other words, why existing
solutions are not adequate. More precisely, could vendor li-
braries (oneAPI, 2021; Chetlur et al., 2014; NVIDIA, 2021)
or existing auto schedulers (Zheng et al., 2020a; Chen et al.,
2018a; Adams et al., 2019; Vasilache et al., 2020) plus their
extensions be used instead? Below, we outline some of the
key challenges with these alternative approaches to high-
light why existing solutions are not satisfactory in practice.
The example that we use is the dense layer Y = XW⊤

from the BERT-base (Devlin et al., 2019) model under a
commonly used batch size of 16 (see Figure 2(b)) (Zheng
et al., 2020a). The dynamism of the tensor program lies
in the sequence length T, which represents the length of a
sentence in a corpus. Without loss of generality, we pick its
range to be [1, 128] for illustrative purpose.

Vendor libraries (oneAPI, 2021; NVIDIA, 2021; Chetlur
et al., 2014) are hand-crafted to include several optimized
kernels to cover all the possible shapes, and workloads will
be dispatched on the fly to the most suitable schedule (de-
termined by hard-coded heuristics) for execution based on
their shapes. When the workload shape does not entirely
fit into the schedule, the runtime performance will be sub-
optimal on specific hardware or workload (as much as 13×
performance degradation in some pathological cases (Al-
ibaba, 2018)). The reason for this sub-optimality can be
padding the shape to the multiple of the hard-coded kernel
tile sizes, which introduces padding overhead and decreases
the computation efficiency. Previous works observe such
situations in the form of redundant compute operations (Al-
ibaba, 2018) and latency stair-casing (Yu et al., 2020). Those
inefficiencies hence push for the need to extend the hand-
crafted kernels in the vendor libraries, which is nevertheless
a nontrivial task due to the complexity of those kernels.

Existing auto-schedulers (Zheng et al., 2020a; Chen et al.,
2018a; Adams et al., 2019; Vasilache et al., 2020) can over-
come the above shortcomings by optimizing the schedule for
each possible shape, but directly applying them to dynamic-

shape workloads can be challenging. Figure 1(a) provides
a straightforward workflow if one would like to adopt ex-
isting auto-schedulers to handle dynamic-shape workloads.
As existing auto-schedulers can only operate on one static
shape at a time, every possible static shape needs to be auto-
scheduled individually. This is illustrated in Figure 1(a)
as multiple instances of the auto-schedulers (next to Si’s).
Since each instance takes roughly 0.33 CPU hour to op-
timize the schedule for a single shape on a modern ma-
chine equipped with 16 Intel® Xeon® Platinum 8259CL
CPUs (PassMark Software, 2020), we empirically estimate
42 CPU hours to optimize a single dynamic-shape dense
layer workload specified in Figure 2(b).

Although extensions based on the existing auto-schedulers
have been proposed to support dynamic-shape workloads
(Yu, 2019; Shen et al., 2021; Wang, 2019), to our best knowl-
edge, those prior works all face challenges of being not fully
automatic and/or producing low-performance tensor pro-
grams: (1) Selective tuning (Yu, 2019) heuristically groups
static-shape workloads into clusters and optimizes for each
cluster separately, which involves human expertise and there-
fore is not fully automatic. (2) Nimble (Shen et al., 2021)
auto-schedules a dynamic-shape workload by letting it take
on a large shape and apply its schedule generically to all
shapes. However, as our evaluation in Section 5 will show,
a schedule that is optimal on the large shape might be sub-
optimal on the others. (3) Bucketing (Wang, 2019) splits the
dynamic range into small sub-ranges (e.g., T ∈ [1, 128] in
Figure 2(b) into T ∈ [1, 8], [9, 16], . . .) and tunes only for
the maximum value within each sub-range while padding
the rest to the maximum. There are, however, two sources of
inefficiency with this approach: (i) It requires extra padding
and slicing operations before and after the main computa-
tion respectively that bring performance and storage penalty.
(ii) Performing computation on the padded tensors results in
low efficiency, as many computations are useless (e.g., in the
previous bucketing example, T = 8 requires 7× more com-
putations than T = 1). These weaknesses hinder the use of
existing auto-schedulers (Zheng et al., 2020a; Chen et al.,
2018a; Adams et al., 2019; Vasilache et al., 2020) to support
dynamic-shape workloads in a practical and efficient way,
which therefore motivates for a new auto-scheduler design.

3 DIETCODE: KEY IDEAS

We further dive into the challenges of the existing auto-
schedulers (Zheng et al., 2020a; Chen et al., 2018a; Adams
et al., 2019; Vasilache et al., 2020) to understand why they
cannot be easily improved to be efficient on dynamic-shape
workloads. We then present the key ideas behind the pro-
posals of our design.

3.1 Shape-Generic Search Space
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for (i = 0; i < T; ++i)
A[i] = ...

for (io = 0; io < ⌈T/t⌉; ++io)
for (ii = 0; ii < t; ++ii)

A[io*t+ii] = ...

(a) (b)
Figure 3. A loop tile schedule (b) transformed from the input tensor
expression (a), where T is the user-provided loop extent and t is a
tunable tile size parameter by the auto-scheduler.

Instead of tuning every possible shape one by one using
existing auto-schedulers (Zheng et al., 2020a; Chen et al.,
2018a; Adams et al., 2019; Vasilache et al., 2020), we ob-
serve that the search spaces of different shapes can in fact
overlap and hence can potentially form a shape-generic
search space. Take the loop tile schedule in Figure 3(b) that
is transformed from the tensor expression in (a) as an exam-
ple. When tuning for the tile size t, existing auto-schedulers
only consider all factors of T as candidates, meaning that
t ∈ {1, 7, 49} when T = 49 and t ∈ {1, 2, 5, . . . , 50} when
T = 50. However, any integer smaller than T are in fact
all valid candidates, and they form a shape-generic search
space that can be used by all possible T ’s. We observe from
this example that the search space construction is essentially
to make a trade-off between a large, unified search space
for all the possible shapes and the challenge of addressing
extra boundary checks (which are needed in the case of
non-perfect tiling, e.g., t = 10 when T = 49). As we will
show in Section 4.1, we could avoid the boundary checking
overhead by carefully handling the non-perfect tiling in the
code generation. Accordingly, non-factor tile candidates
can also lead to the same or even better performance than
the factor candidates. We show how non-factor candidates
can positively affect the performance of the generated tensor
programs in Section 5.

From these merits, we construct a shape-generic search
space that consists of micro-kernels (❹ in Figure 1(b)), an
incomplete program that carries out a tile of the complete
computation, to efficiently support dynamic-shape work-
loads. We use the hardware constraints (e.g., the maximum
number of threads, the amount of shared and local memory)
rather than the shape information to determine the micro-
kernel candidates. Those candidates serve as the building
blocks and are executed repeatedly to carry out a workload
instance (defined as an static-shape instance of the dynamic-
shape workload). For example, Figure 4 shows how the
micro-kernel dense_128x128,2 which evaluates

Y = XW⊤, X : [128, 768],W : [128, 768]
can be leveraged to perform an instance of Y = XW⊤ as
in Figure 2(b) with T = 64. This is achieved by dissecting
the complete program into 8× 18 pieces along the spatial
dimensions (since 16 ·T = 8× 128, 2304 = 18× 128) and
carry out each piece individually. Because micro-kernels
only realize a piece of the complete computation, each one

2Although we use the dense layer and the micro-kernel size
128× 128 here to demonstrate how micro-kernels work, the exact
same idea applies to other workloads and/or micro-kernel sizes.

Figure 4. Micro-kernel dense_128x128 used to realize Y =
XW⊤ as in Figure 2(b) with T = 64. The horizontal and vertical
axis represent the output dimensions of Y .

Figure 5. Micro-kernel dense_128x128 used to realize Y =
XW⊤ as in Figure 2(b) with T = 60. The tiles at the last column
are padded (shown in red) to fit the micro-kernel.

can be easily ported to multiple workload instances of dif-
ferent shapes and hence it is shape-generic. If we revisit
the previous example, the micro-kernel dense_128x128
can be leveraged to realize not only T = 64, but T = 1, 2,
. . . , 127, 128 as well.

Despite being a generic solution, the use of micro-kernels
poses two new and important challenges: (1) How to com-
pose high-performance complete programs using micro-
kernels, especially in the case when the workload cannot
perfectly fit into the micro-kernel (see Figure 5 as an exam-
ple), and (2) How to accurately and efficiently predict the
performance of micro-kernel-based complete programs. In
this work, we address the first challenge using local padding
that automatically pads the local workspace when fetching
the input tensors from global memory (see Section 4.1 for
more details) and the second challenge by building a micro-
kernel-based cost model.

3.2 Micro-Kernel-based Cost Model

To search for high-performance micro-kernels efficiently,
we use cost models to guide the search process. Existing
auto-schedulers (Zheng et al., 2020a; Chen et al., 2018a;
Adams et al., 2019; Vasilache et al., 2020) also have cost
models that predict the compute throughput of a program by
extracting its features (e.g., loop structures, memory access
patterns), but those cost models can only accept complete
programs as inputs:

Cost(P ) = f(FeatureExtractor(P )) (1)
f : cost function (e.g., XGBoost (Chen & Guestrin, 2016))

P : complete program Cost : compute throughput
However, as micro-kernels are incomplete (they are a tile
of the complete programs), they cannot be applied to the
existing cost models. To address this challenge, we build
a micro-kernel-based cost model. The key insight is that
the cost of a complete program P that is made up of a
micro-kernel M can be decomposed into two parts: (1) a
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Tuning? Complexity

Vendor Libraries ✘ -
Existing Auto-Schedulers ✓ O(|S|)
DietCode ✓ O(1)

Table 1. Comparison between the three options in terms of the
ability to do auto-tuning and the runtime complexity of tuning. |S|
represents the number of possible shapes.

shape-generic cost function fMK that predicts the cost of
M , and (2) a shape-dependent adaption cost function fadapt
that defines the penalty of porting M to P . While fMK is a
function that has to be learned and updated by real hardware
measurements during the auto-scheduling process, fadapt is
a simple term that can be evaluated using the core occupancy
and the padding ratio (in other words, it does not require
feature extraction, see Section 4.2 for more details). Given
below is the mathematical form of our cost model:
CostM (P ) = fMK(FeatureExtractor(M))·fadapt(P,M)

(2)
Compared with Equation 1, Equation 2 has the key advan-
tage of being efficient: To predict the performance of many
complete programs that share the same micro-kernel M , the
program feature extraction only needs to be done once on
the micro-kernel M , and each program only needs to update
the adaption cost individually. This significantly removes
the redundancies in the feature extraction, leading to a more
efficient auto-scheduling pipeline.

3.3 Joint Learning with DietCode

From the above search space and cost model formulations,
we propose DietCode, a new auto-scheduler framework that
has three key components: (1) a shape-generic search space,
(2) a micro-kernel-based cost model, and (3) a dispatcher
(❼ in Figure 1(b), see Section 4.3 for details) that automat-
ically dispatches static shapes to micro-kernels based on
Equation 2 at runtime.

The optimization workflow of DietCode is a joint learning
process (❻ in Figure 1(b)), where all workload instances
of a dynamic-shape workload share the same search space
and collectively learn the same cost model. This workflow
gives DietCode the ability to operate on a per-category basis,
where each category shares the same shape-generic program
(i.e., micro-kernel). Table 1 shows the comparison between
the three major approaches we described so far: vendor li-
braries (oneAPI, 2021; NVIDIA, 2021; Chetlur et al., 2014),
existing auto-schedulers (Zheng et al., 2020a; Chen et al.,
2018a; Adams et al., 2019; Vasilache et al., 2020), and Di-
etCode, where we use |S| to denote the number of possible
shapes of a dynamic-shape workload. Because DietCode
can produce all the shape-generic categories in one run,
it can significantly reduce the auto-scheduling time com-
pared with the existing auto-schedulers on dynamic-shape
workloads, as our evaluation will show in Section 5.

for i.0 in [0, T ):
for i.1 in [0, t):
if i.0*t+i.1 < T:

X_local = X[...]
if i.0*t+i.1 < T:

Y_local = ...
if i.0*t+i.1 < T:

Y[...] = Y_local

X_pad = pad X to [⌈T/t⌉ · t]
for i.0 in [0, T ):
for i.1 in [0, t):

X_local = X_pad[...]
Y_local = ...
Y_pad[...] = Y_local

slice Y_pad to [T]

(a) (b)

for i.0 in [0, T ):
for i.1 in [0, t):
if i.0 < ⌊T/t⌋:

X_local = X[...]
Y_local = ...
Y[...] = Y_local

else:
if i.0*t+i.1 < T:
X_local = X[...]

if i.0*t+i.1 < T:
Y_local = ...

if i.0*t+i.1 < T:
Y[...] = Y_local

for i.0 in [0, T ):
for i.1 in [0, t):

if i.0*t+i.1 < T:
X_local = X[...]

Y_local = ...
if i.0*t+i.1 < T:
Y[...] = Y_local

(c) (d)
Figure 6. (a) A tiled loop with boundary checks. (b-d) Three opti-
mization strategies: (b) global padding, (c) loop partitioning, and
(d) local padding.

4 IMPLEMENTATION DETAILS

We integrate DietCode as a part of TVM (Chen et al., 2018a)
in the form of an auto-scheduler submodule. In this section,
we highlight some of the details of the DietCode’s design.

4.1 Local Padding

One of the key ideas of DietCode is to apply micro-kernels
generically to all workload instances, each corresponding
to a static-shape instance of the dynamic-shape workload.
However, it is common for workload instances to not fit the
micro-kernels perfectly, as is illustrated in Figure 5 where
the micro-kernels at the last column are not fully material-
ized. In these cases, boundary checks need to be injected
inside the micro-kernel to make sure that the program does
not operate on invalid data values, but they also bring large
performance degradation to the program (as much as 17×
in our evaluation with the example illustrated in Figure 5
on a modern Tesla T4 GPU (NVIDIA, 2020)). This is be-
cause those checks bring in extra branching and compute
instructions in the generated program.

To our best knowledge, there are three solutions to mitigate
this problem. To demonstrate them, we use the code snippet
with boundary checks in Figure 6(a) as an example, where
we greatly simplify the schedule by keeping its skeleton only
to help understanding (fetch the input tensor from the global
memory to the local workspace, compute, and writeback the
output tensor to the global memory).

(1) Global padding pads the input tensor before the main
computation and slice the output tensor afterwards. This
can remove all the boundary checks in the compute kernel,
but would require extra storage and injections of pad/slice
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operations (see Figure 6(b)).

(2) Loop partitioning (Shen et al., 2021) partitions the com-
plete programs into regions where boundary checks can be
eliminated and regions where they cannot (see Figure 6(c)).
The performance benefits of loop partitioning depend on
the relative ratio between the inner and the outer loop: If
t ≪ T , there will be more iterations of i.0 without bound-
ary conditions and hence more benefits. However, if t ≪ T
does not hold, the benefits can be limited.

(3) Local padding pads the local workspace when fetching
the input tensor values from the global memory, and slices
the local workspace when writing back. This is equivalent
to preserving the boundary checks at the fetch and writeback
stages while removing those at the compute stage (see Fig-
ure 6(d)). The idea of local padding is based on the two key
observations: (i) Only the boundary checks at the compute
stage have the dominant impact on the runtime performance,
because those at the fetch and writeback stages can be hid-
den by the latency of the global memory transfers (NVIDIA,
2019), and (ii) Padded data values that are computed in the
compute stage will be filtered out by the boundary checks
in the writeback stage, hence they do not affect the output
tensor values (i.e., program correctness).

In this work, we pick the third option because it has the
merits of both being transparent (incurring no storage over-
head and extra operators) and can be generically applied to
both large and small shapes (whereas loop partitioning only
works best on large shapes). We prove that local padding
is an efficient solution to address the boundary checks chal-
lenge with our evaluation in Section 5.

4.2 Micro-Kernel-based Cost Model

To accurately predict the performance of micro-kernel-
based complete programs, we devise three terms in the cost
model that respectively account for: ① the performance of
the micro-kernel, ② the hardware core occupancy penalty,
which correlates to the number of times this micro-kernel
is executed to compose the complete program, and ③ the
padding penalty. The mathematical expression of the cost
model is as follows:

CostM (P ) =fMK(FeatureExtractor(M))①·
②fOCC(P/M) · fpad(P,M)③︸ ︷︷ ︸

fadapt(P,M)

(3)

where M denotes the micro-kernel and P the complete
program. The two functions fOCC, fpadding of the adaption
cost correspond respectively to:

fOCC: The hardware core occupancy penalty, which we
model using a linear regression model:

fOCC(P/M) = k
P/M

ceil by(P/M,NumCores)︸ ︷︷ ︸
④

+b

Figure 7. fMK, fOCC, and fpad account for different program be-
haviors (example taken from Figure 5).

where the term P/M corresponds to the number of times M
is executed to form P and the coefficients k, b are learnable
parameters. Since each micro-kernel is dispatched to one
hardware core, the term P/M also correlates to the number
of occupied hardware cores. Therefore, the term ④ in the
above equation denotes the hardware occupancy ratio of a
complete program P that is composed using M . This ratio
is further weighted using the two coefficients k, b, whose
values are dynamically adapted to the hardware platforms
when auto-scheduling, to estimate the hardware occupancy
cost. In fact, since we want the occupancy cost to be 1 when
all the cores are fully occupied, we can further derive:

fOCC(P,M) = 1, when
P/M

ceil by(P/M,NumCores)
= 1

⇒ k + b = 1 ⇒ b = 1− k
to reduce one of the dynamic parameters b.

fpad: The padding penalty, which can be modelled in a
hardware-agnostic way as pad by(P,M)/P (the pad by prim-
itive pads the complete program P by the size of M ).

Figure 7 illustrates the correlation between the three terms
in Equation 3 and how the micro-kernels form the complete
program, where we can see the one-to-one correspondence
between the equation and the complete program composi-
tion. Such correspondence allows us to accurately predict
the performance of micro-kernel-based complete programs,
and hence search for high-performance micro-kernels effi-
ciently using evolutionary search (Vikhar, 2016) in the joint
learning process (❻ in Figure 1).

4.3 Automatic Dispatching

After the joint learning process has been completed, a set
of micro-kernels are generated by DietCode as the auto-
scheduling outcomes. To dispatch all the possible shapes to
those micro-kernels, we have each shape S vote for its fa-
vorite micro-kernel based on the cost formula in Equation 3:

vote(S) = argmaxM (CostM (P (S,M)))
where the LHS denotes the voted micro-kernel, and the
term P (S,M) refers to the complete program of shape S
composed using the micro-kernel M .3 After all S’s have
voted, we train a decision tree using the scikit-learn frame-

3The reason why it is argmax in the formula is because the
term cost usually refers to the compute throughput (Chen et al.,
2018b; Zheng et al., 2020a), hence the higher the better.
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Figure 8. Latency comparison between Vendor, Ansor, and DietCode on the entire BERT-base model with dynamic sequence lengths.

work (Pedregosa et al., 2011) (❼ in Figure 1). The input to
the decision tree is all the possible shapes and the output
labels are their selected micro-kernels. The generated de-
cision tree automatically categorizes shapes that select the
same micro-kernel together, and is exported in the C-style
source code format for efficient dispatching from the input
shape to its corresponding micro-kernel at runtime.

Now that we have presented the details of the DietCode’s
design, we evaluate its efficiency on state-of-the-art machine
learning workloads.

5 EVALUATION

5.1 Methodology

Infrastructure. Our major compute platform is an Amazon
EC2 G4dn instance (Amazon, 2021), which is equipped with
16 Intel® Xeon® Platinum 8259CL CPUs (PassMark Soft-
ware, 2020) and 1 NVIDIA Tesla T4 GPU (NVIDIA, 2020),
with CUDA 11.3 (NVIDIA, 2021a), cuDNN 8.2 (NVIDIA,
2021), and TVM v0.8.dev0 (Chen et al., 2018a).

Applications. We evaluate our new auto-scheduler frame-
work, DietCode, first on the BERT-base model (Devlin et al.,
2019) end-to-end with dynamic sequence lengths. After that,
we show how the performance is achieved by evaluating on
the dense and batched matrix multiplication layers extracted
from BERT-base, also with dynamic sequence lengths.

As it is impractical to complete the entire auto-scheduling
procedure using the existing auto-schedulers (Zheng et al.,
2020a; Chen et al., 2018a; Adams et al., 2019; Vasilache
et al., 2020) (it can take about 42 CPU hours to complete
a single dynamic-shape workload for the sequence length
within the range of [1, 128]), we sample 8 shape configu-
rations uniformly within the range of [1, 128] to compare
the performance and the auto-scheduling time, and use the
auto-scheduling time on those configurations to project the
total auto-scheduling time across the entire range.

Baselines. We compare DietCode with three state-of-the-art
baselines: (1) the vendor library (cuBLAS (NVIDIA, 2021)
and cuDNN (Chetlur et al., 2014) on the GPUs), which we
refer to as Vendor, (2) the state-of-the-art auto-scheduler
implementation, Ansor (Zheng et al., 2020a; Chen et al.,

Figure 9. Auto-scheduling time comparison between Ansor and
DietCode on various dynamic workloads. The lower the better.

2018a), that targets static-shape workloads, which we refer
to as Ansor, (3) the state-of-the-art prior work on dynamic
code generation, Nimble (Shen et al., 2021), that extends
Ansor to support dynamic-shape workloads by tuning the
largest shape and applying its schedule generically to all
shapes using loop partitioning, which we refer to as Nimble.
On each static-shape workload, Ansor is sufficiently tuned
for at least 1000 trials.

Metrics. We show the results on (1) the end-to-end latency
on the entire model, measured as msec and averaged over 5
runs (2) the runtime cost of the generated tensor programs on
a single operator, measured as µsec and averaged over 100
runs, and (3) the total auto-scheduling time used, measured
as hours. For all metrics, lower is better.

5.2 End-to-End Model Evaluation

Figure 8 shows the end-to-end latency comparison between
Vendor, Ansor, and DietCode on the BERT-base model (De-
vlin et al., 2019) with dynamic sequence lengths, where
all numbers are normalized to Ansor under each sequence
length. We observe from the figure that the latency of Di-
etCode is up to 69.5% better than that of Ansor and 18.6%
better than that of Vendor (29.9% and 5.4% better on aver-
age, respectively). The reason of the speedup will be evident
in the following sections as we show the performance com-
parison on each individual layer of the model.

Figure 9 shows the amount of auto-scheduling time taken
by Ansor and DietCode on the sampled sequence lengths.
Since those 8 sequence lengths are uniformly chosen within
the range of [1, 128], we project the auto-scheduling time of
Ansor on the entire range to be 16× of that on the sampled
ones. We observe from the figure that DietCode takes 5.88×
less time to auto-schedule for the entire model than Ansor on
the sampled sequence lengths. This speedup is estimated to
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Figure 10. Runtime comparison between Vendor, Ansor, Nimble, and DietCode on Dense with dynamic sequence lengths.

increase to 94.1× on the entire range, since Ansor needs to
auto-schedule for each individual sequence length, whereas
DietCode only needs to do the auto-scheduling once.

We now connect these improvements in the latency and the
auto-scheduling time with results on individual layers as
they are the building blocks for BERT (Devlin et al., 2019).

5.3 Dynamic Dense Layer

We compare the performance between Vendor, Ansor, Nim-
ble and DietCode on the dense layer with dynamic sequence
lengths (denoted as T ) as in Figure 2(b). Figure 10 shows
the comparison of the runtime cost under different sequence
lengths. We observe from the figure that the runtime of Di-
etCode across all the sequence lengths is on average 30.5%
less than that of Ansor, 23.9% than that of Nimble, and
5.3% than that of Vendor. The reason why DietCode has
better performance than Ansor is because, as is explained
in Section 3.1, the shape-generic search space construction
of DietCode allows it to explore tensor programs that are
overlooked by the shape-dependent construction of Ansor
(same reason for Nimble since it uses the schedule gener-
ated by Ansor). We cannot analyze the exact reason why
DietCode can have better performance than Vendor since
cuBLAS (NVIDIA, 2021) is a proprietary library.

Since DietCode only needs to run the auto-scheduling pro-
cedure once, it is much more efficient than Ansor in terms
of the total auto-scheduling time. Figure 9 shows the auto-
scheduling time taken by Ansor and DietCode on various
types of dynamic workloads, where we observe DietCode
takes 6.3× less time than Ansor for auto-scheduling the
dynamic dense layer on the sampled sequence lengths (and
estimated to be 100.8× less on the entire range). The rea-
son why it is below the theoretical 8× limit can be because
the shape-generic search space construction and exploration
is more complicated than that of shape-dependent search
space, since hardware constraints need to be examined (as is
explained in Section 3.1). However, the improvement in the
auto-scheduling time is still noticeable and it will only be
greater if we allow the dynamic sequence length T to take
on more diverse values.

Y = BatchMatmulNT(X,W )

X : [192,T, 64],W : [192,T, 64],T ∈ [1, 128]

Y = BatchMatmulNN(X,W )

X : [192,T,T],W : [192,T, 64],T ∈ [1, 128]

Figure 11. Dynamic-shape workload Y = BatchMatmul(X,W )
(with T being dynamic) and its corresponding tensor program.

5.4 Dynamic BatchMatmul Layer

We adopt the same methodology on the dynamic batched
matrix multiplication workload as is defined in Figure 11,
which is potentially more challenging as there are more
than one axis being dynamic. We evaluate on both NT and
NN data layout (where the NT layout transposes the second
operand) to see whether DietCode can be generically applied
to cases when there are dynamic spatial and reduction axes
at the same time.

Figure 12 shows the comparison of the runtime cost under
dynamic sequence lengths, from which we observe that in
terms of the runtime across all the sequence lengths Diet-
Code is on average 21.5% better than Ansor, 351% better
than Nimble, and 12.3% better than Vendor on the NT layout.
Moreover, it is 24.2% better than Ansor, 40.4% better than
Nimble, and 15.4% better than Vendor on the NN layout.

The reason why Nimble does not deliver good performance
(in the NT layout case particularly) is two-fold: (1) It di-
rectly applies the schedule generated on the largest shape
to other shapes, which can lead to sub-optimal performance
due to issues such as padding (see Figure 5). (2) It does
not efficiently handle the boundary checks in the tensor pro-
grams, which are more critical in this case since there are
two axes being dynamic.4 We observe that since the shapes
are relatively small compared with the previous benchmark
(e.g., 192, 64 versus 768, 2304 in the case of the dynamic
dense layer, as in Figure 10), the loop partitioning tech-
nique employed by Nimble is unable to show any benefits
(since there is not enough loops to be partitioned without
the boundary checks, as is explained in Section 4.1).

4Although the NN layout case also has two dynamic axes,
one of them is the reduction axis. Because Ansor usually unrolls
the reduction axes, the boundary checks on the those axes are
automatically optimized after the loops are unrolled.
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Figure 12. Runtime comparison between Vendor, Ansor, Nimble, and DietCode on BatchMatmul with dynamic sequence lengths.

Similar to the dynamic dense layer benchmark, the auto-
scheduling time of DietCode is 4.55× and 5.56× less than
that of Ansor on the NT and NN layout respectively (see
Figure 9). Such benefits allow us to tune on the entire model
end-to-end within a reasonable amount of time, as we have
demonstrated in Section 5.2.

We conclude with the above experiments that DietCode is ef-
ficient in terms of the auto-scheduling time while preserving
the ability to deliver high-performance tensor programs. It
can be generically applied to cases when there are multiple
dynamic axes, or when there is a hybrid of dynamic spatial
and reduction axes, and even to an entire model. Such effi-
ciency and generality in auto-scheduling make DietCode a
practical solution for dynamic-shape workloads.

6 RELATED WORKS

DietCode addresses the key challenges of auto-scheduling
dynamic-shape workloads by constructing a shape-generic
search space and have all the possible shapes jointly search
within the same space and update the same cost model,
which is unseen in existing auto-schedulers that target static-
shape workloads (Ansor (Zheng et al., 2020a), TVM (Chen
et al., 2018a), Halide auto-scheduler (Adams et al., 2019),
TensorComprehensions (Vasilache et al., 2020)). Although
DietCode is currently implemented on top of TVM (Chen
et al., 2018a), its ideas can be generically applied to other
compiler frameworks as well, such as Halide (Ragan-Kelley
et al., 2018), TensorComprehensions (Vasilache et al., 2020),
Tiramisu (Baghdadi et al., 2019), XLA (Sabne, 2020),
MLIR (Lattner et al., 2021), Glow (Rotem et al., 2018),
taco (Kjolstad et al., 2017), and TASO (Jia et al., 2019).

Reuse-based Tuner. Selective Tuning (Yu, 2019) and ETO
(Fang et al., 2021) group workloads into clusters based on
a set of pre-defined rules (e.g., similarity ratio in Selective
Tuning (Yu, 2019)) and reuse the same schedule in a single

cluster. Their approaches are parallel with the joint learning
adopted by DietCode.

Auto-Tuners. AutoTVM (Chen et al., 2018b), ProTuner
(Haj-Ali et al., 2020), and FlexTensor (Zheng et al., 2020b)
leverage program templates to define the search space and
guide the search procedure. They are different from auto-
schedulers in that the search space has to be manually de-
fined. However, if there exists a pre-defined micro-kernel
search space, then the key ideas DietCode can be applied to
those auto-tuners as well.

Dynamic Neural Networks. Dynamic batching is a com-
mon graph-level optimization adopted by frameworks such
as DyNet (Neubig et al., 2017), Cavs (Xu et al., 2018),
BatchMaker (Gao et al., 2018), and TensorFlow Fold (Looks
et al., 2017) for cases when the batch size is dynamic. Nim-
ble (Shen et al., 2021) and DISC (Zhu et al., 2021) both
design a compiler to represent and execute dynamic neural
networks. Cortex (Fegade et al., 2020) is a compiler-based
framework on recursive neural networks. Those works focus
on the graph-level optimizations and therefore are orthogo-
nal to DietCode, which operates on each individual layer. In
fact, those graph-level solutions can also leverage DietCode
for efficient operator code generation.

7 CONCLUSION

In this work, we propose DietCode, a new auto-scheduler
framework for dynamic-shape workloads. Our evaluation
shows that on DietCode can significantly reduce the auto-
scheduling time by 5.88× (94.1× projected if all the possi-
ble shapes are included), while achieving up to 69.5% better
performance than the state-of-the-art auto-schedulers and
18.6% than the vendor library on a full state-of-the-art DNN
model end-to-end. We hope that DietCode would become
an efficient platform for further research on efficient system
design for key machine learning applications.
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A ARTIFACT APPENDIX

A.1 Abstract

We provide the source code and scripts that correspond to
Section 3 and 4 as our artifact. We use the AWS G4 instance
as the hardware platform, and NVIDIA driver and Docker
to build up the software stack. After the installation, each
of the experiment is automated by a single script file.

A.2 Artifact check-list (meta-information)
• Algorithm: DietCode Auto-Scheduling Workflow

• Program: TVM (Chen et al., 2018a) submodules (one
integrated with DietCode and the other with minor changes)
+ Benchmarking Test Cases

• Compilation: Please use the provided script file scripts
/1-compile.sh in the repository for the compilation.

• Transformations: N/A

• Binary: N/A

• Data set: N/A

• Run-time environment: Please use the provided Docker-
file to build a containerized environment under AWS Deep
Learning AMI (Ubuntu 18.04) Version 50.0

• Hardware: Amazon EC2 G4 Instance (g4dn.4xlarge)

• Run-time state: No contentions on hardware resources
(CPU, GPU, RAM, PCIe) with other processes.

• Execution: Please use the provided script file scripts
/2-experiment_*.sh in the repository for each of the
experiment.

• Metrics: Compute Throughput (in TFLOPs/s) and Wall-
Clock Time

• Output: CSV Files

• Experiments: Auto-scheduling Dense and BatchMatmul
operators with dynamic sequence lengths. Auto-scheduling
key operators of the BERT (Devlin et al., 2019) model (also
with dynamic sequence lengths).

• How much disk space required (approximately)?: At
least 20 GB (15 GB for the Docker image and 1.5 GB for the
compilation artifacts)

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hr

• How much time is needed to complete experiments (ap-
proximately)?: 10 hrs for the full experiments

• Publicly available?: Yes

• Code licenses (if publicly available)?: N/A

• Data licenses (if publicly available)?: N/A

• Workflow framework used?: N/A

• Archived (provide DOI)?: https://doi.org/10.5
281/zenodo.6326726

A.3 Description

A.3.1 How delivered

The source code is publicly available on GitHub

https://github.com/UofT-EcoSystem/DietCode
Branch MLSys2022 AE

A.3.2 Hardware dependencies

We use the AWS G4 instance (of type g4dn.4xlarge) to evaluate
our results.

A.3.3 Software dependencies

The major software dependency is the NVIDIA GPU driver and
the NVIDIA Docker container toolkit (nvidia-docker2 and nvidia-
container-runtime). These two are automatically included in the
AWS Deep Learning AMI (ubuntu 18.04) Version 50.0. The rest
of the dependencies can be obtained by building the Docker image.
To facilitate the Docker commands, we use docker-compose, which
is a wrapper on top of Docker.

A.3.4 Data sets

N/A

A.4 Installation

Please follow the steps below:

• Clone the project by

git clone https://github.com/UofT-
EcoSystem/DietCode -b MLSys2022_AE

• Install docker-compose, which is a wrapper on top of Docker.

sudo -H pip3 install docker-compose

• Build the Docker image that includes all the software depen-
dencies required to run the experiments:

DietCode$ docker-compose build tvm-dev

• Create a running container out of the image:

DietCode$ docker-compose run --rm tvm-
dev

• Build the DietCode and the TVM baseline.

/mnt$ ./scripts/1-compile.sh tvm
/mnt$ ./scripts/1-compile.sh tvm_base

A.5 Experiment workflow
• Dense Layer with Dynamic Sequence Length (Section 5.3

of the main text)

/mnt$ ./scripts/2_1-
experiment_dynamic_dense.sh

https://doi.org/10.5281/zenodo.6326726
https://doi.org/10.5281/zenodo.6326726
https://github.com/UofT-EcoSystem/DietCode
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• BatchMatmul Layer with Dynamic Sequence Length (Sec-
tion 5.4 of the main text)

/mnt$ ./scripts/2_2-
experiment_dynamic_batch_matmul_nt.
sh

/mnt$ ./scripts/2_3-
experiment_dynamic_batch_matmul_nn.
sh

• BERT (Devlin et al., 2019) with Various Sequence Lengths
(Section 5.2)

/mnt$ ./scripts/2_4-experiment_bert.sh

A.6 Evaluation and expected result

After each experiment has been run, a CSV file named

temp workspace.csv

will be generated in each folder

ops/dense, ops/batch matmul, and networks/bert

respectively that reports the latency numbers (in seconds, the lower
the better). At the same time,

ansor/dietcode autosched timer.csv

will be generated in the same folder that reports the time to com-
plete the auto-scheduling process (also in seconds, the lower the
better).

A.7 Experiment customization

N/A

A.8 Notes

Note that the entire auto-scheduling workflow takes time to com-
plete. Therefore, we one can use the

AUTO_SCHED_NTRIALS=200 ./scripts/...

prefix that uses fewer number auto-scheduling trials. The resulting
tensor programs will still be functionally correct but the perfor-
mance can be sub-optimal.

A.9 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-201901
09.html

• http://cTuning.org/ae/reviewing-2019010
9.html

• https://www.acm.org/publications/polic
ies/artifact-review-badging

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

