
APOLLO: AUTOMATIC PARTITION-BASED OPERATOR FUSION THROUGH
LAYER BY LAYER OPTIMIZATION

Jie Zhao 1 Xiong Gao 2 Ruijie Xia 2 Zhaochuang Zhang 2 Deshi Chen 2 Lei Chen 3 Renwei Zhang 2

Zhen Geng 2 Bin Cheng 2 Xuefeng Jin 2

ABSTRACT
We study fusion for deep neural networks (DNNs) in a just-in-time (JIT) compilation framework APOLLO. It
considers both memory- and compute-bound tensor operators for fusion, and integrates graph-level node group-
ing and operator-level loop fusion closely, widening the fusion search space. APOLLO enables the upward feed-
back from the downstream loop optimizer, enforcing the graph engine to regenerate partition patterns amenable
to the downstream pass and thus resolving the scalability issue. Besides data locality, APOLLO also exploits
the parallelism between independent tensor operators, further improving the performance of DNN workloads.
Experimental results on training workloads show that APOLLO outperforms TensorFlow and XLA by 1.86×
and 1.37× on a single GPU, and 1.96× and 1.18× on multiple GPUs. APOLLO also improves the performance
of a vendor-provided DNN framework by 19.7% on a domain-specific accelerator. In addition, the results of
inference workloads demonstrate the general applicability of our fusion framework.

1 INTRODUCTION

DNN frameworks (Abadi et al., 2016; Paszke et al., 2019)
offer the ease-of-use interfaces by obscuring hardware in-
formation from users, but the ever-increasing depth of net-
work layers and amount of data demand for the extensive
exploration of architectural features to harness the comput-
ing power provided by the target platform. Such a widen-
ing gap is calling for an effective end-to-end compilation
infrastructure (Lattner et al., 2021), of which the fusion
transformation has fascinated massive attentions.

Fusion, or node grouping (Jia et al., 2019a; Jangda & Bond-
hugula, 2020), is used to optimize a computational graph,
where each node expresses an operator (op) and is associ-
ated with others through edges of producer-consumer rela-
tions. Many graph compilers (Google, 2017; Wei et al.,
2018; Rotem et al., 2019) only perform node grouping
between memory-bound ops, since they assume the ker-
nel launch overhead of compute-bound ops like convolu-
tion (conv) and matrix multiplication (matmul) is insignifi-
cant compared to the kernel execution. They dispatch each
compute-bound op to a vendor library kernel, missing the

1State Key Laboratory of Mathematical Engineering and
Advanced Computing, Zhengzhou, China 2Huawei Technolo-
gies Co., Ltd., Hangzhou, Beijing and Shenzhen, China
3Hong Kong University of Science and Technology, Hong
Kong, China. Correspondence to: Jie Zhao <yaozhujia-
jie@gmail.com>, Lei Chen <leichen@cse.ust.uk>, Xuefeng Jin
<jinxuefeng@huawei.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA,
USA, 2022. Copyright 2022 by the author(s).

opportunities to fuse with compute-bound ops and exploit-
ing fusion within an incomplete space (challenge 1). An
example that demonstrates the profit of such fusion strate-
gies was described by Zhao & Di (2020).

Fusion is also referred to as loop fusion (McKinley et al.,
1996) when a computational graph is lowered to multi-
dimensional tensor expressions, where an op is instantiated
using arithmetic operations encompassed by nested loops.
Existing tensor compilers (Chen et al., 2018a; Vasilache
et al., 2019) compensate the weakness of graph compil-
ers by exploiting fusion patterns involving compute-bound
ops. A routine transformation orchestration of node group-
ing followed by loop fusion is adopted by these compilers,
exerting overwhelming force from the graph engine to the
downstream loop optimizer, challenging the scalability of
the loop fusion heuristics (challenge 2). For instance, a
large loop shifting factor (§4.1) that may increase compila-
tion time is mandatory in some cases, which is enforced by
the sub-graph generated by the upstream graph compiler.

Fusion, named as stitching (Zheng et al., 2020), also con-
tributes to the exploitation of parallelism between indepen-
dent ops. Unlike traditional compilers that only optimize
the producer-consumer relations, TASO (Jia et al., 2019a)
and Rammer (Ma et al., 2020) also pack independent ops
into a single kernel and execute them concurrently, maxi-
mizing the utilization of hardware parallelism when these
ops cannot saturate the target device. These approaches
compile ops ahead of time due to the reliance on manual
schedule templates, falling short in supporting custom ops
in training scenarios (challenge 3; see Listing 1 and 2).

Jakub Konečný

Jakub Konečný

We present APOLLO, an Automatic Partition-based
Operator fusion framework through Layer by Layer
Optimization, to address the above challenges. It splits
a sub-graph extracted from a DNN model into a batch of
micro-graphs using a rule-based algorithm, which consid-
ers both memory- and compute-bound ops and results in
a much broader search space of fusion. The rules are
designed with the requirements from a downstream loop
optimizer fully considered, removing the constraints from
the upstream graph compiler. The ops within a gener-
ated micro-graph can thus be always fused smoothly by
the polyhedral model (Feautrier & Lengauer, 2011) and the
scalability issue is fully addressed.

APOLLO obtains optimized sub-graphs through a series of
bottom-up, multi-layer fusion transformations. First, the
bottom layer exploits fusion within each micro-graph us-
ing a polyhedral loop fusion heuristic, optimizing mem-
ory hierarchy by allowing the tensors carried by producer-
consumer dependences on faster local memory. Second,
the middle layer studies fusion between micro-graphs us-
ing a memory stitching approach, compensating the draw-
back of polyhedral compilation. Finally, the top layer com-
bines disjoint micro-/sub-graphs generated by the first/sec-
ond layer, maximizing the utilization of hardware paral-
lelism. The coupled implementation of multi-layer fusion
goes beyond prior work (Ragan-Kelley et al., 2013; Chen
et al., 2018a;b; Vasilache et al., 2019) by simultaneously
exploiting data locality and parallelism between ops.

Instead of generating code for each micro-/sub-graph in-
dividually, APOLLO delivers the intermediate representa-
tions (IRs) generated by each previous layer to the next,
enabling faster compilation of multiple micro-/sub-graphs
using a piecewise compilation strategy. The ultimate inte-
grated IR is passed to the code generator, producing one
or multiple optimized kernel implementations. The fully
automated, high-efficiency compilation of APOLLO makes
itself competent to be used as a JIT compiler and applicable
to both training and inference workloads.

In summary, this work makes the following contributions.

• APOLLO extends the search space of fusion by consid-
ering more op types, generating more profitable across-
layer schedules originally hindered by op boundaries;

• APOLLO addresses the scalability issue of fusion by al-
lowing reverse feedback from the operator-level opti-
mizer, achieving a fully automatic fusion framework;

• APOLLO enhances the performance of DNN workloads
by modeling both data locality and parallelism, produc-
ing more efficient code than the state of the art;

• APOLLO exhibits reasonable JIT compilation overhead,
demonstrating its effectiveness using rather difficult real-
life training workloads.

We conduct experiments on training workloads and com-
pare the performance with TensorFlow and XLA, over
which APOLLO achieves 1.86× and 1.37× speedups on
a single GPU, and 1.96× and 1.18× on multiple GPUs.
APOLLO outperforms a vendor DNN framework by 19.7%
on a domain-specific accelerator. We also provide some
preliminary results of inference workloads, demonstrating
the general applicability of APOLLO.

The paper is organized as follows. §2 overviews the archi-
tecture of APOLLO. §3 and §4 introduce the partition and
fusion phases, respectively. §5 puts everything together,
followed by the experimental results reported in §6 and re-
lated work discussed in §7. §8 concludes the work.

2 ARCHITECTURE OF APOLLO

The colored ops shown in Fig.1 constitute two disjoint sub-
graphs, with each including a compute-bound op (op3 or
op5). op2, op4 and op7 are compound ops and op1 and
op6 are primitive ops. A compound op is a function, e.g.,
SoftMax, composed of multiple primitive ops, each of
which is an arithmetic operation like addition, multiplica-
tion, division, etc. op2 is composed of two (blue) primitive
ops (op21 and op22), op4 consists of two (gray) primitive
ops (op41 and op42), and op7 is made up of three (yellow)
primitive ops, op71, op72 and op73. A (green/orange/red)
primitive op is not affiliated to any compound ops.

Figure 1: An illustrative DNN computational graph.

Many graph compilers (Google, 2017; Wei et al., 2018) did
not consider op3 or op5 for fusion. They resort to vendor
tuned libraries for such ops and naturally isolate each sub-
graph into multiple components. A dynamic programming
strategy (Ding et al., 2021) is used to evaluate each fusion
possibility with the growing of each sub-graph’s complex-
ity, but its compilation overhead may become an issue.

Tensor compilers (Chen et al., 2018a;b; Vasilache et al.,
2019; Baghdadi et al., 2019) perform fusion together with
tiling (Irigoin & Triolet, 1988), but their fusion heuristics
are subject to the constraints imposed by upstream graph
compilers and thus suffer from the scalability issue (Mehta
et al., 2014; Zhao & Di, 2020). For example, an upstream
graph compiler expects for a single kernel implementation
for op7, but the downstream loop optimizer may not be able
to meet this requirement when op71 is a reduction op, as
will be explained in §3.2.

Another major weakness of existing compilers is their in-
ability to effectively use the available hardware parallelism
when given smaller batch sizes. The recent work (Jia et al.,
2019a; Ma et al., 2020; Zheng et al., 2020) follows this
direction to pack multiple independent branches (e.g., op1
and op2) of a sub-graph into a single kernel, but they rarely
consider training scenarios or dedicated chips.

We design APOLLO, the architecture of which is depicted
in Fig.2. Its partition phase (§3) first extracts the maximum
set of sub-graphsP and next splitsP intom individual sub-
graphs Fx (1 ≤ x ≤ m). Unlike XLA, compute-bound
ops are considered when performing fusion. The m sub-
graphs are split into n micro-graphs Gy (1 ≤ y ≤ n) by a
rule-based algorithm, with the challenges for the scalabil-
ity of the fusion phase fully considered, different from the
graph engine of TVM (Chen et al., 2018a) that partitions a
sub-graph without the awareness of its loop optimizer’s re-
quirements, which in turn may lead to the scalability issue.

Figure 2: Architecture of APOLLO.

The fusion phase (§4) includes three layers. Layer I (§4.1)
carries out loop fusion for each Gy . It addresses the scal-
ability by always producing a single group for a Gy us-
ing a polyhedral loop fusion heuristic in the polyhedral
model (Verdoolaege & Janssens, 2017). Layer II (§4.2) im-
plements node grouping by aggregating Layer I’s outputs to
implement fusion between a reduction op with its follow-
ing ops, which was not studied by prior approaches (Zhao
et al., 2021; Vasilache et al., 2019).

The outputs of Layer II are passed to Layer III (§4.3) for ex-
ploiting the parallelism between independent ops. In con-
trast to TASO (Jia et al., 2019a), we consider parallelism
stitching between ops of different types and support code
generation for both GPU and a dedicated accelerator (§5).
APOLLO finally generates one or multiple kernels that are
optimized by our auto-tuner, with the execution of Layer I
and II parallelized for JIT compilation.

3 PARTITION PHASE

Before a DNN computational graph is lowered to the parti-
tion phase, we also perform some pre-processing optimiza-
tions to simplify the graph. They are as follows.

♣ Algebraic simplification acts as function inlining by mak-
ing use of associativity, commutativity and distributivity,
as also adopted by Google (2017).

♣ Data-flow optimization performs common subexpression
elimination and constant folding, which is also consid-
ered by nGraph (Cyphers et al., 2018).

♣ Control-flow optimization attempts to simplify a graph by
eliminating dead producer ops and branches, which may
be caused by algebraic simplification.

♣ Data-layout transformation changes the way a tensor is
stored as demand to keep dimension alignment between
the producer and consumer data spaces.

The preparation simplifies a DNN computational graph,
reduces the compilation overhead, and meets the “static
affine control” requirement (Verdoolaege, 2010) of the
polyhedral model, though it might be incomplete.

3.1 Extracting Sub-graph Cluster

APOLLO first extracts the set of eligible nodes from a
computational graph. Two kinds of ops are not consid-
ered by APOLLO. First, the user-defined and/or extraor-
dinary ops with complex computational logic. A typical
example is all-reduce used for training speech recog-
nition (Amodei et al., 2016). The most appropriate solution
to deploy such ops is wrapping a highly-crafted library like
that of Cho et al. (2019). Second, control flow ops like
TensorFlow’s RefSwitch should be excluded. The re-
maining node types may constitute a group of sub-graphs
P that are disconnected from others. We use fusion to min-
imize the producer-consumer distances between ops within
each sub-graph.

3.2 Opening Compound Operators

A dependence-based fusion algorithm can be applied
within each sub-graph Fx, but the dependence patterns be-
tween ops are usually complex, disabling the generation of
a single kernel for an Fx or even for a single compound op.

The use of activation functions is one of the major rea-
sons. An activation function usually involves many arith-
metic operations and can be split into multiple primitive
ops. We use a stable variant of SoftMax, LogSoftMax,
to explain this issue. Its formula can be expressed as

S(ti) = ti − ln(
N∑
j=1

etj) (1)

where ti is i-th element of an input vector of length N and
e the exponential constant. Formula (1) requires two opera-
tions, one computing the logarithm of the reduction over all

vector elements and the other performing the subtraction,
that have to be decomposed into multiple parallel execution
units through loop tiling. The tiled subtraction must wait
for the completion of all simultaneously executed tiles of
the reduction, preventing the fusion between the two tiled
operations. A loop fusion heuristic coupled with loop tiling
thus fails to generate a single kernel for this compound op.
As such, LogSoftMax is not a fusible candidate.

A compound op is expressed using a (blue) rounded box in
Fig.1. The fusion patterns that can be explored by a loop
fusion heuristic are constrained by such a box, which we
refer to as an op boundary. An op boundary results in sub-
optimal fusion patterns by isolating the internal primitive
ops of a compound op from external ones. We break up
each compound op to get rid of every op boundary. For
instance, they have been removed in each Fx of Fig.2.

Example 1. Suppose that op3 composed of a reduction
op31 and a subtraction op32 in Fig.3(a) is a LogSoftMax
function preceded by two primitive ops. The fusion pattern
when the op boundary exists is shown in Fig.3(b), with each
fusion group denoted using a red block. Another fusion pat-
tern, Fig.3(c), is possible if the boundary is removed.

(a) (b) (c)

Figure 3: Effect of op boundaries. (a) LogSoftMax; and
the fusion patterns when op boundaries (b) exist or (c) not.

3.3 Aggregating Primitive Operators

The final step is to partition each Fx into micro-graphs. In-
stead of producing individual micro-graphs by splitting an
Fx, we instantiate an individual micro-graph G with each
primitive op of a given Fx, and progressively merge these
disjoint micro-graphs using aggregation rules that imitate
the fusion behaviors tolerated by a loop fusion heuristic.
This approach allows us to spell out each fusion pattern
that can be solved by a polyhedral heuristic, evading un-
seen scenarios that may cause the scalability issue at the ex-
pense of losing fusion opportunities in Layer I (§4.1). Such
a side effect will either be overcome at Layer II (§4.2), or
be learned offline to update the rules of the partition phase.

Our experience reveals that the scalability issue is closely
related to the types of primitive ops to be fused. A primitive
op takes as input p multi-dimensional tensors and outputs
the result to another tensor. In other words, each primitive
op maintains p input data spaces Ik ∈ V d

Z (1 ≤ k ≤ p)
and one output data space O ∈ V d

Z , with V d
Z (d ≥ 1) rep-

resenting the positive integer vector space. One can build
a dataflow relation Ik → O between the k-th input and the
output tensor; or the k-th input tensor can be discarded.

It is safe to assume each Ik is with the same dimension-

ality d as O, since we can perform tensor broadcasting to
transform two tensors into compatible shapes. A dataflow
relation can thus be written as the conjunction of d 1D func-
tions: ∧

1≤l≤d

fl := Ilk → Ol
(
Ilk, O

l ∈ VZ

)
(2)

Integers ei, eo ≥ 1 denote the loop trips of I lk and Ol. fl
is supposed as either bijective (ei = eo), injective (ei =
1 ∧ eo 6= 1), surjective (ei 6= 1 ∧ eo = 1) or a general
function. A dataflow relation Ik → O is thus considered as

1. a bijective relation if each fl is bijective, or
2. an injective relation if u (u ≥ 1) out of d fl’s are injec-

tive and each of the remaining is bijective, or
3. a surjective relation if u (u ≥ 1) out of its d 1D functions

are subjective and each of the remaining d − u fl’s is
either a bijective or injective function, or

4. a general relation if at least one fl is a general function.

Given a primitive op, we can determine its type using

Definition 1. op is an element-wise operator iff each Ik →
O (1 ≤ k ≤ p) is a bijective dataflow relation.
Definition 2. op is considered as a broadcast operator iff
there exist u (u ≥ 1) out of the p dataflow relations are
injective and each of the remaining is a bijective function.
Definition 3. The type of op is reduction iff at least one of
its p dataflow relations is a surjective dataflow relation and
each of the remaining is either bijective or injective.
Definition 4. op is referred to as an opaque operator iff it
is with at least one general dafaflow relation.

Our definition classifies reshaping operations, (batched)
matmul and conv as opaque ops. Once the type of a primi-
tive op is determined, one can define the type of the aggre-
gation result of two micro-graphs. We summarize the rules
to merge two micro-graphs (Gp, Gc) in Table 1.

Table 1: Aggregation rules. Gp and Gc hold a producer-
consumer relation; Ga is the merged micro-graph.

Rules Gp Gc Ga
1 element-wise element-wise element-wise
2 broadcast element-wise broadcast
3 broadcast broadcast broadcast
4 element-wise reduction reduction
5 broadcast reduction reduction

6 -transpose element-wise/broadcast transpose transpose
6 -matmul matmul element-wise matmul
6 -matmul element-wise matmul matmul

6 -conv conv element-wise conv
6 -conv element-wise conv conv

These rules do not need to cover all composition patterns
of ops, since some pair of ops should not be fused. For
example, we originally defined an aggregation rule for a
reshaping op followed by an element-wise or broadcast op,
but we found that the polyhedral loop optimizer cannot fin-
ish the scheduling process within a reasonable time. This
rule was thus removed from Table 1, which was suggested

by the feedback from the downstream optimizer, as will be
introduced in §4.1. This removal results in an incomplete
set of rules covered by Table 1, which may generate more
sub-graphs in practice but avoids the scalability issue of fu-
sion. This is important to a JIT compilation tool.

The rightmost column indicates the type of the aggregation
result, while the preceding two enumerate each possible
type combination of the micro-graph pair to be aggregated.
Such a definition enables the recursive adoption of these
rules and guarantees the termination of the algorithm when
undefined combination patterns are encountered. A micro-
graph has only a single output tensor when initialized using
a primitive op, but multiple output tensors within a micro-
graph may be created during the merging process. Algo.1
in Appendix A describes how to aggregate micro-graphs.

Example 2. Algo.1 obtains Fig.3(c)’s first fusion group by
applying 1 and 4 . The second one made up of a single op
is separated from the remaining since no rules aggregating
a reduction with a follow-up op are defined in Table 1.

4 FUSION PHASE

The fusion phase performs fusion in a bottom-up manner.
Layer I also performs loop tiling. The selected tile sizes
determine how much memory is occupied by each micro-
graph, which exposes the amount of used faster memory to
the high-level fusion heuristics of Layer II and III. The later
two layers would otherwise not be aware of such informa-
tion. Such a bottom-up fusion strategy is more flexible with
respect to the support of custom ops for training scenarios:
the fusion phase can feedback to the partition phase when
any Gy produced by the later is not acceptable or a single
fusion group cannot be generated.

4.1 Layer I: Polyhedral Loop Fusion

A Gy has been converted into a sequence of loop nests when
lowered to this layer, and we use AKG (Automatic Kernel
Generator) (Zhao et al., 2021), a polyhedral optimizer, to
perform loop fusion and tiling.

The polyhedral model determines the parallelism and
tilability of each loop nest by solving an integer linear pro-
gramming (ILP) problem (Bondhugula et al., 2008) and in-
troduces auxiliary transformations e.g., loop interchange,
shifting and scaling, to ensure the alignment between the
loop nests when necessary. Expressed using affine rela-
tions (Verdoolaege & Janssens, 2017) in the polyhedral
model, some of these loop transformations are not acces-
sible in manual scheduling approaches, but they are some-
times essential to minimize the producer-consumer dis-
tances. Writing manual schedule templates may not be able
to minimize the producer-consumer distances between loop
nests even though more schedule primitives can be com-
plemented, since auxiliary loop transformations have to be

used together with loop tiling and fusion (Zhao & Cohen,
2019; Jangda & Bondhugula, 2020), requiring a systemati-
cal composition of the modeled transformations. Listing 1
shows an example that calls for the systematical composi-
tion of loop scaling and fusion; the polyhedral model can
transform it into the form show in Listing 2.

Unfortunately, AKG still follows the routine transforma-
tion orchestration formulated by TVM since it inherits the
graph engine of the later. TVM’s rules used to perform
graph-level node grouping did not allow the feedback from
the downstream AKG, whose loop fusion heuristic may
sometimes generate very inefficient fusion patterns or can-
not terminate within a reasonable time. Similar scalability
issue is also faced by other polyhedral compilers (Vasilache
et al., 2019; Verdoolaege et al., 2013).
for i in [0,M)
for j in [0,N)
a(i,j)=a(i,j)+bias; //S1

for i in [0,M/2)
for j in [0,N/2)
pool(i,j)=max(a(2i,2j),
a(2i,2j+1),
a(2i+1,2j),
a(2i+1,2j+1)); //S2

Listing 1: Original loop nests.

for i in [0,M)
for j in [0,N){
a(i,j)=a(i,j)+bias;
if(i+1) mod 2 = 0 and
(j+1) mod 2 = 0
pool((i-1)/2,(j-1)/2)=
max(a(i-1,j-1),a(i,j-1),
a(i-1,j),a(i,j)); //S2

}

Listing 2: After fusion.

Example 3. Still consider the example in Fig.3(a). Without
our aggregation rules, all of the four ops will be delivered
by the graph engine of TVM to AKG, which constructs a
single fusion group for these four ops. A very large loop
shifting factor is required to guarantee the execution or-
der of tiled ops as explained in §3.2. We observe that not
only does the compilation time increase but the single fu-
sion group obtained with the help of a large loop shifting
factor also degrades the execution performance in practice.

Our aggregation rules overcome this weakness by always
producing a micro-graph whose composition of loop nests
is predictable. The fusion heuristic of the polyhedral model
will thus never be challenged by the scalability issue. Once
the polyhedral scheduler cannot finish within a reasonable
time, its op composition pattern will be feedback to a de-
veloper, who can then use such information to update the
aggregation rules in Table 1.

We optimize the fusion of reduction ops using PANAM-
ERA (Zhao et al., 2022), which can effectively fuse a re-
duction op with its preceding element-wise/broadcast ops,
with the help of a dimension flattening optimization that
always coalesces the loop nest of a reduction op into three
canonical forms, simplifying the scheduling process and
mitigating the polyhedral complication complexity. This
optimization was not considered by manual scheduling ap-
proaches or vendor libraries (Chetlur et al., 2014), but it
allows APOLLO to find better fusion patterns in practice.

Example 4. Listing 3 shows a reduction op preceded by
an element-wise op. APOLLO first converts it into one of
the three canonical forms (referred to as y-reduce) through

loop interchange, as shown in Listing 4, allowing APOLLO
to obtain fusion result in Listing 5. The tensor subscripts
are updated automatically by the polyhedral model.
for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)
a(i,j,k,l) = a(i,j,k,l) + bias

for i in [0,M) and j in [0,N) and k in [0,P) and l in [0,Q)
b(i,k) += a(i,j,k,l)

Listing 3: Original loop nests.
for x in [0,M*P) and y in [0,N*Q)
a(x/P,y/Q,x%P,y%Q) =
a(x/P,y/Q,x%P,y%Q) + bias

for x in [0,M*P) and y in [0,N*Q)
b(x/P,x%P) += a(x/P,y/Q,x%P,y%Q)

Listing 4: The canonical form.

for x in [0,M*P)
and y in [0,N*Q){
a(x/P,y/Q,x%P,y%Q) = ...
b(x/P,x%P) += ...

}

Listing 5: After fusion.

Once each micro-graph is fused by the polyhedral model,
we can generate the optimized IR and deliver it to Layer II
for exploring fusion possibilities between micro-graphs.

4.2 Layer II: Memory Stitching

We define complementary aggregation rules to exploit the
fusion possibilities between micro-graphs. The micro-
graph type combinations considered at this layer are sum-
marized in Table 2. It allows the recursive application of
its each rule, which greedily searches the fusion possi-
bilities between micro-graphs. These rules only consider
micro-graph type combinations starting with a reduction
op, thereby guaranteeing the termination of the greedy fu-
sion approach when other cases are encountered.

Table 2: The complementary aggregation rules.

Rules Gp Gc Ga
7 reduction element-wise/broadcast reduction
8 reduction reduction reduction

Nonetheless, it is still not straightforward to design a fusion
algorithm for Layer II due to the diverse reduction scenar-
ios of DNN models. A reduction can take place along any
one or multiple dimensions of the enclosing loop nest of an
op. For example, reduction is performed along the second
and fourth dimensions of the loop nest shown in Listing 3.
In addition, loop tiling at Layer I binds individual loop di-
mensions of a reduction micro-graph to different hardware
dimensions. Layer II has to investigate and ensure both
loop dimensions and hardware parameters are matched.

The matching between the loop dimensions of two micro-
graphs is guaranteed by the three canonical forms gener-
ated by PANAMERA, as introduced in §4.1. APOLLO al-
ways transforms a reduction micro-graph into an all-reduce
form, where the enclosing loop nest a reduction micro-
graph is flattened into a single reduced loop, or an x-/y-
reduce form, where the multi-dimensional loop nest of a
fused micro-graph has been coalesced into a 2D loop nest
and reduction is performed only along the outer/inner loop
dimension. We are allowed to fuse two micro-graphs if
they have been flattened into the same canonical form.

The hardware setting is specified at Layer I and heavily

related to the parameters of specific loop transformations.
For example, the tile sizes found by the loop optimizer have
a significant impact on the configuration of grid/block di-
mensions when targeting GPU. We mainly concern about
the tuned tile sizes found by the previous layer, which de-
termine where the tensors relating two micro-graphs will
be allocated. (Gp, Gc) can be fused when their tile sizes
and hardware parameter setting are both identical. Algo.2
in Appendix A delineates the memory stitching method.

Example 5. Denoted by a (red) dotted box, each micro-
graph in Fig.5 is extracted from a real-world DNN work-
load. Primitive ops in the same color belongs to the same
micro-graph. Algo. 2 fuses these micro-graphs using the
rule 7 , with the intermediate tensors carried by each blue
edge allocatable on local memory.

4.3 Layer III: Parallelism Stitching

Layer I and II did not consider the intrinsic parallelism
between independent ops/micro-graphs. This is also the
weakness of many existing tensor compilers (Chen et al.,
2018a; Vasilache et al., 2019), which are thus usually used
to generate code for a single device.

Determining the independence between each pair of ops is
non-trivial, which may result in the combinatorial explo-
sion issue. We observe that such parallelism mainly ex-
ists between the branches of a multi-head/-tail op. Another
scenario that should be considered is the independence be-
tween F1 and F2 in Fig.2, where no common producer/-
consumer exists between the two sub-graphs. A virtual
common consumer/producer can be introduced to covert
such scenario into a multi-head/-tail case without violating
the semantic. We thus only discuss the handling of multi-
head/-tail scenarios in the following context.

To pick up each suitable op along one branch that can be
executed in parallel with those of another branches, we tra-
verse backward/forward along a branch and terminate until
another multi-head/-tail op is reached. The common head-
/tail is not considered during the traverse. The direction is
respect to that of the producer-consumer dependence be-
tween ops. A multi-head op is either considered as can be
executed in parallel with those ops on other branches when
it is a terminator of a backward traverse, or excluded when
it appears at the end of a forward path. Conversely, a multi-
tail terminator is collected in a forward path or excluded in
a backward traverse. Besides, a compute-bound op should
also be excluded, since its huge amount of data usually con-
sumes up the hardware resources.

Example 6. The two branches of the right bottom mul op
of Fig.6(b) are first traversed. They are considered as par-
allelizable, represented using blue boxes. The two indepen-
dent branches are then evaluated by introducing a virtual
tail, with the parallelizable parts denoted using red boxes.

APOLLO can now try to compose the collected paralleliz-
able candidates to exploit the inter-op parallelism. The
ops along the same branch cannot be executed in parallel,
since they depend on each other. We repeatedly choose
one op from each branch and consider their composition
possibilities. Ideally, all of these extracted ops can be ex-
ecuted simultaneously, but the parallelization is restricted
by the available hardware resources. Dispatching more
numbers of parallelizable ops onto the limited hardware
resources, e.g., GPU streaming multiprocessors, does not
imply higher performance. We evaluate the potential per-
formance gain of parallelization using a cost model

gain =

k∑
op=m

costop − max
m≤op≤k

(costop) (3)

where k is the number of ops evaluated and m the starting
number of these k sorted ops. costop can be inspected as
the execution time of an op and can be estimated accord-
ing to the shapes of its tensors and the allocated hardware
resources. The summation part computes the sequential ex-
ecution time of all evaluated ops. The maximum part repre-
sents the maximal execution time among these ops, which
determines the execution time after parallelization. Their
subtraction is the performance gain. Parallelism stitching
is formally described by Algo.3 in Appendix A.

Example 7. Suppose that we have five branches and the
descending order of the extracted ops from each branch is
{op3, op1, op5, op2, op4}. Algo.3 attempts to compose all
ops (m=1, k=5) but the performance gain is not possitive.
It updates k (at line 8) and continues. We assume that it
is still not able to compose {op3, op1, op5, op2} and retries
using {op3, op1, op5}. ops {op2, op4} will be evaluated if
Algo.3 succeeds, and the resulting fusion groups may be
composed of {op3, op1, op5} and {op2, op4}.

Note that the optimization performed by Layer III is
platform-neutral, since the polyhedral model can manage
both traditional and emerging multi-directional memory
systems. On the contrary, existing frameworks (Jia et al.,
2019a; Zheng et al., 2020) are only evaluated on typical
platforms, since they rely heavily on TVM that can only
manage the traditional memory hierarchy pyramid of GPU
or similar targets.

5 PUTTING IT ALL TOGETHER

To make APOLLO applicable to both training and inference
scenarios, we have to provide promising performance while
guaranteeing lightweight compilation overhead. To achieve
this, we complement APOLLO through the following steps.

Auto-Tuning. APOLLO’s versatility of loop transforma-
tions resides in the polyhedral engine. Long compilation
time is still inevitable in AKG, but APOLLO addresses its
scalability issue. and thus always produces an effective so-

lution within seconds (or minutes in the worst case), which
is further optimized by the piecewise compilation strategy
as will be introduced later. We also offer an auto-tuning
strategy. During the tuning process, APOLLO may cap-
ture the composition patterns of ops that are prevented from
parallelization by Cost Model (3). The developers can use
such information to design new (complementary) rules.

Piecewise Compilation. Piecewise compilation achieves
the faster compilation of multiple micro-/sub-graphs. It is
devised to accelerate the compilation overhead of APOLLO
when its complexity becomes an issue. Piecewise compila-
tion along each red/violet arrow shown in Fig.2. It further
reduces the compilation overhead by allowing the polyhe-
dral model to solve the ILP problems in a much shorter
period. Each compilation process can make its own de-
cision on target-specific optimization trade-offs. The syn-
chronization of piecewise compilation happens along the
green dash-dot lines in Fig.2.

Code Generation. APOLLO generates CUDA code on
NVIDIA V100 GPU and so-called CCE code executable
on Huawei Ascend 910 (Liao et al., 2021). CUDA code
generation under the polyhedral model has a history of near
a decade: the backends of PPCG (Verdoolaege et al., 2013)
and TC (Vasilache et al., 2019) can be borrowed to sup-
port GPU devices. The automatic memory management
for both traditional memory hierarchy pyramid on GPU
and emerging multi-level, multi-directional memory hier-
archy on Ascend 910 chips is guaranteed by isl (integer
set library) (Verdoolaege, 2010). Some complementary
code optimization strategies including making use of SIMD
hardware intrinsics and low-level optimization of synchro-
nization between emitted instructions that are beyond the
ability of the polyhedral model are also integrated, further
improving the performance of the generated code.

Example 8. We finally recall Fig.1 to illustrate the end-
to-end compilation of APOLLO. The partition phase first
extracts P from the computational graph and obtains two
sub-graphs,F1 andF2. F1 is split into three micro-graphs,
the third one of which, G3, contains a compute-bound op
considered for fusion. This was not considered by graph
compilers. Similarly, F2 is also set apart by the partition
phase into two micro-graphs. As op71 is a primitive re-
duction op, it has be separated from its original compound
op op7. Our rules in Table 1 allow it to be considered as
fusible with its preceding element-wise op (op6). As a re-
sult, we obtain G4 and G5. Layer I of the fusion phase is
then used to search fusion plans within each Gy in a short
period. The output is then delivered to Layer II, which per-
forms memory stitching between G1/G2 and G3, and G4 and
G5, respectively. Finally, Layer III exploits the parallelism
between G1 and G3, with the parallelism between F1 and
F2 also studied. The auto-tuning process happening dur-
ing the compilation will trigger the feedback if any.

6 RESULTS

APOLLO is implemented within MindSpore (Huawei,
2020). It is written in 14.4k lines of C++ and 2k lines
of Python. The code is accessible at https://gitee.
com/mindspore/mindspore, with APOLLO enabled
when the parameter enable graph kernel is set true.
We evaluate the performance using training workloads on
V100 GPUs and Ascend 910 chips. Preliminary results of
inference workloads are collected to demonstrate the gen-
eral applicability. The code executed on GPU is compiled
using CUDA Toolkit 10.1 with -O3 enabled, and the CCE
code is compiled using a native compiler of Ascend chips.
The geometric mean of 10 executions is reported.

6.1 Sub-graph Case Study

We use some sub-graphs extracted from BERT (Devlin
et al., 2019) to illustrate the effect of each layer on GPU.
The result on Ascend chips is similar. Note that the scal-
ability issue is first challenged by tiled reductions; we re-
solve it by decomposing a sub-graph into micro-graphs and
use Eg.3 to demonstrate the effectiveness of APOLLO. We
now use another experiment to validate APOLLO can also
address the cases caused by opaque ops.

Fig.4 is a sub-graph obtained by AKG. The reshaping op
transforms a 1D vector into a 2D matrix that is used by
the follow-up multiplication op. Due to the mismatching
between loop dimensions, the fusion heuristic of the poly-
hedral model fails to find a fusion plan for this sub-graph
within 30 minutes. Such a reshaping op is considered as
an opaque op. We find no rules in Table 1 to construct a
sub-graph for it; APOLLO thus never delivers such a sub-
graph to its fusion phase. Instead, it returns a fusion plan
as the red boxes within one second. Note that the removal
of a rule that aggregates a reshaping op with its follow-up
element-wise ops is triggered by the feedback, which re-
sults in the current set of rules in Table 1.

Figure 4: A case study for the scalability issue.

Fig.5 is used to study the effect of Layer II. Each micro-
graph is represented using a red dotted box. Like Eg. 5,
each pair of micro-graphs is separated by a reduction op.
One can apply Algo.2 to each micro-graph pair. The tensors
passed by each blue edge can be promoted to GPU shared
memory/registers. The sub-graphs shown in Fig.6 are used
to illustrate the effect of Layer III, with the branches that
can be executed in parallel encompassed by boxes with the
same color. Fig.6(a) is a multi-head case, for which Algo.3
considers all branches as parallelizable. Fig.6(b) has been
explained in Eg.6.

Fig.6(c) is a mixture of multi-head and multi-tail scenarios,

(a)

(b)

(c)

Figure 5: Examples for effect of memory stitching.

(a)

(b)

(c)

Figure 6: Examples for effect of parallelism stitching.

composed of 7 branches. A group of parallelizable can-
didates composed of clean ops is obtained, as they have a
common tail–addn. addn and add are then stitched by in-
troducing a virtual common tail, followed by a final round
of invocation of Algo.3 on 7 independent sub-graphs, each
of which composed of assign and sum. Algo.3 then per-
forms parallelism stitching as explained in Eg.7.

The performance of these sub-graphs is shown in Table 3.
The bold percentage numbers are improvements (imp.)
over MindSpore (MS), and the red ones are improvements
of APOLLO (full) over the (partial) version with Layer II
or III disabled. Layer II achieves an average improvement
of 69% for the sub-graphs in Fig. 5 by allocating the re-
sults generated by micro-graphs on GPU shared memory
and registers, and Layer III provides a mean speedup of
92% for the sub-graphs in Fig.6. The benefit brought by
parallelism stitching is marginal when the number of paral-
lelizable candidates is relative smaller (Fig.6(a)); it grows
with the increase of the later (Fig.6(b) and 6(c)).

Table 3: Execution time (in µs) of sub-graphs.

cases MS disabling partial (imp.) full (imp.)
Fig.5(a) 527 Layer II 224 (135%) 98 (438%, 129%)
Fig.5(b) 2018 Layer II 342 (490%) 221 (813%, 56%)
Fig.5(c) 1532 Layer II 233 (558%) 190 (706%, 23%)
Fig.6(a) 249.8 Layer III 87.6 (185%) 85.6 (192%, 2%)
Fig.6(b) 86.1 Layer III 4.46 (1830%) 3.34 (2478%, 34%)
Fig.6(c) 97.6 Layer III 26.7 (266%) 7.85 (1143%, 240%)

https://gitee.com/mindspore/mindspore
https://gitee.com/mindspore/mindspore

6.2 Results on Single GPU

We evaluate APOLLO using BERT, Transformer (Vaswani
et al., 2017), Wide&Deep (Cheng et al., 2016), the Dark-
Net of Yolo-v3 (Redmon et al., 2016) and DeepFM (Guo
et al., 2017). Except BERT that uses mixed precision
(FP16&FP32), the remaining four workloads are trained
using single precision (FP32). We compare the throughput
with TensorFlow version 1.15 and XLA for all workloads
except Wide&Deep, the performance of which optimized
by XLA suffers from significant degradation when exper-
imenting using TensorFlow version 1.15. We thus imple-
ment this model using TensorFlow version 2.0. The data
is collected in Table 4. We report sentences/s for BERT
with 12 encoder layers (BT-base), tokens/s for Transformer
(TR), samples/s for Wide&Deep (WD) and DeepFM (FM)
and images/s for Yolo-v3 (YO), with two batch sizes (b.s.)
considered for each model. The percentage numbers are
improvements of XLA over TensorFlow (TF) and APOLLO
over MS. The (red) improvement (imp.) of APOLLO over
XLA is listed in the rightmost column.

Table 4: Throughput on single GPU.

models b.s. TF XLA/TF MS APOLLO/MS imp.

BT-base 32
64

167
200.8

105%
129%

135
183.6

252%
212%

39%
23%

TR 8
16

6750
9500

16%
11%

5122
10868

84%
59%

20%
64%

WD 16000
32000

1133696
1470221

15%
5%

762086
836820

123%
121%

48%
20%

YO 4
8

33.11
56.00

15%
12%

39.48
75.01

46%
10%

51%
31%

FM 8192
16384

26117
30279

-1%
-2%

479744
543024

151%
167%

-
-

APOLLO outperforms MindSpore by 2.23× on average.
Layer I contributes most by 1.91× to the overall perfor-
mance. The remaining improvements are from Layer II
and III. For instance, the execution time of BERT is re-
duced from 215 ms/step to 93.5 ms/step when only Layer I
is enabled, and further reduced to 88.1 ms/step when Layer
II is also turned on. It eventually falls down to 82.4 ms/step
when Layer III is also enabled. However, Layer I cannot
finish its compilation within a reasonable time for training
scenarios without the cooperation between Layer II/III and
the partition phase. Addressing its scalability issue using
our work maximizes the power of the polyhedral engine.

XLA outperforms TensorFlow by 1.31×. The network ar-
chitectures of each workload expressed using TensorFlow
and MindSpore can be considered as identical and have the
same convergence properties, except that MindSpore intro-
duces a specific inplace assign op somewhere in a network
that results in the performance difference between the two
frameworks. They both are backed by cuBLAS (Nvidia,
2013) and cuDNN (Chetlur et al., 2014). The implemen-
tations of DeepFM greatly differ from each other, lead-

ing to a much better throughput of MindSpore than Ten-
sorFlow. The optimized code of XLA suffers from slight
performance degradation. We have no ideas of the rea-
sons. APOLLO improves the MindSpore implementation of
DeepFM by 2.51× and 2.67× for the two batch sizes. This
example is excluded when computing the average num-
ber, and APOLLO still helps MindSpore outperform Ten-
sorFlow and XLA by 1.86× and 1.37×. The superiority to
XLA is due to two reasons. First, APOLLO performs each
fusion strategy considered by XLA. Second, APOLLO also
perfectly models the fusion of compute-bound ops not con-
sidered by XLA without resulting in the scalability issue.

We also use APOLLO to optimize the workloads in the
model zoo of MindSpore, and the performance comparison
is collected in Fig.7. We report the execution time for a sin-
gle training epoch. These workloads cover many applica-
tion domains, including computer vision, speech recogni-
tion, natural language processing (NLP), recommendation
system and neural search architecture. Some of them and
the BERT version that will be used in §6.3 have the same
architectures as those in the MLPerf benchmarks (Reddi
et al., 2020). We did not compare the performance with
any frameworks or compilers due to the missing of official
implementations using TensorFlow or Pytorch. However,
we will complement the comparison with other tools in the
future. We report the results of these workloads to illustrate
the general applicability of APOLLO. On average, APOLLO
produces an improvement of 29.6% over MindSpore.

MobileNet-v2

MobileNet-v3

ResNet101

ResNet50

Resnext50
LeNet

GoogleNet

Alex
Net

VGG16

EfficientNet

WarpCTC

TinyBERT

LSTM
NASNet

100

101

102

MindSpore MindSpore + APOLLO

0.7%12.9%
35.4%

6.4% 2.9%

37.6%

10.2%

16.6%

9.6%
104.0%7.3%

107.1%
0.5%

63.1%

Figure 7: Execution times of MindSpore’s model zoo (y
axis: log scaled time in ms; lower is better).

Unlike MobileNet-v3 (Howard et al., 2017), There ex-
ist many consecutive conv ops in MobileNet-v2 which
APOLLO does not fuse. The number of consecutive primi-
tive ops that can be fused by Layer I is also much smaller.
Most of the execution time of the LSTM model (Hochreiter
& Schmidhuber, 1997) is consumed by a so-called com-
pound LSTM op, which has not yet been decomposed into
primitive ops and thus cannot be fused. These two models
thus observe less performance improvement than others.

6.3 Results on Multiple GPUs

We also conduct experiments on multiple GPUs. Mind-
Spore does not provide the implementation of the DarkNet
of Yolo-v3 on multiple GPUs. We experiment using the
remaining four workloads evaluated in Table 4, the result

of which is collected in Table 5. Besides, we also consider
another version of BERT with 24 encoder layers (BERT-
large). The batch sizes are put in parenthesis, and the num-
ber of used GPUs is listed in the second column.

Table 5: Throughput on multiple GPUs.

models GPUs TF XLA/TF MS APOLLO/MS imp.
BT-base(32) 8 1244.9 96% 944.4 247% 34%
BT-base(64) 8 1555.4 117% 1333.1 222% 27%
BT-large(4) 4 66.94 33% 37.62 133% -2%
WD(16000) 8 8086178 1% 4964319 87% 13%
FM(16384) 4 31767 -7% 2117685 130% -

The results of multiple GPUs follow the single GPU case,
and the reasons of the performance improvement are the
same. The two differences are listed below. First, the
performance degradation (7%) of DeepFM is worsened on
multiple GPUs. Second, the throughput of our approach
falls behind that of XLA by 2% for BERT-large, due to the
introduced inplace assign ops by MindSpore. MindSpore
thus suffers from a much more serve degradation by 44%
than TensorFlow. We obtain a mean speedup of 2.64× over
MindSpore, the performance of which falls behind those of
TensorFlow and XLA. With APOLLO, MindSpore outper-
forms TensorFlow by 1.96× and XLA by 1.18×.

We report the data for each single epoch, and a complete
training pass behaviors similarly. For instance, the overall
training time of BERT-base on 8 GPUs is decreased from
342 hours to 106 hours when given batch size 64 and epoch
number 40. Other workloads observe similar results.

6.4 Results on Ascend 910 Chips

The throughputs and improvements of BERT and PanGu-
α (Zeng et al., 2021) on Ascend 910 chips are shown
in Fig. 8, with both single and multiple chips consid-
ered. PanGu-α is the Chinese-language equivalent of GPT-
3 (Radford et al., 2018), which solves many NLP prob-
lems without fine tuning. Their exist three different model
configurations of PanGu-α, of which we use the 2.6B
version with 32 layers. It is trained using mixed preci-
sion (FP16&FP32). We did not consider TensorFlow or
XLA here since they are not tailored to this accelerator.

BERT (24)/ 1 chip PanGU-α (1)/ 64 chips PanGU-α (16)/ 128 chips
100

102

104
MindSpore MindSpore + APOLLO

1.09×
1.26×

1.24×

Figure 8: Throughput of BERT and PanGu-α (examples/s)
on Ascend. Batch sizes are in parentheses. Higher is better.

The off-chip data movement on Ascend chips is more
expensive than the GPU case, which can be optimized
through the fusion optimization. The vendor libraries for
Ascend chips, however, cannot support the fused custom

ops, the performance of which thus falls behind that of
APOLLO. Our framework provides a mean improvement of
19.7% over MindSpore that is backed by vendor libraries.

The difference between Ascend and GPU lies in the mem-
ory system: the multi-level, multi-directional memory hi-
erarchy of Ascend chips requires a complicated data-flow
management, which has been facilitated by AKG. APOLLO
goes beyond AKG from two aspects. First, APOLLO ex-
ploits the parallelism between independent ops that exe-
cuted by the vector unit of the Ascend chip. Second, the de-
coupled handling of reduction ops in Layer I and II avoids
the need for the computation of large loop shifting factors,
which AKG leverages to achieve fusion in some cases.

6.5 Compilation Overhead

We now report the compilation overhead of APOLLO in Ta-
ble 6. We only list the data of four models due to the limited
space, each of which represents the compilation time when
generating code for GPU except BERT. The compilation
time of MindSpore is reported as a baseline. APOLLO can
always generate code within seconds/minutes for training
scenarios, validating its JIT compilation efficiency. Mind-
Spore always consumes less compilation time since it does
not exploit fusion between ops.

Table 6: Compilation overhead in seconds.

Workloads MS APOLLO Workloads MS APOLLO
BT(24)/Ascend 186.206 237.691 WD(16000) 2.3 10.01

TR(16) 82.29 188.83 YO(8) 10.06 31.93

6.6 Results on Inference Workloads

We use Wide&Deep and Yolo-v3 to demonstrate the ef-
fectiveness of APOLLO for inference scenarios on GPU.
We also consider an internal inference workload called
EPP-MVSNet used for the 3D reconstruction of real ob-
jects, the architecture of which can be retrieved from the
project repository of MindSpore (Huawei, 2020). Table 7
shows the experimental results on inference workloads. As
a DL framework under development, MindSpore supports
the training of a DNN model but does not excel at express-
ing inference workloads. The front-ends of existing op-
timizing compilers (Chen et al., 2018a; Ma et al., 2020)
currently cannot import an inference workload expressed
using MindSpore. These compilers are thus not consider
for comparison in this experiment. One can observe that
APOLLO can still obtain superior performance on inference
workloads.

Table 7: Throughput of inference workloads on GPU.

Workloads b.s. Throughput MS APOLLO imp.
Wide&Deep 16000 sample/s 629349.5 695229.4 10.5%

Yolo-v3 32 images/s 19.2 19.7 2.6%
EPPMVSNet 1 pictures/s 1.42 2.32 63.4%

7 RELATED WORK

The first challenge faced by polyhedral compilers (Vasi-
lache et al., 2019; Zhao et al., 2021) is the scalabil-
ity issue of loop fusion, which has been proved as NP-
complete (Darte, 2000). Similar recent work (Acharya
et al., 2020; Mehta et al., 2014) tried to address this prob-
lem but did not study the impact of tiled reductions. Our
framework resolves this issue.

The recent work DNNFusion (Niu et al., 2021) also clas-
sifies ops by employing similar rules to those in Table 1
for graph rewriting, but it did not distinguish primitive ops
and compound ops. In other words, DNNFusion did not
consider the complementary rules in Table 2 that model the
fusion of reductions with its follow-up ops. DNNFusion
may still result in the scalability issue when coupled with a
polyhedral loop optimizer for tensors, though it is scalable
when working with manual scheduling approaches.

Coarser grained kernel fusion was also studied by Ashari
et al. (2015) and Sivathanu et al. (2019). The former ex-
ploited graph-level fusion for a specific computation pat-
tern, while the latter only considered the fusion between
matmul and element-wise ops. APOLLO covers a broader
set of fusion patterns than these approaches.

Combining independent ops to saturate the target device
is also exploited by APOLLO. Prior work referred to this
technique as stitching (Zheng et al., 2020) or horizontal fu-
sion (Li et al., 2020); TensorRT (Nvidia, 2016) also falls
into this category. However, these approaches only target
inference scenarios on GPU, and some of them (Jia et al.,
2019b;a) only consider the parallelism between ops with
the same type. Our work does not have such limitations
and is with a stronger ability to support ops in training sce-
narios than Rammer (Ma et al., 2020).

The recent fusion framework Deepcuts (Jung et al., 2021)
also considers training scenarios, but it only targets a sin-
gle GPU. APOLLO goes beyond Deepcuts by supporting
multiple GPU devices and a domain-specific accelerator.
Nimble (Kwon et al., 2020) considers both training and
inference workloads, but it uses the ahead-of-time (AOT)
compilation approach. As a summary, we finally compare
the closest related graph compilers in Table 8.

Table 8: Comparison with closest related graph compilers

graph
compilers

memory
stitching

parallelism
stitching

training
support

compilation
approach

TVM’s × × × AOT
XLA × X X JIT/AOT
TASO × X × AOT

FusionStitching X × × AOT
Rammer × X × AOT
Nimble × × X AOT

DNNFusion × X × AOT
Deepcuts × X X AOT
APOLLO X X X JIT

8 CONCLUSION

In this work, we unified loop fusion, memory stitching and
parallelism stitching and conducted extensive experiments.
The proposed framework outperforms prior work by ex-
ploiting both locality and parallelism, and it made progress
by breaking the op boundaries, leading to a much wider
fusion space. The picewise compilation strategy makes
APOLLO suitable for both training and inference scenarios.

APOLLO leverages AKG as its code generator in Layer
I. However, APOLLO made significant contributions over
AKG from many aspects. First, APOLLO addresses the
scalability issue of AKG. As mentioned in §4.1, long com-
pilation time still exists in AKG due to the presence of tiled
reduction ops in a sub-graph. Second, AKG only exploits
data locality using polyhedral loop fusion heuristics, but
APOLLO also enables parallelism stitching in Layer III, fur-
ther improving the performance of the generated code. Fi-
nally, the upward feedback enabled by APOLLO may trig-
ger the updates the rules in Table 1 and 2. This makes it
possible to better manage the black-box loop transforma-
tions performed by the polyhedral model, allowing users to
better interact with the framework.

APOLLO suffers from two limitations. First, the aggrega-
tion scenarios covered by Table 1 and 2 are incomplete, but
they are sufficient to handle the DNN workloads we have
ever seen. One can easily complement the rule set. Second,
Cost Model (3) is still rather simple, which roughly models
the trade-off between parallelism and communication/syn-
chronization. The multi-layer fusion phase, however, still
made progress over prior work. We leave these tasks as fu-
ture work. Nonetheless, our work still offers insight into
DNN compiler design and implementation.

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their con-
structive comments and acknowledge the support from the
Huawei MindSpore team, especially for the implementa-
tion of the workloads used in this paper, without which our
work would be impossible. Jie Zhao’s work was partially
supported by the National Natural Science Foundation of
China under Grant No. U20A20226. Lei Chen’s work is
partially supported by National Key Research and Devel-
opment Program of China Grant No. 2018AAA0101100,
the Hong Kong RGC CRF Project C6030-18G, C1031-
18G, C5026-18G, AOE Project AoE/E-603/18, RIF Project
R6020-19, Theme-based project TRS T41-603/20R, China
NSFC No. 61729201, Guangdong Basic and Applied Ba-
sic Research Foundation 2019B151530001. The views and
conclusions in this work are those of the authors and should
not be interpreted as representing the official policies, ei-
ther expressed or implied, of the Chinese Government.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,
Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner,
B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y.,
and Zheng, X. Tensorflow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI’16, pp.
265–283, Berkeley, CA, USA, 2016. USENIX Association.
ISBN 978-1-931971-33-1. URL http://dl.acm.org/
citation.cfm?id=3026877.3026899.

Acharya, A., Bondhugula, U., and Cohen, A. Effective loop fu-
sion in polyhedral compilation using fusion conflict graphs.
ACM Trans. Archit. Code Optim., 17(4), September 2020.
ISSN 1544-3566. doi: 10.1145/3416510. URL https:
//doi.org/10.1145/3416510.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Bat-
tenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng, Q.,
Chen, G., Chen, J., Chen, J., Chen, Z., Chrzanowski, M.,
Coates, A., Diamos, G., Ding, K., Du, N., Elsen, E., Engel,
J., Fang, W., Fan, L., Fougner, C., Gao, L., Gong, C., Han-
nun, A., Han, T., Johannes, L., Jiang, B., Ju, C., Jun, B.,
LeGresley, P., Lin, L., Liu, J., Liu, Y., Li, W., Li, X., Ma, D.,
Narang, S., Ng, A., Ozair, S., Peng, Y., Prenger, R., Qian, S.,
Quan, Z., Raiman, J., Rao, V., Satheesh, S., Seetapun, D., Sen-
gupta, S., Srinet, K., Sriram, A., Tang, H., Tang, L., Wang, C.,
Wang, J., Wang, K., Wang, Y., Wang, Z., Wang, Z., Wu, S.,
Wei, L., Xiao, B., Xie, W., Xie, Y., Yogatama, D., Yuan, B.,
Zhan, J., and Zhu, Z. Deep speech 2 : End-to-end speech
recognition in english and mandarin. In Balcan, M. F. and
Weinberger, K. Q. (eds.), Proceedings of The 33rd Interna-
tional Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pp. 173–182, New
York, New York, USA, 20–22 Jun 2016. PMLR. URL http:
//proceedings.mlr.press/v48/amodei16.html.

Ashari, A., Tatikonda, S., Boehm, M., Reinwald, B., Campbell,
K., Keenleyside, J., and Sadayappan, P. On optimizing ma-
chine learning workloads via kernel fusion. In Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP 2015, pp. 173–182, New
York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450332057. doi: 10.1145/2688500.2688521. URL
https://doi.org/10.1145/2688500.2688521.

Baghdadi, R., Ray, J., Romdhane, M. B., Del Sozzo, E., Akkas,
A., Zhang, Y., Suriana, P., Kamil, S., and Amarasinghe,
S. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In Proceedings of the 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO
2019, pp. 193–205, Piscataway, NJ, USA, 2019. IEEE Press.
ISBN 978-1-7281-1436-1. URL http://dl_acm.gg363.
site/citation.cfm?id=3314872.3314896.

Bondhugula, U., Hartono, A., Ramanujam, J., and Sadayap-
pan, P. A practical automatic polyhedral parallelizer and
locality optimizer. In Proceedings of the 29th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI’08, pp. 101–113, New York, NY,
USA, 2008. ACM. ISBN 978-1-59593-860-2. doi: 10.
1145/1375581.1375595. URL http://doi.acm.org/
10.1145/1375581.1375595.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M.,
Shen, H., Wang, L., Hu, Y., Ceze, L., Guestrin, C., and Kr-
ishnamurthy, A. Tvm: An automated end-to-end optimizing
compiler for deep learning. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’18, pp. 579–594, Berkeley, CA, USA, 2018a. USENIX
Association. ISBN 978-1-931971-47-8. URL http://dl.
acm.org/citation.cfm?id=3291168.3291211.

Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L.,
Guestrin, C., and Krishnamurthy, A. Learning to optimize ten-
sor programs. In Proceedings of the 32nd International Confer-
ence on Neural Information Processing Systems, NIPS’18, pp.
3393–3404, Red Hook, NY, USA, 2018b. Curran Associates
Inc.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T.,
Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M.,
Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., and Shah, H.
Wide & deep learning for recommender systems. In Proceed-
ings of the 1st Workshop on Deep Learning for Recommender
Systems, DLRS 2016, pp. 7–10, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450347952.
doi: 10.1145/2988450.2988454. URL https://doi.org/
10.1145/2988450.2988454.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J.,
Catanzaro, B., and Shelhamer, E. cudnn: Efficient primitives
for deep learning, 2014.

Cho, M., Finkler, U., Kung, D., and Hunter, H. Blueconnect:
Decomposing all-reduce for deep learning on heteroge-
neous network hierarchy. In Talwalkar, A., Smith, V.,
and Zaharia, M. (eds.), Proceedings of Machine Learn-
ing and Systems, volume 1, pp. 241–251, 2019. URL
https://proceedings.mlsys.org/paper/2019/
file/9b8619251a19057cff70779273e95aa6-
Paper.pdf.

Cyphers, S., Bansal, A. K., Bhiwandiwalla, A., Bobba, J.,
Brookhart, M., Chakraborty, A., Constable, W., Convey, C.,
Cook, L., Kanawi, O., Kimball, R., Knight, J., Korovaiko,
N., Kumar, V., Lao, Y., Lishka, C. R., Menon, J., Myers, J.,
Narayana, S. A., Procter, A., and Webb, T. J. Intel ngraph: An
intermediate representation, compiler, and executor for deep
learning, 2018.

Darte, A. On the complexity of loop fusion. Parallel Com-
puting, 26(9):1175–1193, 2000. ISSN 0167-8191. doi:
https://doi.org/10.1016/S0167-8191(00)00034-X. URL
https://www.sciencedirect.com/science/
article/pii/S016781910000034X.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4171–4186, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/N19-1423. URL https://www.
aclweb.org/anthology/N19-1423.

Ding, Y., Zhu, L., Jia, Z., Pekhimenko, G., and Han, S. Ios:
Inter-operator scheduler for cnn acceleration. In Smola, A.,
Dimakis, A., and Stoica, I. (eds.), Proceedings of Machine
Learning and Systems, volume 3, pp. 1–14, 2021. URL

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1145/3416510
https://doi.org/10.1145/3416510
http://proceedings.mlr.press/v48/amodei16.html
http://proceedings.mlr.press/v48/amodei16.html
https://doi.org/10.1145/2688500.2688521
http://dl_acm.gg363.site/citation.cfm?id=3314872.3314896
http://dl_acm.gg363.site/citation.cfm?id=3314872.3314896
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
http://dl.acm.org/citation.cfm?id=3291168.3291211
http://dl.acm.org/citation.cfm?id=3291168.3291211
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
https://proceedings.mlsys.org/paper/2019/file/9b8619251a19057cff70779273e95aa6-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/9b8619251a19057cff70779273e95aa6-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/9b8619251a19057cff70779273e95aa6-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S016781910000034X
https://www.sciencedirect.com/science/article/pii/S016781910000034X
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423

https://proceedings.mlsys.org/paper/2021/
file/38b3eff8baf56627478ec76a704e9b52-
Paper.pdf.

Feautrier, P. and Lengauer, C. Polyhedron Model, pp. 1581–1592.
Springer US, Boston, MA, 2011. ISBN 978-0-387-09766-
4. doi: 10.1007/978-0-387-09766-4 502. URL https:
//doi.org/10.1007/978-0-387-09766-4_502.

Google. Xla: Optimizing compiler for machine learning, 2017.
URL https://www.tensorflow.org/xla.

Guo, H., TANG, R., Ye, Y., Li, Z., and He, X. Deepfm: A
factorization-machine based neural network for ctr prediction.
In Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, IJCAI-17, pp. 1725–1731, 2017.
doi: 10.24963/ijcai.2017/239. URL https://doi.org/
10.24963/ijcai.2017/239.

Hochreiter, S. and Schmidhuber, J. Long Short-Term Mem-
ory. Neural Computation, 9(8):1735–1780, 11 1997. ISSN
0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., and Adam, H. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applica-
tions, 2017.

Huawei. Mindspore, 2020. URL https://www.
mindspore.cn/en.

Irigoin, F. and Triolet, R. Supernode partitioning. In Proc. of
the 15th ACM SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages, POPL’88, pp. 319–329, New York, NY,
USA, 1988. ACM. ISBN 0-89791-252-7. doi: 10.1145/73560.
73588. URL http://doi.acm.org/10.1145/73560.
73588.

Jangda, A. and Bondhugula, U. An effective fusion and tile size
model for polymage. ACM Trans. Program. Lang. Syst., 42(3),
November 2020. ISSN 0164-0925. doi: 10.1145/3404846.
URL https://doi.org/10.1145/3404846.

Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M., and
Aiken, A. Taso: Optimizing deep learning computation with
automatic generation of graph substitutions. In Proceedings
of the 27th ACM Symposium on Operating Systems Princi-
ples, SOSP’19, pp. 47–62, New York, NY, USA, 2019a. ACM.
ISBN 9781450368735. doi: 10.1145/3341301.3359630. URL
https://doi.org/10.1145/3341301.3359630.

Jia, Z., Thomas, J., Warszawski, T., Gao, M., Zaharia, M.,
and Aiken, A. Optimizing dnn computation with re-
laxed graph substitutions. In Talwalkar, A., Smith, V.,
and Zaharia, M. (eds.), Proceedings of Machine Learn-
ing and Systems, volume 1, pp. 27–39, 2019b. URL
https://proceedings.mlsys.org/paper/2019/
file/b6d767d2f8ed5d21a44b0e5886680cb9-
Paper.pdf.

Jung, W., Dao, T. T., and Lee, J. Deepcuts: A deep learning
optimization framework for versatile gpu workloads. In Pro-
ceedings of the 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation,
PLDI 2021, pp. 190–205, New York, NY, USA, 2021. Associ-
ation for Computing Machinery. ISBN 9781450383912. doi:
10.1145/3453483.3454038. URL https://doi.org/10.
1145/3453483.3454038.

Kwon, W., Yu, G.-I., Jeong, E., and Chun, B.-G. Nimble:
Lightweight and parallel gpu task scheduling for deep
learning. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M. F., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 8343–
8354. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/
file/5f0ad4db43d8723d18169b2e4817a160-
Paper.pdf.

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A.,
Pienaar, J., Riddle, R., Shpeisman, T., Vasilache, N., and Zi-
nenko, O. Mlir: Scaling compiler infrastructure for domain
specific computation. In 2021 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), pp. 2–
14, 2021. doi: 10.1109/CGO51591.2021.9370308.

Li, A., Zheng, B., Pekhimenko, G., and Long, F. Automatic hori-
zontal fusion for gpu kernels, 2020.

Liao, H., Tu, J., Xia, J., Liu, H., Zhou, X., Yuan, H., and Hu,
Y. Ascend: a scalable and unified architecture for ubiqui-
tous deep neural network computing : Industry track paper.
In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 789–801, 2021. doi:
10.1109/HPCA51647.2021.00071.

Ma, L., Xie, Z., Yang, Z., Xue, J., Miao, Y., Cui, W., Hu,
W., Yang, F., Zhang, L., and Zhou, L. Rammer: En-
abling holistic deep learning compiler optimizations with
rtasks. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pp. 881–897.
USENIX Association, November 2020. ISBN 978-1-939133-
19-9. URL https://www.usenix.org/conference/
osdi20/presentation/ma.

McKinley, K. S., Carr, S., and Tseng, C.-W. Improving data
locality with loop transformations. ACM Trans. Program.
Lang. Syst., 18(4):424–453, July 1996. ISSN 0164-0925. doi:
10.1145/233561.233564. URL https://doi.org/10.
1145/233561.233564.

Mehta, S., Lin, P.-H., and Yew, P.-C. Revisiting loop fusion
in the polyhedral framework. In Proceedings of the 19th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP’14, pp. 233–246, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2656-8. doi:
10.1145/2555243.2555250. URL http://doi.acm.org/
10.1145/2555243.2555250.

Niu, W., Guan, J., Wang, Y., Agrawal, G., and Ren, B. Dnn-
fusion: Accelerating deep neural networks execution with ad-
vanced operator fusion. In Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language
Design and Implementation, PLDI 2021, pp. 883–898, New
York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383912. doi: 10.1145/3453483.3454083. URL
https://doi.org/10.1145/3453483.3454083.

Nvidia. cublas, 2013. URL https://developer.nvidia.
com/cublas.

Nvidia. Nvidia tensorrt, 2016. URL https://developer.
nvidia.com/tensorrt.

https://proceedings.mlsys.org/paper/2021/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1007/978-0-387-09766-4_502
https://www.tensorflow.org/xla
https://doi.org/10.24963/ijcai.2017/239
https://doi.org/10.24963/ijcai.2017/239
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.mindspore.cn/en
https://www.mindspore.cn/en
http://doi.acm.org/10.1145/73560.73588
http://doi.acm.org/10.1145/73560.73588
https://doi.org/10.1145/3404846
https://doi.org/10.1145/3341301.3359630
https://proceedings.mlsys.org/paper/2019/file/b6d767d2f8ed5d21a44b0e5886680cb9-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/b6d767d2f8ed5d21a44b0e5886680cb9-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/b6d767d2f8ed5d21a44b0e5886680cb9-Paper.pdf
https://doi.org/10.1145/3453483.3454038
https://doi.org/10.1145/3453483.3454038
https://proceedings.neurips.cc/paper/2020/file/5f0ad4db43d8723d18169b2e4817a160-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5f0ad4db43d8723d18169b2e4817a160-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5f0ad4db43d8723d18169b2e4817a160-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5f0ad4db43d8723d18169b2e4817a160-Paper.pdf
https://www.usenix.org/conference/osdi20/presentation/ma
https://www.usenix.org/conference/osdi20/presentation/ma
https://doi.org/10.1145/233561.233564
https://doi.org/10.1145/233561.233564
http://doi.acm.org/10.1145/2555243.2555250
http://doi.acm.org/10.1145/2555243.2555250
https://doi.org/10.1145/3453483.3454083
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
Pytorch: An imperative style, high-performance deep learning
library. In Advances in neural information processing systems,
pp. 8026–8037, 2019.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I.
Improving language understanding by generative pre-training.
2018.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand,
F., and Amarasinghe, S. Halide: A language and com-
piler for optimizing parallelism, locality, and recomputation
in image processing pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI’13, pp. 519–530, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2014-6. doi:
10.1145/2491956.2462176. URL http://doi.acm.org/
10.1145/2491956.2462176.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P., Schmuelling, G.,
Wu, C.-J., Anderson, B., Breughe, M., Charlebois, M., Chou,
W., Chukka, R., Coleman, C., Davis, S., Deng, P., Diamos,
G., Duke, J., Fick, D., Gardner, J. S., Hubara, I., Idgunji, S.,
Jablin, T. B., Jiao, J., John, T. S., Kanwar, P., Lee, D., Liao,
J., Lokhmotov, A., Massa, F., Meng, P., Micikevicius, P., Os-
borne, C., Pekhimenko, G., Rajan, A. T. R., Sequeira, D., Sir-
asao, A., Sun, F., Tang, H., Thomson, M., Wei, F., Wu, E., Xu,
L., Yamada, K., Yu, B., Yuan, G., Zhong, A., Zhang, P., and
Zhou, Y. Mlperf inference benchmark, 2020.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You
only look once: Unified, real-time object detection. In 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 779–788, June 2016. doi: 10.1109/CVPR.2016.
91. URL https://www.computer.org/10.1109/
CVPR.2016.91.

Rotem, N., Fix, J., Abdulrasool, S., Catron, G., Deng, S.,
Dzhabarov, R., Gibson, N., Hegeman, J., Lele, M., Levenstein,
R., Montgomery, J., Maher, B., Nadathur, S., Olesen, J., Park,
J., Rakhov, A., Smelyanskiy, M., and Wang, M. Glow: Graph
lowering compiler techniques for neural networks, 2019.

Sivathanu, M., Chugh, T., Singapuram, S. S., and Zhou, L. As-
tra: Exploiting predictability to optimize deep learning. In
Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS’19, pp. 909–923, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN
9781450362405. doi: 10.1145/3297858.3304072. URL
https://doi.org/10.1145/3297858.3304072.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., Devito,
Z., Moses, W. S., Verdoolaege, S., Adams, A., and Cohen, A.
The next 700 accelerated layers: From mathematical expres-
sions of network computation graphs to accelerated gpu ker-
nels, automatically. ACM Trans. Archit. Code Optim., 16(4),
October 2019. ISSN 1544-3566. doi: 10.1145/3355606. URL
https://doi.org/10.1145/3355606.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, u., and Polosukhin, I. Attention is
all you need. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, NIPS’17,

pp. 6000–6010, Red Hook, NY, USA, 2017. Curran Associates
Inc. ISBN 9781510860964.

Verdoolaege, S. Isl: An integer set library for the polyhedral
model. In Proceedings of the Third International Congress
Conference on Mathematical Software, ICMS’10, pp. 299–
302, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-
15581-2, 978-3-642-15581-9. URL https://doi.org/
10.1007/978-3-642-15582-6_49.

Verdoolaege, S. and Janssens, G. Scheduling for ppcg. Report
CW, 706, 2017.

Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez,
J., Tenllado, C., and Catthoor, F. Polyhedral parallel code
generation for cuda. ACM Trans. Archit. Code Optim., 9
(4):54:1–54:23, January 2013. ISSN 1544-3566. doi: 10.
1145/2400682.2400713. URL http://doi.acm.org/
10.1145/2400682.2400713.

Wei, R., Schwartz, L., and Adve, V. Dlvm: A modern compiler
infrastructure for deep learning systems, 2018.

Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang,
X., Yang, Z., Wang, K., Zhang, X., Li, C., Gong, Z., Yao, Y.,
Huang, X., Wang, J., Yu, J., Guo, Q., Yu, Y., Zhang, Y., Wang,
J., Tao, H., Yan, D., Yi, Z., Peng, F., Jiang, F., Zhang, H., Deng,
L., Zhang, Y., Lin, Z., Zhang, C., Zhang, S., Guo, M., Gu, S.,
Fan, G., Wang, Y., Jin, X., Liu, Q., and Tian, Y. Pangu-α:
Large-scale autoregressive pretrained chinese language models
with auto-parallel computation, 2021.

Zhao, J. and Cohen, A. Flextended tiles: A flexible extension
of overlapped tiles for polyhedral compilation. ACM Trans.
Archit. Code Optim., 16(4), December 2019. ISSN 1544-
3566. doi: 10.1145/3369382. URL https://doi.org/
10.1145/3369382.

Zhao, J. and Di, P. Optimizing the memory hierarchy by
compositing automatic transformations on computations
and data. In Proceedings of the 53rd IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO-
53, pp. 427–441, Piscataway, NJ, USA, 2020. IEEE
Press. doi: 10.1109/MICRO50266.2020.00044. URL
https://www.microarch.org/micro53/papers/
738300a427.pdf.

Zhao, J., Li, B., Nie, W., Geng, Z., Zhang, R., Gao, X., Cheng,
B., Wu, C., Cheng, Y., Li, Z., Di, P., Zhang, K., and Jin,
X. Akg: Automatic kernel generation for neural processing
units using polyhedral transformations. In Proceedings of the
42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI 2021, pp.
1233–1248, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450383912. doi: 10.1145/
3453483.3454106. URL https://doi.org/10.1145/
3453483.3454106.

Zhao, J., Bastoul, C., Yi, Y., Hu, J., Nie, W., Zhang, R., Geng, Z.,
Li, C., Tachon, T., and Gan, Z. Parallelizing neural network
models effectively on gpu by implementing reductions atom-
ically. In Proceedings of the 31st International Conference
on Parallel Architectures and Compilation Techniques (Sub-
mitted), PACT’22. ACM, 2022.

Zheng, Z., Zhao, P., Long, G., Zhu, F., Zhu, K., Zhao, W., Diao,
L., Yang, J., and Lin, W. Fusionstitching: Boosting memory
intensive computations for deep learning workloads, 2020.

http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
https://www.computer.org/10.1109/CVPR.2016.91
https://www.computer.org/10.1109/CVPR.2016.91
https://doi.org/10.1145/3297858.3304072
https://doi.org/10.1145/3355606
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
https://doi.org/10.1145/3369382
https://doi.org/10.1145/3369382
https://www.microarch.org/micro53/papers/738300a427.pdf
https://www.microarch.org/micro53/papers/738300a427.pdf
https://doi.org/10.1145/3453483.3454106
https://doi.org/10.1145/3453483.3454106

A ALGORITHMS

This section summarizes the algorithms mentioned in the
paper. Algo.1 formally describes the approach to aggre-
gate micro-graphs in §3.3. The algorithm takes as input an
Fx and updates its initialized micro-graphs. Each G is in-
stanced using a primitive op, with the type of G set by the
counterpart of op. These micro-graphs are used to initialize
the intermediate set M (line 2), which is then used to update
Fx (line 3). The algorithm recursively aggregates (with the
while loop) each pair of (Gp,Gc), which is related with each
other by a producer-consumer edge e, in Fx using a rule.
The result is output to Ga, with its type specified by the rule
r (line 7) and Fx updated at line 8. Aggregating micro-
graphs is also subject to the absence of introduced cycles
after the aggregation, which has been enforced by the if
conditional (The acyclic function). The order in which the
for loop between lines 5 and 9 is iterated has been defined
at line 4, which specifies the priority of each rule in Table 1.
All rules involving a matmul op { 6 -matmul} are allocated
with the equal priority, which also applies to { 7 -matmul}.

Algorithm 1 Aggregation Algorithm
Input: Fx

1 M = ∅
foreach op ∈ Fx do

2 G = {op}; G.type=op.type; M =M ∪ G
3 Fx =M

4 Rules={ 1 , 2 , 3 , 4 , 5 , 6 -transpose, { 6 -matmul}, { 6 -conv}}
foreach r ∈ Rules do

5 changed = true
while changed do

6 changed = false
foreach e between (Gp,Gc) ∧ Gp,Gc ∈ Fx do

if Gp.type=r.p ∧ Gc.type=r.c ∧ acyclic(Gp,Gc) then
7 Ga = aggregate(Gp,Gc); Ga.type = r(Gp,Gc)
8 Fx = Fx − {Gp,Gc}; Fx = Fx ∪ Ga
9 changed = true

Output: Fx

Algo.2 delineates the memory stitching approach (§4.2). It
takes as input IRFx

, a collection of the IRGy
generated by

Layer I for each Gy , and tries to update it by aggregating
(Gp,Gc) that is connected by an edge e. The outermost if
conditional is used to ensure that Fx and the IRs will only
be updated when (Gp,Gc) conforms the rules defined in Ta-
ble 2 of the paper and no cycles will be introduced if they
are merged. Line 2 is used to guarantee that the two micro-
graphs have consistent numbers of (parallel and sequen-
tial) loop dimensions and identical hardware parameters,
and line 3 is used to ensure the fused two reduction micro-
graphs have the same canonical form. The fusion happens
between lines 5-7, with both Fx and IRFx

updated accord-
ingly. Finally, the tensors of the producer-consumer edge
e that have been transformed into intermediate variables

are allocated either on (faster) local memory or (slower)
global memory depending on their sizes (after loop tiling
of Layer I). Unlike the fusion heuristics of the polyhedral
model, Algo.2 is used as a complementary strategy by try-
ing to stitch the tensors between micro-graphs obtained by
Layer I on faster memory, further optimizing the memory
hierarchy.

Algorithm 2 Memory Stitching Algorithm
Input: IRFx = {IRGy}

1 Rules={ 7 , 8 }
foreach r ∈ Rules do

foreach e between (Gp,Gc) ∧ Gp,Gc ∈ Fx do
if Gp.type=r.p ∧ Gc.type=r.c ∧ acyclic(Gp,Gc) then

if !consist dim and param(Gp,Gc) then
2 continue

if r = 8 ∧ !have identical canonical form(Gp,Gc) then
3 continue
4 Ga = aggregate(Gp,Gc); Ga.type = r(Gp,Gc)
5 IRGa = concat(IRGp , IRGc)
6 Fx = Fx − {Gp,Gc}; Fx = Fx ∪ Ga
7 IRFx = IRFx - {IRGp , IRGc}; IRFx = IRFx∪IRGa

if sizes(e.tensors) ≤ sizes(local mem) then
8 allocate(e.tensors, local mem)

else
9 allocate(e.tensors, global mem)

Output: IRFx

Algo.3 describes the fusion approach of Layer III (§4.3).
It extracts all sets of parallelizable candidates (line 2) by
inspecting each pattern of P in order (line 1) and tries to
compose the independent ops within each s (lines 3-11).
Note that we add a virtual common tail/head for at most
7 independent branches for fast compilation purpose. In
addition, we prefer to add a common tail when a head and
a tail are both legal.

Algorithm 3 Parallelism Stitching Algorithm
Input: IRP = {IRFx}

1 Patterns ={multi-head, multi-tail, independent}; Sets=∅
foreach p∈ Patterns do

2 Sets = extract sets of parallelizable candidates(p)
foreach s ∈ Sets do

3 s = mark each op unvisited(s)
while num of branches with unvisited(s, 1) ≥ 2 do

4 group = extract one op from each branches(s)
5 group = sort by cost of ops(group)
6 m = 1, k = n = num of op(group)

while m ≤ n ∧ k ≥ 2 do
if is positive(cost model (3), m, k) then

7 IRP =parallel stitch ops({IRFx},m, k)
8 m = m+ k; k = n−m+ 1

else
9 k = k − 1

if m 6= n ∧ k = 1 then
10 m = m+ k; k = n−m + 1
11 mark each op visited(group)

Output: IRP

The algorithm first marks each op within s as unvisited
(line 3) and iterates over the while loop between lines 4 and
11 when there still exist at least two branches within s, each
of which has at least one unvisited op, determined using
the num of branches with unvisited function. group repre-
sents the collection of ops extracted from different branches
of s (line 4); it is then sorted in a descending order by the
cost of its ops (line 5). The inner while loop is used to per-
form parallelism stitching by compose k independent ops
starting from m (line 7), which is triggered when positive
performance gain can be estimated by Cost Model (3). m
and k are initialized at line 6 and updated when the if condi-
tional is satisfied (line 8) or violated (line 9), guaranteeing
the greedy attempts of the algorithm. The updates ofm and
k at line 10 are used to ensure that the remaining unvisited
ops can be evaluated when the leading ones are overweight.
Each op of group is marked as visited (line 11) and the al-
gorithm outputs an updated IRP .

B ARTIFACT

This section offers the description to those who are inter-
ested in reproducing our results. A publicly accessible DOI
of this section is https://doi.org/10.6084/m9.
figshare.19383890.v1.

B.1 Artifact check-list (meta-information)
• Compilation: CUDA toolkits.

• Data set: Available online.

• Hardware: V100 GPUs and Huawei Ascend 910 chips.

• Output: Execution times.

• How much time is needed to prepare workflow (approx-
imately)?: 30 minutes to two hours.

• How much time is needed to complete experiments (ap-
proximately)?: about one hour.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: Apache 2.0.

• Data licenses (if publicly available)?: Apache 2.0.

• Archived (provide DOI)?: Available online.

B.2 Description

B.2.1 How delivered

The data sets and workloads used in the paper can be accessed
from the repository of MindSpore. A patch is also offered on-
line to ease the experiment workflow, the path to which will be
described later in §B.3.

B.2.2 Hardware dependencies

Our work depends on two kinds of hardware environments. For
the GPU environments, please refer to Table 9; and for the Ascend
environment, please follow the installation guide at https://

www.mindspore.cn/install/en (choose the Ascend 910
section) to configure the Ascend 910 environment.

Table 9: GPU configurations.

Hardware Requirements
GPU eight Tesla V100-SXM2-16GB

Network Interface
Controller

Mellanox Technologies MT28800
Family[ConnextX-5] 100Gb/sec[4X EDR]

Processor dual-socket Intel(R) Xeon(R)
Platinum 8160 CPU @ 2.10GHz

Memory 256GB

Operating System Ubuntu 16.04.4 LTS (GNU/Linux
4.4.0-116-generic x86 64)

B.2.3 Software dependencies

We assume the readers have installed git, or please first install git
if it has not yet been installed. To execute the script, please install
Python version 3. All network models used in the experiment
were written using the MindSpore framework (version 1.3.0) de-
veloped by Huawei. One can install the correct version of Mind-
Spore from https://www.mindspore.cn/install/en.
The CUDA toolkit version 11.1 is preferred, or one can install
a higher version. We recommend the pip or docker installation
method of the CUDA toolkit. The CUDA profiler is needed to
validate the results of sub-graph case study.

B.2.4 Data sets

The data sets considered during the training of each model in the
experiments can also be downloaded from the open access web-
site. In particular, one can download the data sets for individual
models as follows.

• For BERT, please download its data set by following the
online document https://gitee.com/mindspore/
mindspore/blob/r1.3/model_zoo/official/
nlp/bert/README.md

• For Transformer, the publicly accessible website is
https://gitee.com/mindspore/mindspore/
blob/r1.3/model_zoo/official/nlp/
transformer/README.md

• For Wide&Deep, one can download the data set from
https://gitee.com/mindspore/mindspore/
blob/r1.3/model_zoo/official/recommend/
wide_and_deep/README.md

• For Yolo-v3, the readme file can be accessed from
https://gitee.com/mindspore/mindspore/
blob/r1.3/model_zoo/official/cv/yolov3_
darknet53/README.md

• And for DeepFM, one can refer to https:
//gitee.com/mindspore/mindspore/blob/
r1.3/model_zoo/official/recommend/
deepfm/README.md

If the data of Wide&Deep and DeepFM is not accessible, one
can also fetch them from https://gitee.com/link?
target=http%3A%2F%2Fgo.criteo.net%2Fcriteo-
research-kaggle-display-advertising-
challenge-dataset.tar.gz

https://doi.org/10.6084/m9.figshare.19383890.v1
https://doi.org/10.6084/m9.figshare.19383890.v1
https://www.mindspore.cn/install/en
https://www.mindspore.cn/install/en
https://www.mindspore.cn/install/en
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/nlp/bert/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/nlp/bert/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/nlp/bert/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/nlp/transformer/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/nlp/transformer/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/nlp/transformer/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/recommend/wide_and_deep/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/recommend/wide_and_deep/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/recommend/wide_and_deep/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/cv/yolov3_darknet53/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/cv/yolov3_darknet53/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/cv/yolov3_darknet53/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/recommend/deepfm/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/recommend/deepfm/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/recommend/deepfm/README.md
https://gitee.com/mindspore/mindspore/blob/r1.3/model_zoo/official/recommend/deepfm/README.md
https://gitee.com/link?target=http%3A%2F%2Fgo.criteo.net%2Fcriteo-research-kaggle-display-advertising-challenge-dataset.tar.gz
https://gitee.com/link?target=http%3A%2F%2Fgo.criteo.net%2Fcriteo-research-kaggle-display-advertising-challenge-dataset.tar.gz
https://gitee.com/link?target=http%3A%2F%2Fgo.criteo.net%2Fcriteo-research-kaggle-display-advertising-challenge-dataset.tar.gz
https://gitee.com/link?target=http%3A%2F%2Fgo.criteo.net%2Fcriteo-research-kaggle-display-advertising-challenge-dataset.tar.gz

B.3 Installation

Each model has been well configured in the repository of Mind-
Spore. A model, however, has to be switched between different
configurations as described in the paper. To ease the switching
between different configurations, we offer a patch which can be
downloaded and applied as follows.
$ git clone -b r1.3 https://gitee.com/mindspore/
mindspore.git

$ cd ./mindspore
$ git clone https://gitee.com/yaozhujia/apollo-ae-patch.git
$ git apply apollo-ae-patch/apollo_bert.diff
$ git apply apollo-ae-patch/apollo_transformer.diff
$ git apply apollo-ae-patch/apollo_widedeep.diff
$ git apply apollo-ae-patch/apollo_deepfm.diff
$ git apply apollo-ae-patch/apollo_yolov3.diff

In case the gitee repository is not convenient for some
users, please use the pip installation method described at
https://gitee.com/mindspore/docs/blob/r1.
3/install/mindspore_gpu_install_pip_en.md.
Note that the implementations of our work is embedded
into the repository of MindSpore. Please pay atten-
tion to the notifications of MindSpore’s official website
https://www.mindspore.cn/install/en provided
some links do not work.

B.4 Evaluation and expected results

The evaluation results will be printed on screen during the experi-
ment workflow. In most cases, the execution time will be reported.
Please note that, we use ”/path/to/dataset” as an abstraction of the
real path of the datasets. Please replace it depending on your envi-
ronment. For the first commands of each case like “cd top/path”,
“top/path” refers to the top directory of MindSpore code. That is
to say, one is advised to go back to the top directory of MindSpore
after each evaluation.

B.5 Methodology

B.5.1 Sub-graph case study

Each sub-graph is a small-scale benchmark when compared to
the models used in the experiments. In addition, multiple DL
operators are executed in a sequential streaming manner by the
MindSpore framework. CUDA nvprof is thus used to collect the
execution time of a sub-graph.

The command to reproduce the result of sub-graph case study is
$ nvprof python3 <test_case.py> -t <test_type> -d <device_id>

where test type can be instantiated using 0, 1 or 2, which repre-
sents the MindSpore, partial and full versions reported in Table 3.
device id is the ID of the used device, which can be specified as 0
by default.

For instance, one can execute the example in Fig.6(c) using
$ nvprof --print-gpu-summary python3 6c.py -t 2 -d 0

which will output the profiling of the result when APOLLO is en-
abled. The overall execution time, which we reported in Table 3,
is the sum of the last three rows, i.e., 5.3440 + 4.2240 + 1.7600 =
11.328 µs.

Or one can type the following instructions in the terminal to re-
produce the results.
$ cd 6.1
5a, MindSpore
$ nvprof --print-gpu-summary python3 5a.py -t 0 -d 0
5a, partial
$ nvprof --print-gpu-summary python3 5a.py -t 1 -d 0

5a, full
$ nvprof --print-gpu-summary python3 5a.py -t 2 -d 0
5b, MindSpore
$ nvprof --print-gpu-summary python3 5b.py -t 0 -d 0
5b, partial
$ nvprof --print-gpu-summary python3 5b.py -t 1 -d 0
5b, full
$ nvprof --print-gpu-summary python3 5b.py -t 2 -d 0
5c, MindSpore
$ nvprof --print-gpu-summary python3 5c.py -t 0 -d 0
5c, partial
$ nvprof --print-gpu-summary python3 5c.py -t 1 -d 0
5c, full
$ nvprof --print-gpu-summary python3 5c.py -t 2 -d 0
6a, MindSpore
$ nvprof --print-gpu-summary python3 6a.py -t 0 -d 0
6a, partial
$ nvprof --print-gpu-summary python3 6a.py -t 1 -d 0
6a, full
$ nvprof --print-gpu-summary python3 6a.py -t 2 -d 0
6b, MindSpore
$ nvprof --print-gpu-summary python3 6b.py -t 0 -d 0
6b, partial
$ nvprof --print-gpu-summary python3 6b.py -t 1 -d 0
6b, full
$ nvprof --print-gpu-summary python3 6b.py -t 2 -d 0
6c, MindSpore
$ nvprof --print-gpu-summary python3 6c.py -t 0 -d 0
6c, partial
$ nvprof --print-gpu-summary python3 6c.py -t 1 -d 0
6c, full
$ nvprof --print-gpu-summary python3 6c.py -t 2 -d 0

B.5.2 Results on a single GPU

To reproduce the results of MindSpore and APOLLO, one can use
the following commands.

• BERT-base.
$ cd mindspore/model_zoo/official/nlp/bert
BT-base, batchsize = 32, MS only
$ bash scripts/run_standalone_pretrain_for_gpu.sh 0 1
/path/to/cn-wiki-128 base 32

BT-base, batchsize = 32, MS with apollo
$ bash scripts/run_standalone_pretrain_for_gpu.sh 0 1
/path/to/cn-wiki-128 base 32 1

BT-base, batchsize = 64, MS only
$ bash scripts/run_standalone_pretrain_for_gpu.sh 0 1
/path/to/cn-wiki-128 base 64

BT-base, batchsize = 64, MS with apollo
$ bash scripts/run_standalone_pretrain_for_gpu.sh 0 1
/path/to/cn-wiki-128 base 64 1

Specifically, “/path/to/cn-wiki-128” should be replaced with
the path location where you store the data set for BERT-
base. The execution time of each training epoch is cached
in a log file during the execution of a model written using
the MindSpore framework. The throughputs reported in the
paper are calculated according to these execution times.

• Transformer.
$ cd mindspore/model_zoo/official/nlp/transformer
TR, batchsize=8, MS only
$ bash scripts/run_standalone_train.sh GPU 0 2 8
/path/to/ende-l128-mindrecord 8

TR, batchsize=8, MS with apollo
$ bash scripts/run_standalone_train.sh GPU 0 2 8
/path/to/ende-l128-mindrecord 8 1

TR, batchsize=16, MS only
$ bash scripts/run_standalone_train.sh GPU 0 2 8
/path/to/ende-l128-mindrecord 16

TR, batchsize=16, MS with apollo
$ bash scripts/run_standalone_train.sh GPU 0 2 8
/path/to/ende-l128-mindrecord 16 1

• Wide&Deep.
$ cd mindspore/model_zoo/official/recommend/wide_and_deep
WD, batchsize=16000, MS only
$bash script/run_standalone_train_for_gpu.sh 2
/path/to/mindrecord 16000

WD, batchsize=16000, MS with apollo
$bash script/run_standalone_train_for_gpu.sh 2
/path/to/mindrecord 16000 1

WD, batchsize=32000, MS only

https://gitee.com/mindspore/docs/blob/r1.3/install/mindspore_gpu_install_pip_en.md
https://gitee.com/mindspore/docs/blob/r1.3/install/mindspore_gpu_install_pip_en.md
https://www.mindspore.cn/install/en

$bash script/run_standalone_train_for_gpu.sh 2
/path/to/mindrecord 32000

WD, batchsize=32000, MS with apollo
$bash script/run_standalone_train_for_gpu.sh 2
/path/to/mindrecord 32000 1

• Yolo-v3.
$ cd mindspore/model_zoo/official/cv/yolov3_darknet53/scripts
YO, batchsize=4, MS only
$ bash run_standalone_train_gpu.sh /path/to/coco2014
/path/to/backbone_darknet53.ckpt 4

YO, batchsize=4, MS with apollo
$ bash run_standalone_train_gpu.sh /path/to/coco2014
/path/to/backbone_darknet53.ckpt 4 1

YO, batchsize=8, MS only
$ bash run_standalone_train_gpu.sh /path/to/coco2014
/path/to/backbone_darknet53.ckpt 8

YO, batchsize=8, MS with apollo
$ bash run_standalone_train_gpu.sh /path/to/coco2014
/path/to/backbone_darknet53.ckpt 8 1

• DeepFM.
$ cd mindspore/model_zoo/official/recommend/deepfm
FM, batchsize=8192, MS only
$ bash scripts/run_standalone_train.sh 0 GPU
/path/to/dataset 8192

FM, batchsize=8192, MS with apollo
$ bash scripts/run_standalone_train.sh 0 GPU
/path/to/dataset 8192 1

FM, batchsize=16384, MS only
$ bash scripts/run_standalone_train.sh 0 GPU
/path/to/dataset 16384

FM, batchsize=16384, MS with apollo
$ bash scripts/run_standalone_train.sh 0 GPU
/path/to/dataset 16384 1

To reproduce the results of TensorFlow and XLA, one can follow
the instructions below.

• For BERT-base, please access it from https://github.
com/NVIDIA/DeepLearningExamples/tree/
master/TensorFlow/LanguageModeling/BERT
and execute the model using the configurations and datasets
specified on the official website.

• For Transformer, one can access the model
from https://github.com/NVIDIA/
DeepLearningExamples/tree/master/
TensorFlow/LanguageModeling/
Transformer-XL and execute the model using the
configurations and datasets specified on the official website.

• For Wide&Deep, please visit it at https://github.
com/NVIDIA/DeepLearningExamples/tree/
master/TensorFlow/Recommendation/
WideAndDeep and execute the model using the
configurations and datasets specified on the official website.

• For Yolo-v3, one configure it using the con-
figurations and datasets specified at https:
//github.com/wizyoung/YOLOv3_
TensorFlowandexecutethemodel.

• For DeepFM, one can obtain it from https://github.
com/ChenglongChen/tensorflow-DeepFM.

B.5.3 Results on multiple GPUs

To reproduce the results of MindSpore and APOLLO, one can use
the following commands.

• BERT (both base and large versions).
$ cd mindspore/model_zoo/official/nlp/bert
BT-base(32), device_num = 8, MS only
$ bash scripts/run_distributed_pretrain_for_gpu.sh 8 1
/path/to/cn-wiki-128 base 32

BT-base(32), device_num = 8, MS with apollo

$ bash scripts/run_distributed_pretrain_for_gpu.sh 8 1
/path/to/cn-wiki-128 base 32 1

BT-base(64), device_num = 8, MS only
$ bash scripts/run_distributed_pretrain_for_gpu.sh 8 1
/path/to/cn-wiki-128 base 64

BT-base(64), device_num = 8, MS with apollo
$ bash scripts/run_distributed_pretrain_for_gpu.sh 8 1
/path/to/cn-wiki-128 base 64 1

BT-large(4), device_num = 4, MS only
$ bash scripts/run_distributed_pretrain_for_gpu.sh 4 1
/path/to/cn-wiki-128 large 4

BT-large(4), device_num = 4, MS with apollo
$ bash scripts/run_distributed_pretrain_for_gpu.sh 4 1
/path/to/cn-wiki-128 large 4 1

• Wide&Deep.
$ cd mindspore/model_zoo/official/recommend/wide_and_deep
WD(16000), device_num=8, MS only
$ bash script/run_multigpu_train.sh 8 2
/path/to/mindrecord 16000

WD(16000), device_num=8, MS with apollo
$ bash script/run_multigpu_train.sh 8 2
/path/to/mindrecord 16000 1

• DeepFM.
$ cd mindspore/model_zoo/official/recommend/deepfm
FM(16384), device_num=4, MS only
$ bash scripts/run_distribute_train_gpu.sh 4
/path/to/dataset 16384

FM(16384), device_num=4, MS wih apollo
$ bash scripts/run_distribute_train_gpu.sh 4
/path/to/dataset 16384 1

To reproduce the results of TensorFlow and XLA, one can follow
the instructions below.

• For BERT-base and BERT-large, one can access the
model from https://github.com/NVIDIA/
DeepLearningExamples/tree/master/
TensorFlow/LanguageModeling/BERT and
execute the model using the configurations and datasets
specified on the official website.

• For Wide&Deep, please visit the open access
address https://github.com/NVIDIA/
DeepLearningExamples/tree/master/
TensorFlow/Recommendation/WideAndDeep.

• For DeepFM, the model can be retrieved from https:
//github.com/ChenglongChen/tensorflow-
DeepFM.

B.5.4 Results on Ascend 910 chips

• BERT-large.

To reproduce the results of MindSpore and APOLLO, one
can use the following commands.
$ cd mindspore/model_zoo/official/nlp/bert
BERT(24), batchsize = 24, MS only
$ bash scripts/run_standalone_pretrain_ascend.sh 0 1
/path/to/cn-wiki-128 large 24

BERT(24), batchsize = 24, MS with apollo
$ bash scripts/run_standalone_pretrain_ascend.sh 0 1
/path/to/cn-wiki-128 large 24 1

To reproduce the results of TensorFlow and XLA,
please visit https://github.com/NVIDIA/
DeepLearningExamples/tree/master/
TensorFlow/LanguageModeling/BERT and
execute the model using the configurations and datasets
specified on the official website.

• Pangu-α.

As the architecture of the Pangu-alpha model has not been
released yet, we feel very sorry that the architectures cannot
be provided.

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep
https://github.com/wizyoung/YOLOv3_TensorFlow and execute the model
https://github.com/wizyoung/YOLOv3_TensorFlow and execute the model
https://github.com/wizyoung/YOLOv3_TensorFlow and execute the model
https://github.com/ChenglongChen/tensorflow-DeepFM
https://github.com/ChenglongChen/tensorflow-DeepFM
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep
https://github.com/ChenglongChen/tensorflow-DeepFM
https://github.com/ChenglongChen/tensorflow-DeepFM
https://github.com/ChenglongChen/tensorflow-DeepFM
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT

B.5.5 Compilation overhead

To reproduce the compilation overhead, one has to compile each
model written in MindSpore 1.3.0, with necessary compilation
options required to be turned on. To achieve this, one needs
to select the installation mode after downloading the MindSpore
framework, and compilation options “-p on” should be turned on,
which enables the pipelined profiling functionality of the frame-
work. Specifically, one can type
$ bash build.sh -e gpu -p on

on the terminal. The cached information, including the compi-
lation overhead, will be printed onto stdout. The “TotalTime”
indicates the compilation overhead of a model in seconds.

B.5.6 Results of inference workloads

To reproduce the results of MindSpore and APOLLO, one can fol-
low the commands below.

• Wide&Deep.
$ cd mindspore/model_zoo/official/recommend/wide_and_deep
$ export WD_EVAL_ONLY=1
WD, batchsize=16000, MS only
$ bash script/run_standalone_train_for_gpu.sh 2
/path/to/mindrecord 16000

WD, batchsize=16000, MS with apollo
$ bash script/run_standalone_train_for_gpu.sh 2
/path/to/mindrecord 16000 1

$ unset WD_EVAL_ONLY

• Yolo-v3.
$ cd mindspore/model_zoo/official/cv/yolov3_darknet53/scripts
Yolo-v3, batchsize=32, MS only
$ bash run_eval_gpu.sh
</path/to/dataset> <checkpoint_path> 32

Yolo-v3, batchsize=32, MS with apollo
$ bash run_eval_gpu.sh
</path/to/dataset> <checkpoint_path> 32 1

• EPPMVSNet.

EPPMVSNet is a small-scale workload developed within
Huawei, used for the 3D reconstruction of real objects. This
workload can be cloned using
$ git clone -b r1.4 ttps://gitee.com/mindspore/models.git

In particular, this workload is developed under the version
1.4 of MindSpore’s Model Zoo. To reproduce the results
of MindSpore and APOLLO, one can follow the commands
below.
$ cd model/research/cv/eppmvsnet
EPPMVSNet, batchsize=1, MS with apollo
$ bash eval.sh /path/to/dataset 0
disable apollo
$ sed ’s/enable_graph_kernel=True/enable_graph_kernel=False/g’
./validate.py > ./validate_new.py

$ mv validate_new.py validate.py
EPPMVSNet, batchsize=1, MS only
$ bash eval.sh /path/to/dataset 0

The evaluation results will be stored in “./results/blended-
mvs/val/metrics.txt”. One can find the results in the log file.

B.5.7 Ablation study of BERT on a single GPU

To reproduce the results the ablation study of BERT on a single
GPU, one can follow the commands below.
$ cd mindspore/model_zoo/official/nlp/bert
BT-base, batchsize = 32, MS only
$ bash scripts/run_standalone_pretrain_for_gpu.sh 0 1
/path/to/cn-wiki-128 base 32

BT-base, batchsize = 32, MS with apollo L1
$ bash scripts/run_standalone_pretrain_for_gpu.sh 0 1
/path/to/cn-wiki-128 base 32 L1

BT-base, batchsize = 32, MS with apollo L2(Memory Stitch)
$ bash scripts/run_standalone_pretrain_for_gpu.sh 0 1
/path/to/cn-wiki-128 base 32 L2

BT-base, batchsize = 32, MS with apollo All
(Memory Stitch + Parallel Stitch)
$ bash scripts/run_standalone_pretrain_for_gpu.sh 0 1
/path/to/cn-wiki-128 base 32 ALL

