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ABSTRACT
We study the problem of natural language-based video retrieval, the task of finding relevant videos given natural
language search queries. Most recent state-of-the-art (SOTA) approaches would embed the video and query
separately and map the video and query embeddings into a joint latent space to calculate a similarity score between
them. To learn a video representation, existing solutions generally use all the frames or sample a subset of frames
from the video using uniform sampling. The former solution could be computationally prohibitive while the
latter may inject noise from uninformative frames into the final video representation. To this end, we propose
mmSampler, a learning-based sampler, to adaptively select salient frames to represent the videos for multimodal
video retrieval. mmSampler can greatly reduce the computational overhead for video representation without
affecting the retrieval performance. We learn a lightweight policy network to decide whether to further process or
discard a frame. By adopting the Gumbel-Softmax trick, we train the sampler jointly with the video retrieval model
end-to-end in an efficient manner. Experimental results on benchmark datasets such as ActivityNet, DiDeMo and
MSRVTT demonstrate that mmSampler achieves improved retrieval performance while saving as much as 43%

GFLOPs per video.

1 INTRODUCTION

Joint understanding of vision and language is one of the
key research topics in the machine learning community.
One task under this umbrella is natural language-to-video
retrieval, which returns relevant videos from a pool of can-
didate videos given a textual query. The rapid rise of user-
generated videos on mobile devices (from flagship to feature
phones) as a global phenomenon has made efficient retrieval
of videos an important practical problem.

The general approach for video and natural language un-
derstanding involves learning vector representations for the
videos and the queries in a joint embedding space. In the
learned space, semantically correlated content will be closer
in distance (e.g., cosine similarity), as depicted in Fig. 1. A
key question that our work addresses is how to embed the
visual frames efficiently into a video representation.

Existing work on video retrieval handles the embedding of
visual frames in two main approaches. The first line of work
extracts visual features for all the frames in a video and
aggregates the frame features into a compact video represen-
tation (Miech et al., 2018; Liu et al., 2019). Such approaches
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Figure 1. An example for multimodal joint representation. Blue
dots and orange dots represent the vector representations for im-
ages and textual queries, respectively. In the joint embedding
space, semantically similar content are closer in distance.

seek to optimize the retrieval performance while ignoring
the computational overhead associated with extracting all
the frame features. Another line of work adopts uniform
sampling by either sampling a fixed number of frames per
video (Chen et al., 2018; Bain et al., 2021; Luo et al., 2021)
or sampling at a fixed frame rate (Yu et al., 2018) to select
a subset of frames to represent a video. These methods
may be sub-optimal and introduce noisy data such as black
screens and blurry frames into the final video representation.

Motivated by this, we propose mmSampler, a learning-based
approach to select salient frames from videos for the down-
stream video retrieval task. We design a policy network
consisting of a lightweight feature extractor and a tempo-
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Figure 2. A motivating example for video-text matching in the inference stage. As an illustration, we start with six uniformly sampled
frames. Instead of using all the frames in the downstream retrieval task, mmSampler will take a glance at the frames using a lightweight
policy network and make the decision of which frames to keep independently of the textual query. Afterward, the visual features of the
selected frames are extracted using a much more expensive image encoder, which are further aggregated to form the video embedding.
Finally, both the video and query embeddings are projected to a common embedding space for similarity score calculation.

ral modelling module to decide which frames to preserve.
Only the salient frames are processed by the computation-
ally expensive video retrieval model, while redundant and
uninformative frames are discarded. Fig. 2 illustrates a mo-
tivating example. By adaptively sampling and processing
only a subset of salient frames, we can significantly reduce
the computational overhead without sacrificing the video
retrieval performance.

The key contributions of our paper are three-fold. First, to
the best of our knowledge, mmSampler is the first work
that aims to optimize the computational efficiency of mul-
timodal video retrieval systems at runtime. Second, we
propose a novel and lightweight approach to adaptively se-
lect salient frames for efficient video retrieval. We train
our policy network end-to-end by adopting the Gumbel-
Softmax trick (Jang et al., 2016; Maddison et al., 2016) to
resolve the non-differentiability problem arising from the
discrete action space. Finally, extensive experimental results
on several benchmarking datasets, including ActivityNet,
DiDeMo and MSRVTT, have shown substantial benefits of
mmSampler in saving as much as 43% GFLOPs per video
while improving the retrieval performance.

2 BACKGROUND AND MOTIVATION

This section provides background knowledge on multi-
modal video-text matching, followed by the motivation for
a content-based frame sampler.

2.1 Multimodal Video-Text Matching

Generally, video-text matching learns joint multimodal rep-
resentations for both videos and textual queries in a shared
embedding space. In the joint space, semantically similar
content are closer in distance, as depicted in Fig. 1.

Existing video-text retrieval frameworks either introduce
cross-modal attention or embed the modalities separately
to learn the final video-text representations. In the former
approach, the video and text data are passed into a single
encoder block (e.g., a transformer architecture) to capture
cross-modal alignment (Chen et al., 2018). Since the two
modalities are tightly coupled, at retrieval time, an input
query needs to be passed into the encoder along with a video
to compute their similarity. This process repeats for all the
candidate videos to return the best match(es), which is both
inefficient and unscalable at inference time.

Alternatively, we can design separate encoders for each
modality (Bain et al., 2021; Luo et al., 2021). The mapping
of embeddings into a common multimodal space is learned
using a contrastive loss (Radford et al., 2021) or a triplet
loss (Liu et al., 2019). When adopting this design for video
retrieval, the videos can be embedded offline, independent
of the textual query. At retrieval time, an incoming search
query is embedded and compared with the cached video
embeddings, which is highly scalable. Therefore, we adopt
this approach in our work.

2.2 Choosing Frames for Video Representation

Existing work on video-text retrieval generally processes
all the frames (Miech et al., 2018; Liu et al., 2019) or a
subset of frames in a video by uniform sampling (Bain
et al., 2021; Luo et al., 2021). As both approaches are
frame-agnostic, they may capture redundant frames or non-
informative frames such as black screens and blurred frames.
The presence of such frames may incur unnecessary compu-
tational overhead or hurt the video retrieval performance.

In the domain of action recognition, it has been shown that
efficient frame sampling techniques (Korbar et al., 2019;
Meng et al., 2020; Gao et al., 2020) can achieve both compu-



mmSampler: Efficient Frame Sampler for Multimodal Video Retrieval

Video Frames

)

A

s;

Feature ‘ Feature ‘ Feature ‘ Feature ‘ Feature ‘
t — Extractor Extractor Extractor Extractor Extractor
Feature Processing
f ;
‘ Tempora\ Modelling ‘
(a) Frame Features
‘ ‘ 1 I FC Layers ‘ I FC Layers ‘ I FC Layers ‘ I FC Layers ‘ I FC Layers ‘ Policy Network
d = f -
Gumbel-Softmax
(b) Feature Differences
Keep Frame Skip Frame Keep Frame Keep Frame Skip Frame
t t
f d Selected Frames
Feature Concatenation | /
(¢) Feature Concatenation ‘ Feature Extraction and Aggregation ‘
Similarity Score Cross Entropy Loss + Uniform Loss
Y - ek Video Retrieval Model
‘ Query Encoder ‘
e.g., A woman is throwing a frisbee in a park

Figure 3. System overview for mmSampler. mmSampler uses a policy

network to pick which frames to keep for retrieval. Frame features

are first extracted using a lightweight feature extractor and passed into a temporal modelling module. We investigate three types of feature
processing methods, namely frame features, feature differences, and feature concatenation. The output hidden states of the temporal
modelling module are passed to a few fully connected (FC) layers to generate the logits for the frame actions. We use Gumbel-Softmax to
generate the discrete action (keep or skip) for each frame given the logits. The selected frames are processed again with a more expensive
image encoder. The visual features are aggregated into a video embedding and compared with the query embedding.

tational savings and improvements in classification accuracy
by identifying and processing the salient frames/clips. A
natural question to ask is could we achieve similar effects
in multimodal video-text retrieval? In this work, we ex-
plore an adaptive sampling strategy to select salient frames
from a diverse range of videos characterized by free-form
natural language queries as opposed to videos represented
by a fixed number of pre-determined action labels. In the
following sections, we discuss our design in more detail
and show improved retrieval performance with significant
computational savings.

3 SYSTEM DESIGN

Videos contain a collection of unequally informative and im-
portant frames. We outline the technical design of mmSam-
pler in this section and describe how it selectively chooses
frames to reduce the video embedding overhead while im-
proving the video-text retrieval performance.

3.1 System Overview

We propose mmSampler, an adaptive sampler to select
salient video frames for efficient video-text retrieval. The
network architecture is shown in Fig. 3. mmSampler learns
a policy network to select important video frames to pass
into a multimodal model for the downstream retrieval task.

Given an input video, we first uniformly sample a fixed

number of frames. At each time step, we extract features for
the current frame using a lightweight feature extractor and
a temporal modelling module. The output representations
are used as a signal to decide whether to keep or skip the
observed frame for retrieval (Sec. 3.2). We also explore
three different feature processing methods to capture appear-
ance and/or motion information in videos (Sec. 3.3). Since
the sampling decision is discrete and non-differentiable, we
adopt the Gumbel-Softmax trick (Jang et al., 2016) and
jointly train the policy network end-to-end with the down-
stream retrieval model in a differentiable manner (Sec. 3.4).
The selected frames are passed into the multimodal retrieval
model along with the textual query to determine a similarity
matching score for video-text retrieval (Sec. 3.5). We train
mmSampler using two specially designed losses to opti-
mize retrieval performance and encourage frame skipping
(Sec. 3.6).

3.2 Learning an Adaptive Policy Network

mmSampler learns to adaptively select salient frames us-
ing a policy network to pass into the downstream model
for retrieval. The policy network is a neural network that
defines how the actions are sampled at a given time. It is
composed of three main components: a feature extractor,
a temporal modelling module, and a frame selection mod-
ule. We uniformly sample a fixed number frames from each
video and decide whether to keep or skip each frame. The
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policy network is guided by the textual queries at training
time to identify salient frames specific to a dataset. How-
ever, at inference time, the frame sampling process is done
independently of the input query, which is highly efficient.

We use a lightweight pretrained 2D CNN as a visual feature
extractor by removing the final fully connected classification
layer. We select a CNN that is considerably lighter in cost
compared to the downstream multimodal model, adding
negligible overhead to the final computational cost.

To capture temporal relations in a video, we pass the frame
features into a temporal modelling module. This module
can be a recurrent neural network such as an LSTM, or a
lightweight 1-layer transformer network. An LSTM takes
the current frame features and the previous states at each
time step to generate new hidden and cell state vectors.
The output hidden state of the LSTM encodes information
from both the current frame and the history. A transformer
can process the sequence of frames in parallel. The frame
features are first projected to the same dimension as the
transformer hidden size via a fully connected layer. Next,
a position encoding is added to the features to retain the
positional information of the input. The transformer outputs
a new set of embeddings that captures the relation of a
frame and every other frame in the sequence through its
self-attention mechanism. The output hidden states of the
temporal module are then passed into the frame selection
module, which consists of a few fully connected layers to
generate logits for our action space and the Gumbel-Softmax
trick. These logits represent unnormalized probabilities for
the discrete actions of keeping or skipping the frame.

3.3 Feature Processing

Inspired by action recognition works that adopt two-stream
networks (Simonyan & Zisserman, 2014; Feichtenhofer
et al., 2016) to capture both appearance and motion informa-
tion using 2D CNNs, we propose three efficient methods to
process the visual features to learn spatial and/or temporal
dependencies in a video.

The first method uses the frame features directly, as shown
in Fig. 3(a). At each time step t, the policy network
first extracts visual features from the video frame using
a lightweight feature extractor, then passes the features into
the temporal modelling module with no additional change.
Intuitively, this approach captures the spatial information in
a video, which learns about the appearance of objects in a
scene. By operating on CNN features, the sampler can learn
to recognize uninformative scenes or objects in a frame that
are specific to a downstream dataset.

The second method applies a difference operator, which
computes the differences between the current frame feature
and the previous frame feature. An overview is presented

in Fig. 3(b). The intuition behind this method is that it uses
visual feature differences to model motion relations between
two frames, similar to optical flow. By learning the temporal
dependencies between frames, the sampler can effectively
remove some inter-frame redundancies without degrading
the retrieval performance.

Lastly, we consider an integration of the first two methods,
as illustrated in Fig. 3(c). Here, we apply a concatenation
operator that takes in both the unprocessed frame features
and the feature differences to form a 1D fixed-size vector.
Inspired by the concept of two-stream networks in action
recognition, this approach considers both the appearance
and motion information in the final decision-making process.
With the additional information, the sampler can learn to
skip uninformative frames as well as some highly redundant
frames to reduce the overall computational overhead and
improve the retrieval performance.

3.4 Gumbel-Softmax Sampling

The objective of the policy network is to decide which frame
to keep or skip. However, since the action space is discrete,
the gradient for such an operation is undefined and unsuit-
able for backpropagation. A common workaround is to
adopt policy-gradient methods in reinforcement learning
such as the REINFORCE (Glynn, 1990; Williams, 1992)
algorithm. However, such methods may have large variance
in gradient estimates, leading to slow convergence (Zhao
et al., 2011). In this work, we leverage the Gumbel-Softmax
trick (Jang et al., 2016; Maddison et al., 2016) to bypass the
non-differentiability nature of the discrete sampling space
and enable efficient end-to-end learning of our system.

At each time step ¢, we output a vector of logits z € R"
where n = 2 is the size of the action space (keep action or
skip action). The logits are passed to a softmax activation
function to generate the probabilities p for each action in the
sampling space. The probability for the i** action follows a
categorical distribution 7,

exp(z;)

mo= A | pi= P g0, 1]
' { | zjzgexp@j)}
(1)

We reparametrize the categorical distribution using the
Gumbel-Max trick (Jang et al., 2016), which perturbs the
probabilities by adding a standard Gumbel noise G; =
—log(—log U;) where U; is drawn i.i.d. from a uniform
distribution. In the forward pass, we sample an action p from
the reparametrized distribution where the sampled actions
are distributed according to m;:

p = arg max; (log p; + G;) 2
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However, since the arg max operator in Eq. (2) is still non-
differentiable, we adopt the Gumbel-Softmax trick (Jang
et al., 2016; Maddison et al., 2016) to approximate the
arg max operator with the continuous softmax function as
follows to allow for backpropagation:

exp((logp; + G;)/7)

q; = o ,’LG[O,’ ,nfl}
>_j—o exp((logp; + G;)/7)
3)
Here, ¢; is the probability of choosing the i action and

T is a temperature parameter that controls how close the
Gumbel-Softmax distribution is to the original categorical
distribution. As 7 approaches zero, the samples drawn from
the Gumbel-Softmax distribution become one-hot. In prac-
tice, 7 is initially set to a fixed value and gradually annealed
down to a small non-zero temperature during training.

By leveraging the Gumbel-Softmax sampling technique,
we can still sample from the true categorical distribution
in the forward pass, while also allowing the network to be
optimized via backpropagation.

3.5 Downstream Retrieval Model

We build a video-text retrieval model on top of the pre-
trained image-text model CLIP (Radford et al., 2021). The
retrieval model is finetuned with the policy network during
training. Unlike prior work that processes all the uniformly
sampled frames in a video for retrieval, we only use the
frames selected by our policy network. The chosen frames
are embedded by the finetuned CLIP visual encoder and
aggregated via mean pooling to obtain the final video rep-
resentation. The text representation is generated directly
using the finetuned CLIP text encoder. Both the visual and
text encoders already contain linear projection layers to map
the embeddings to a common multimodal space. Given B
video-text pairs during training, we compute B2 cosine sim-
ilarity scores between each video and text data point, where
we seek to maximize the similarity scores of the B correct
pairs and minimize the remaining (B2 — B) scores to learn
an effective multimodal joint representation.

3.6 Loss Functions

While we do not have ground truth labels (i.e., optimal
action decisions) for the sampler to follow, we can alterna-
tively supervise the policy network using a retrieval loss and
a uniform loss. The retrieval loss is a symmetric cross en-
tropy loss introduced in CLIP (Radford et al., 2021) to help
maximize the cosine similarity scores between the positive
image-text pairs and minimize the scores of the negative
pairs. We adopt this loss to learn accurate video and text rep-
resentations for retrieval, wherein the video representation

is simply an aggregation of the individual frame features:

B—
exp(Sg,z)
Lyat = —, “4)
Z Yo eXP(s2y)
exp Sp.a)
‘Ct2v = ) (5)
z:: y 0 exp(s% )
1
ET = §(£112t + £t21)) (6)

Here, B is the batch size, and s 4 is the cosine similarity
between the " video and the y*" caption. s, . represents
the similarity score of a positive video-text pair.

By using only the retrieval loss £,., the model would be in-
clined to use almost all the frames to maximize the retrieval
performance. Therefore, we also adopt the uniform loss in
AR-Net (Meng et al., 2020) to encourage the policy network
to sample different actions:

B-1T-1
)—E,ze [0,--,n—1]

b=0 t=0
(N

Here, n is the total number of actions. |||, represents the L2
norm, and 1(-) is the indicator function. 1(ap; = ¢) equals
1 if the selected action at time step ¢ for the b*" sample video
equals to the i** action in the action space; otherwise it is 0.
The term ¢; compares the frequency of picking the i*" action
in a batch with the expected frequency. The loss acts as a
regularizer to penalize actions whose sampling frequency
does not meet the expected frequency. If we only adopt this
loss, it would promote a balanced policy across the actions.

The final training objective function for mmSampler is a
combination of the two losses:

L=w,*L, +wy * Ly, 9

where w, and w,, are the weights for the two losses, respec-
tively. We set the weights empirically in our experiments.

4 EVALUATION

In this section, we evaluate mmSampler in terms of retrieval
performance and computational efficiency on several video
datasets. We aim to answer the following questions:

e What is the video retrieval performance of mmSam-
pler compared with SOTA approaches? Which feature
processing technique(s) is the most effective?
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e How much computational overhead does mmSampler
save compared to uniform sampling?

e How do we optimize for the trade-off between retrieval
performance and efficiency?

e Can mmSampler adapt to different visual backbones?

e What insights can be drawn from the sampling be-
haviour?

4.1 Experimental Setup
4.1.1 Datasets

We validate the performance of mmSampler on video-to-
text and text-to-video retrieval on three benchmark datasets:
ActivityNet, DiDeMo and MSRVTT.

ActivityNet Captions (Krishna et al., 2017) consists of
20,000 videos, where on average each is described by 3.65
temporally annotated sentences. Following prior work (Liu
et al., 2019; Luo et al., 2021), we perform paragraph re-
trieval by concatenating the sentences in each video into one
query for retrieval. We evaluate ActivityNet on the ‘vall’
split, which contains 10,009 train and 4,917 test videos.

DiDeMo (Hendricks et al., 2017) consists of 10,464 videos
where each video is annotated with 3 to 5 temporally local-
ized sentences. In total, there are 40,543 descriptions. The
videos are split into 8,395 train, 1,065 validation, and 1,004
test. Following existing work (Luo et al., 2021; Fang et al.,
2021), we perform paragraph retrieval.

MSRVTT (Xu et al., 2016) contains 10,000 trimmed
YouTube video clips, each described by 20 captions. Eval-
uation is done on the ‘1k-A’ split (9,000 train, 1,000 test)
proposed by JSFusion (Yu et al., 2018). The test set con-
tains 1,000 video-text pairs, in which we follow the standard
retrieval evaluation procedure.

4.1.2 Evaluation Metrics

We evaluate video and text retrieval using standard retrieval
metrics: recall at rank K (R@K) for K={1,5,10}, median
rank (MdR), and mean rank (MnR). R@K indicates the
proportion of cases where the ground-truth caption/video
is in the top-K retrieved items. For ActivityNet, K=50 is
used in lieu of K=10 following prior work. For MdR and
MnR, lower ranks correspond to better performance. We
also report the number of giga-floating-point operations
(GFLOPs) used to process each video as a measure for
computational complexity.

4.1.3 Implementation Details

The policy consists of a feature extractor and a single-layer
temporal modelling module (i.e., LSTM, transformer) with
512 hidden units. For the 1-layer transformer block, we set
the number of self-attention heads to 8. The feature extractor

is a frozen MobileNetV2 (Sandler et al., 2018) model pre-
trained on ImageNet (Deng et al., 2009). We explore three
different feature processing techniques, namely frame fea-
tures, feature differences, and feature concatenation, which
we respectively denote as ‘Ours-frame’, ‘Ours-diff’, and
‘Ours-concat’ in the results. If not otherwise specified, the
default setting uses frame features as input and the 1-layer
transformer block as the temporal modelling module.

We use two fully connected layers to map the temporal
modelling module’s hidden states to the logits for the sam-
pling actions. The hidden layer dimension for the fully
connected layers is 1024. The temperature parameter 7 for
the Gumbel-Softmax distribution is initially set to 5.0 and
gradually annealed down using exponential decay with a
decay constant of —0.045. By default, the first frame is
always selected to ensure that the video representation is a
valid vector.

The downstream multimodal retrieval model is initialized as
a pretrained CLIP (ViT-B/32 model) (Radford et al., 2021),
which is jointly trained with the policy network. If not oth-
erwise stated, we train the model end-to-end for 30 epochs
using the Adam optimizer with a learning rate of le-7 for
the multimodal model parameters and 1e-4 for the remain-
ing parameters. We train DiDeMo for only 5 epochs due to
fast training convergence.

In terms of the input sequence lengths to CLIP’s multimodal
transformer encoders, we limit the caption token length to 32
and the number of sampled frames to 16 for MSRVTT. For
ActivityNet and DiDeMo, the caption token length and the
number of frames are 64 and 32, respectively. The frames
are obtained by uniformly sampling the videos at their native
frame rates. In our experiments, we set the weights for
the losses w, and w, to be 1 and 0.03, respectively. All
experiments are carried out on 4 NVIDIA Tesla A100 GPUs.

4.1.4 Baselines

We compare mmSampler with many prior state-of-the-art
(SOTA) work on video retrieval including Collaborative Ex-
perts (Liu et al., 2019), Multi-Modal Transformer (Gabeur
et al., 2020) and ClipBERT (Lei et al., 2021). Furthermore,
we showcase retrieval and GFLOP numbers for finetuning
the multimodal video retrieval model without the policy net-
work. This baseline uses all N uniformly sampled frames,
whereas mmSampler previews the same set of frames and
selects only the salient frames for retrieval. In essence, the
no-policy baseline has the same set-up as the CLIP4Clip-
meanP (Luo et al., 2021) model, which finetunes CLIP’s
ViT-B/32 model on video datasets and applies mean pooling
to the frame features to generate the final video representa-
tion. We denote the no-policy baseline as CLIP4Clip (Luo
etal., 2021) (U, N), where U represents uniform sampling
and N is the number of sampled frames per video.
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Note that our baseline numbers for CLIPAClip are from our
reimplementation to ensure a fair comparison. Here, we
outline some implementation differences. First, CLIP4Clip
uses videos sampled at 1 fps, which may lead to instances
where a sampled video contains less than N frames. In our
work, we enforce consistency across videos by using the
native video sampling rates such that each video has at least
N frames. Second, we use 32 frames for ActivityNet and
DiDeMo instead of 64 because we did not see substantial
improvement from doubling the number of frames. Third,
when training MSRVTT, we randomly sample one caption
per video to use in training every epoch following exist-
ing work (Liu et al., 2019). This differs from CLIP4Clip,
which is trained by using all the video-caption pairs every
epoch. We observe that our training strategy yields better
performance and does not overfit quickly to the training set.

Besides CLIP4Clip (Luo et al., 2021), we also compare with
the concurrent work CLIP2Video (Fang et al., 2021). As
their training code is unavailable, we evaluate their check-
point on our set of extracted frames. Following the setting in
their work, the model is validated on 12 uniformly sampled
frames per video for MSRVTT.

4.2 Experimental Results

4.2.1 Comparison to Video-Text Retrieval Baselines

Tables 1-3 list the text-to-video and video-to-text retrieval
results of mmSampler and prior work on ActivityNet,
DiDeMo and MSRVTT datasets. We also compare the
GFLOP usage per video for our model and the no-policy
CLIP4Clip baseline. Across the three datasets, mmSampler
achieves SOTA retrieval performance over the baselines in
most cases while showing substantial reduction in computa-
tional requirements.

At first glance, it can be observed that CLIP-based ap-
proaches such as CLIP4Clip and CLIP2Video outperform
other baselines by a significant margin. One key reason
for such performance boost is that CLIP is pretrained on a
large-scale image-text dataset (400 million pairs) to learn
generalized image and text embeddings. Most prior arts
are either trained on the downstream dataset directly or
first pretrained on smaller image or video datasets such as
HowTo100M (Miech et al., 2019).

For ActivityNet in Table 1, mmSampler exceeds the no-
policy results in most of the retrieval metrics, showing as
much as 1.4% and 1.9% improvement in text-to-video and
video-to-text retrieval R@ 1, respectively. mmSampler also
reduces the number of frames used by almost 50% compared
to CLIP4Clip. Since fewer frames are selected and passed
into the heavyweight CLIP visual encoder, mmSampler
reduces the computational overhead by 43% for the three
feature processing methods.

Similarly, DiDeMo results in Table 2 also show consistent
improvement over the CLIP4Clip baseline, where mmSam-
pler exceeds the baseline for all R@K (K={1,5,10}) metrics.
On average, we use 33% to 41% less GFLOPs and 13 to 15
fewer frames per video.

Lastly, for MSRVTT, mmSampler on average selects 10 to
11 frames per video out of 16 uniformly sampled frames, of-
fering 24-32% savings in GFLOPs compared to the baseline.
For the retrieval performance, all three feature processing
methods outperform the no-policy baseline, yielding as high
as a 1.5% and 2.3% improvement in text-to-video and video-
to-text retrieval R@ 1 under the frame feature setting.

We note that although CLIP2Video (Fang et al., 2021) shows
competitive retrieval performance on the MSRVTT dataset,
the model incurs greater computational overhead compared
to CLIP4Clip and mmSampler due to the addition of a cross-
modal alignment module and several temporal transformer
blocks. The key objective of mmSampler is to reduce the
number of frames processed by the heavyweight retrieval
model while improving the retrieval performance. It is
designed to be general and can be plugged into different
retrieval backbones (See more results in Table 4). We show
the effectiveness of mmSampler with CLIP4Clip in this
paper. Evaluating mmSampler with CLIP2Video (Fang
et al., 2021) could be an interesting future direction.

In terms of the three feature processing methods, Qurs-
diff is the most computationally efficient method overall.
This suggests that by incorporating motion-based features,
we can effectively remove more redundant frames from
the video compared to appearance features. We also ob-
serve that Qurs-diff generally performs worse than Ours-
frame, especially for MSRVTT, suggesting that spatial con-
text might be more informative than motion dynamics for
some datasets. Qurs-concat shows the best overall perfor-
mance for ActivityNet, emphasizing the benefits of both
static appearance and dynamic motion information in a
video retrieval setting. By leveraging both streams, mm-
Sampler can effectively filter out uninformative and some
redundant frames to arrive at a more robust and accurate
video representation.

In summary, mmSampler achieves strong retrieval perfor-
mance on all three datasets by sampling and further pro-
cessing only the salient frames for retrieval. Not only have
we improved the recall at rank K (R@K), mmSampler also
yields lower median rank (MdR) and mean rank (MnR) com-
pared to the no-policy baseline, which capture the overall
retrieval performance for all the videos in a dataset. By
using only a subset of the original frames, we greatly reduce
the computational overhead associated with processing the
frames. We demonstrate that more frames may not always
be better given that certain frames are uninformative and
may hinder the learning of an effective video representation.
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Table 1. Text-to-video retrieval, video-to-text retrieval, and average GFLOPs per video on ActivityNet. (U, N) and (P, V) represent
uniform sampling and policy-based sampling N frames per video, respectively. For example, (P, 16.25) represents sampling 16.25 frames

per video on average with the learned policy.

Text = Video Video = Text
Methods GFLOPs/v | R@l R@5 R@50 MdJdR MnR | R@l R@5 R@50 MdR MnR
CE (Liu et al., 2019) - 182 47.7 91.4 6 23.1 17.7  46.6 90.9 6 24.4
TT-CE+ (Croitoru et al., 2021) - 235 572 96.1 4 13.7 | 23.0 56.1 95.8 4 -
MMT-PT (Gabeur et al., 2020) - 287 614 94.5 33 16.0 | 289 6l1.1 94.3 4 17.1
SSB-PT (Patrick et al., 2020) - 29.2  61.6 94.7 3 - 28.7  60.8 94.8 2 -
ClipBERT (Lei et al., 2021) - 213 490 - 6 - - - - - -
MDMMT (Dzabraev et al., 2021) - 20.1 45.1 - 7 7.8 - - - - -
CLIP4Clip (Luo et al., 2021) (U, 32) 141.2 413 723 98.0 2 7.5 42.1 740 98.3 2 7.0
Ours-frame (P, 15.9) 80.4 42.0 724 97.8 2 7.4 437 744 98.0 2 7.0
Ours-diff (P, 15.8) 79.9 422 722 97.7 2 7.6 430 740 97.9 2 7.2
Ours-concat (P, 16.0) 80.9 427 729 97.9 2 7.2 44.0 745 98.1 2 6.8

Table 2. Text-to-video retrieval, video-to-text retrieval, and average GFLOPs per video on DiDeMo. (U, N) and (P, V) represent uniform
sampling and policy-based sampling N frames per video, respectively. For example, (U, 32) represents uniformly sampling 32 frames.

Text = Video Video = Text
Methods GFLOPs/v | R@l R@5 R@10 MdR MnR | R@l R@5 R@I10 MdJR MnR
CE (Liu et al., 2019) - 16.1 41.1 - 8.3 437 | 156 409 - 82 424
TT-CE+ (Croitoru et al., 2021) - 21.6  48.6 62.9 6 - 21.1 473 61.1 6.3 -
Frozen (Bain et al., 2021) - 346 65.0 74.7 3 - - - - - -
ClipBERT (Lei et al., 2021) - 204  48.0 60.8 6 - - - - - -
CLIP4Clip (Luo et al., 2021) (U, 32) 141.2 40.7 68.9 79.1 2 18.6 | 41.0 689 79.2 2 12.2
Ours-frame (P, 19.2) 94.9 414 701 80.0 2 183 | 41.8 709 80.5 2 11.0
Ours-diff (P, 16.8) 84.4 413  69.0 80.3 2 18.7 | 42.0 69.8 79.6 2 11.3
Ours-concat (P, 16.7) 84.0 416 70.0 79.7 2 183 | 41.7 71.2 79.3 2 114

4.2.2  Retrieval Performance and Efficiency Trade-off

As discussed in Sec. 3.6, our overall loss function given by
Eq. 9 consists of a retrieval loss and a uniform loss, which
directly affect the retrieval performance and computational
efficiency. We can toggle the weights for the individual
losses to observe different retrieval performance and effi-
ciency trade-offs.

In Table 4, we provide several combinations of the loss
weights w,. and w,, as well as the corresponding retrieval per-
formance and GFLOPs usage per video. If only the retrieval
loss is used (w,- = 1, w,, = 0), the policy should be inclined
to keep almost all the frames for retrieval in an attempt to
maximize performance, which is similar to the CLIP4Clip
baseline. Interestingly, we observe that the sampler uses 4
fewer frames per video on average while achieving better
performance compared to the baseline. This suggests that
using all the frames does not necessarily correlate with the
best performance.

Adding uniform loss into the overall objective function can
encourage the policy to start learning to skip frames. Based
on our observations, setting a high weight for the retrieval

loss (w, = 1) and adding a small weight for the uniform
loss (w,, = 0.03) yields the best retrieval performance and
efficiency trade-off across all the datasets. Setting the weight
for the uniform loss w,, to be too large (w,, = 0.3) may
drive the policy to skip too aggressively and in turn harm
the retrieval performance.

4.2.3 Ablation Studies

Table 4 presents two other ablation studies we have con-
ducted, specifically the benefits of the temporal modelling
module and the performance of adopting another pretrained,
more heavyweight CLIP visual encoder!.

Temporal Modelling Module We investigate the benefits
of different temporal modelling modules to capture tempo-
ral dependencies. We observe in Table 4 that the 1-layer
transformer architecture outperforms both the LSTM and
bi-LSTM modules in both performance and computation ef-
ficiency. Furthermore, the performance of using a temporal
modelling module is better than feeding the input features
directly to the fully connected layers.

"More results are presented in the Appendix.
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Table 3. Text-to-video retrieval, video-to-text retrieval, and average GFLOPs per video on the 1k-A split of MSRVTT. (U, N) and (P, V)
represent uniform sampling and policy-based sampling N frames per video, respectively. For example, (U, 16) represents uniformly
sampling 16 frames. CLIP2Video (Fang et al., 2021) results are obtained from evaluating their checkpoint on 12 uniformly sampled

frames per video with frames extracted at the native frame rate.

Text => Video Video = Text
Methods GFLOPs/v | R@l R@5 R@10 MdR MnR | R@l R@5 R@I0 MdR MnR
JSFusion (Yu et al., 2018) - 102 312 432 13 - - - - - -
CE (Liu et al., 2019) - 209 488 62.4 6 282 | 20.6 503 64.0 53 25.1
TT-CE+ (Croitoru et al., 2021) - 29.6 61.6 74.2 3 - 321 627 75.0 3 -
ActBERT (Zhu & Yang, 2020) - 8.6 23.4 33.1 36 - - - - - -
ClipBERT (Lei et al., 2021) - 220 46.8 59.9 6 - - - - - -
HowTol100M (Miech et al., 2019) - 149 402 52.8 9 - 16.8 417 55.1 8 -
MMT-PT (Gabeur et al., 2020) - 266 57.1 69.6 4 240 | 27.0 575 69.7 37 21.3
SSB-PT (Patrick et al., 2020) - 30.1 585 69.3 3 - 28.5 58.6 71.6 3 -
Frozen (Bain et al., 2021) - 31.0 595 70.5 3 - - - - - -
Straight-CLIP (Portillo-Quintero et al., 2021) - 312 537 64.2 4 - 272 51.7 62.6 5 -
MDMMT (Dzabraev et al., 2021) - 38.9 690 79.7 2 16.5 - - - - -
CLIP2Video (Fang et al., 2021) - 4.1 717 81.6 2 14.1 | 434 713 82.0 2 10.0
CLIP4Clip (Luo et al., 2021) (U, 16) 70.6 422 68.7 79.2 2 16.5 | 42.1 704 81.2 2 11.7
Ours-frame (P, 11.0) 53.8 437 712 79.8 2 156 | 444 715 82.1 2 10.6
Ours-diff (P, 9.7) 47.8 428 70.6 80.6 2 15.6 | 439 713 824 2 10.9
QOurs-concat (P, 10.1) 49.7 43.6  70.6 80.1 2 15.8 | 443 721 82.1 2 11.2

Table 4. Ablation studies on MSRVTT 1k-A split for different temporal modelling modules, loss weights, and backbones. w, and w,, are
the weights for the retrieval loss and uniform loss, respectively. The row in bold highlights mmSampler results obtained under the default

setting of using MobileNetV2 frame features.

Text = Video Video = Text
Methods Temporal Model | (w,,w,) | Backbone | GFLOPS/v | R@]l R@5 R@I10 | R@]l R@5 R@10
CLIP4Clip (Luo et al., 2021) (U, 16) - - ViT-B/32 70.6 422 68.7 79.2 42.1 704 81.2
Ours-frame (P, 12.0) Transformer (1,0.0) | ViT-B/32 58.2 430 704 81.2 43.0 69.7 82.0
Ours-frame (P, 11.0) Transformer (1, 0.03) | ViT-B/32 53.8 437 712 79.8 444 715 82.1
Ours-frame (P, 8.8) Transformer (1,0.3) | ViT-B/32 44.1 432 711 78.8 431 714 81.6
Ours-frame (P, 12.2) LSTM (1,0.03) | ViT-B/32 58.8 429 70.1 80.8 434 714 82.2
Ours-frame (P, 11.7) Bi-LSTM (1,0.03) | ViT-B/32 56.7 420 712 80.0 43.6 714 81.8
Ours-frame (P, 11.9) None (1,0.03) | ViT-B/32 57.6 42.6 69.4 80.3 420 713 81.3
CLIP4Clip (Luo et al., 2021) (U, 16) - - ViT-B/16 281.2 45 712 80.6 440 721 81.9
Ours-frame (P, 11.5) Transformer (1,0.03) | ViT-B/16 1834 458 73.1 82.1 456  73.6 83.1

Different CLIP Backbone We also investigate the perfor-
mance of another CLIP visual backbone, ViT-B/16. The last
two rows of Table 4 present the ViT-B/16 baseline results
for using uniformly sampled frames and the performance of
our sampler trained on the same downstream model. We ob-
serve similar trends as the ViT-B/32 backbone. By adopting
our content-aware sampler, we achieve better retrieval per-
formance in all metrics while reducing the GFLOPs usage
by 35%. We also see that the sampler achieves even better
retrieval results using the ViT-B/16 backbone compared to
mmSampler with the ViT-B/32 backbone. However, the new
backbone requires a substantially higher amount of compu-
tation. In sum, the key takeaway is that mmSampler can be
trained end-to-end with different video retrieval backbones
to improve retrieval performance and save computation.

4.2.4  Analysis of the Sampling Behaviours

We present the distribution of the location of the sampled
frames and the number of sampled frames per video on
MSRVTT for both the 1-layer transformer and the LSTM
temporal modelling modules in Fig. 4. Note that the first
frame is always chosen by default so that at least one frame
is picked per video. Fig. 4(a) demonstrates that the trans-
former network selects the first few frames and the last frame
more frequently than the rest of the video frames. On the
other hand, the LSTM module tends to select frames from
the beginning. We conjecture that because the transformer
has access to the global context in a video, it samples frames
that are more distant or distributed to represent a video. As
an LSTM processes the frames sequentially and only has
access to historical context, it will select more frames from
the beginning. The frames near the end could be redundant
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Figure 4. Sampling behaviours of transformer and LSTM in the
policy network. In Fig. 4(a), we observe the transformer picks
more frames from the beginning and end of the videos, while an
LSTM selects more frames from the beginning. In Fig. 4(b), we
show the average number of frames being selected. mmSampler
does not select too many or too few frames.

compared to what has already been viewed.

We also show the average number of frames selected by the
mmSampler in Fig. 4(b). As shown by the distribution, the
transformer selects fewer frames on average compared to
the LSTM. In both cases, mmSampler would rarely select
fewer than six frames or use all the frames. Skipping too
many frames may harm the retrieval performance while
keeping too many frames will increase the computational
overhead. In our case, we encourage the policy to choose
the skip action with the uniform loss.

4.2.5 Sampler Generalizability

We evaluate the extent of the frame sampler to generalize to
unseen videos. Redundant and uninformative frames are in-
herent characteristics of many videos, but the uninformative
content may be different across datasets. The results in the
paper are produced by evaluating mmSampler on the same
dataset on which it is trained. We test the generalizability
of mmSampler by freezing the CLIP backbone and training
only the weights of the policy network on ActivityNet, the
largest of all three datasets. The same sampler weights are
used to evaluate on other datasets. The results are presented
in Table 5. We observe the benefit of the sampler on all
datasets in both computational savings and performance
enhancement, demonstrating the ability of the sampler to
generalize to different datasets.

5 LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations and potential
future directions of mmSampler.

Multiple Modalities In this paper, we achieve strong video
retrieval performance through the use of frame-level visual
features alone. However, videos are more than a sequence
of frames. They are rich in modalities such as audio, speech
and motion, which have shown to be beneficial for improv-
ing the video retrieval performance (Liu et al., 2019; Miech
et al., 2018). How to adapt mmSampler for other modali-
ties to achieve even better video retrieval performance is a
promising future research direction.

Specialized Video Sampler Some datasets such as
MSRVTT (Xu et al., 2016) contain video clips spanning var-
ious domains, including but not limited to cartoons, movies,
video games and cooking videos. The video frames are sub-
stantially different across domains. For instance, in some
cooking videos, the scene is almost static across the entire
video. On the other hand, multiple scene changes may be
observed in some cartoon videos. Therefore, designing a
specialized video sampler for individual video types may
further improve the efficiency of video analytics without
affecting the retrieval performance. Moreover, one may
consider only sampling among keyframes (i.e., I-frames) in
compressed videos instead of sampling across all frames, as
inter-frames (i.e., P-frames or B-frames) may be computa-
tionally expensive to compute on mobile or edge devices.

Other Downstream Tasks While this work has only stud-
ied the benefit of a policy network in a video retrieval con-
text, the sampler concept can also be tailored to other mul-
timodal video understanding tasks, such as video summa-
rization and video captioning. For video summarization, the
task is to select representative frames for each video, which
is also aligned with the goals in this work. For video cap-
tioning, it has been shown that using only the informative
frames is beneficial (Chen et al., 2018); therefore, we may
be able to adopt the sampler for this task. Overall, the key
advantage of our design is that mmSampler is differentiable
and can be trained end-to-end with the downstream task to
achieve better performance.

6 RELATED WORK

In this section, we discuss recent related work in three dif-
ferent research directions.

Natural Language-based Video Retrieval

Video retrieval has been actively researched in recent years.
One approach involves extracting features from different
video modalities such as RGB, motion, and audio, and de-
sign a multimodal fusion mechanism to map the modality
representations to a shared embedding space (Miech et al.,
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Table 5. Performance of a sampler trained on ActivityNet and evaluated on various datasets. The CLIP backbone is frozen in all cases.

Text = Video Video = Text
Methods Dataset Temporal Model | GFLOPS/v | R@l R@5 R@l10 | R@l R@5 R@I10
Frozen CLIP (Radford et al., 2021) (U, 32) | ActivityNet - 141.2 19.9 447 57.8 18.8 429 56.5
Ours-frame (P, 24.7) ActivityNet Transformer 119.4 21.1 45.6 58.8 19.2 436 57.6
Ours-frame (P, 18.9) ActivityNet LSTM 93.5 21.2 46.0 58.7 19.5 440 57.9
Frozen CLIP (Radford et al., 2021) (U, 32) DiDeMo - 141.2 269  50.7 62.5 234 49.8 61.5
Ours-frame (P, 23.7) DiDeMo Transformer 115.1 27.6 513 62.0 25.1  50.2 61.9
Ours-frame (P, 19.3) DiDeMo LSTM 95.4 267 514 62.2 253 504 62.0
Frozen CLIP (Radford et al., 2021) (U, 32) | MSRVTT - 141.2 30.2 54.1 63.0 26.1 515 62.6
Ours-frame (P, 24.3) MSRVTT Transformer 117.3 312 557 64.5 26.6 53.0 63.7
Ours-frame (P, 17.0) MSRVTT LSTM 85.2 31.3 549 63.5 27.1 520 63.6

2018; Liu et al., 2019; Gabeur et al., 2020). Recently, we
have seen remarkable retrieval performance in both zero-
shot and finetuned settings (Patrick et al., 2020; Bain et al.,
2021; Dzabraev et al., 2021) by pretraining on large datasets
such as HowTo100M (Miech et al., 2019). Such works re-
inforce the importance of pretraining on large amounts of
data to learn more generalized video-text representations.

However, obtaining large-scale annotated video datasets is
expensive. Therefore, an emerging line of work investigates
using frame-level visual features alone (Portillo-Quintero
etal., 2021; Luo et al., 2021; Fang et al., 2021) for the video
representation instead of using an aggregation of features
from different modalities. These works leverage the image
encoder from CLIP (Radford et al., 2021), an image-text
model pretrained on a large image-text dataset, to extract
and aggregate frame-based features for the final video repre-
sentation, achieving state-of-the-art retrieval performance.

Generally, video retrieval frameworks are optimized for ac-
curacy and they extract features for all the frames or adopt
uniform sampling, which could be inefficient or inject un-
informative frames into the final embedding. Our policy is
designed to sample only a subset of informative frames to
use in the video-text retrieval model, dramatically saving the
computational cost associated with utilizing all the frames.

Efficient Action Recognition

Action recognition has been extensively studied by the com-
puter vision community. Most works mainly focus on de-
signing powerful and deep networks to achieve state-of-the-
art performance without taking into account the overall com-
putational cost (Carreira & Zisserman, 2017; Feichtenhofer
et al., 2018). Research has also been conducted on efficient
action recognition, which aims to design more lightweight
architectures (Tran et al., 2018; Lin et al., 2019; Tran et al.,
2019) or devise intelligent sampling techniques to achieve
better prediction accuracy (Korbar et al., 2019; Meng et al.,
2020; Gao et al., 2020). For instance, SCSampler (Korbar
et al., 2019) and Listen to Look (Gao et al., 2020) use audio
as an additional modality to select salient clips for action

recognition. AR-Net (Meng et al., 2020) proposes a policy
network to decide which input resolution to use in the action
recognition model on a per-frame basis. On the other hand,
our proposed solution is targeted at a multimodal learning
task where the natural language queries are free form and
not bounded by a limited number of classes.

Efficient Video Analytics

Efficient video analytics (Kang et al., 2017; Hsieh et al.,
2018; Kraft et al., 2019; Fu et al., 2019; Shen et al., 2019) is
an important research problem in the computer vision and
system communities. More specifically, MIRIS (Bastani
et al., 2020) and ExSample (Moll et al., 2020) introduce
efficient sampling algorithms for domain specific language
(DSL)-based video analytics. Although these works also
aim to process fewer frames while maintaining the same
level of accuracy as dense sampling, our focus is on natural
language-based video retrieval, where the query can be any
free-form text.

7 CONCLUDING REMARKS

We propose a learning-based policy sampler, mmSampler,
to select salient frames from a video for video-text retrieval.
Existing works generally use the complete set of frames
or uniformly sample a subset, which may not be efficient
and may introduce uninformative frames into the final video
representation. We design and train a lightweight policy
network end-to-end with the multimodal retrieval model by
adopting the Gumbel-Softmax trick. Experimental results
on benchmark datasets including ActivityNet, DiDeMo and
MSRVTT indicate the effectiveness of mmSampler. Our de-
sign shows improved retrieval performance and significant
GFLOPs savings by as much as 43% per video.
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A ARTIFACT APPENDIX
A.1 Abstract

The artifact contains the instructions to prepare the datasets,
setup the environment and run the scripts for both train-
ing and testing. Users should be able to reproduce all the
experiments in the paper and appendix.

A.2 Artifact check-list (meta-information)

e Data set: MSRVTT (76GB), DiDeMo (676GB), Ac-
tivityNet (4.6TB)

¢ Run-time environment: Ubuntu 16.04 (or newer)

e Hardware: A machine with at least one Nividia GPU.
The artifact was tested on 4 NVIDIA A100s.

e Metrics: Recall at rank K, GFLOPs per video

e Output: Log is both printed to console and saved

e Experiments: Text-to-video and video-to-text re-
trieval on several benchmarking datasets including Ac-
tivityNet, DiDeMo and MSRVTT.

e How much disk space required (approximately)?:
Around 20GB for the artifact and trained models, ex-
cluding datasets

e How much time is needed to complete experiments
(approximately)?: One day

e Publicly available?: No

A.3 Description
A.3.1 How delivered

We hope to release the code for the paper soon. The amount
of disk space required after unpacking the artifact is under
100MB.

A.3.2 Hardware dependencies

A machine with at least one GPU of memory greater than 16
GB is recommended. However, if there is less GPU memory
available, a smaller batch size can be used. As a reference,
training MSRVTT with a batch size of 16 requires 14GB of
GPU memory.

A.3.3  Software dependencies

A Linux machine with at least Ubuntu 16.04 is rec-
ommended. We require ffmpeg to be installed (sudo
apt—-get install ffmpegq) for frame extraction. It
would be best for the experiments to be done in a virtual
environment with Python 3, conda, and pip installed.

A.3.4 Data sets

We evaluate mmSampler on three datasets: MSRVTT,
DiDeMo, and ActivityNet. MSRVTT is shared by the au-
thors of Frozen in Time (Bain et al., 2021). The videos

are approximately 6.3GB in size. DiDeMo can be down-
loaded from the original author’s GitHub, either through
AWS S3 or Google Drive. The videos take up 51GB of
storage space. ActivityNet can be downloaded from the
official website (Fabian Caba Heilbron & Niebles, 2015) by
filling in a request form. The videos require 375GB of space.
Refer to the README . md file for the specific links to the
videos. The videos should all be put in the same directory.
Do not separate them into sub-directories.

A.4 Installation

To conduct the experiments, users need to set up a new
conda environment (or any virtual environment) on their
machines and install the appropriate packages:

# source scripts/install_packages.sh

You may need to update cudatoolkit=11.0 in the
script with the appropriate CUDA version on your machine.

A.5 Experiment workflow

After all the videos for a dataset have been
downloaded, extract the frames using the script
frame_extraction.py.

The raw frames for MSRVTT, ActivityNet, and DiDeMo
take up approximately 70GB, 625GB, and 4.2TB, respec-
tively. To save space for DiDeMo and ActivitNet datasets,
you may extract the frames at a lower resolution by specify-
ing ——frame_size 256. After the frames are extracted,
update the frames_dir value in the configuration file
configs/[dataset] . json with the directory of the
extracted frames.

If the videos are downloaded via other means, the list of
videos may be different from the set used in the paper.
In that case, please download the annotation files for the
dataset and update the train and test splits. For MSRVTT,
we use the annotation files provided by CLIP4Clip (Luo
et al., 2021). ActivityNet annotations can be found on the
project page of ActivityNet Captions (Krishna et al., 2017).
For DiDeMo, we use both the annotations provided by the
original author, and the list of videos provided in Collabora-
tive Experts (Liu et al., 2019). Refer to the README . md
file for specific links to the annotation files. After
both the videos and annotation files are downloaded, run
annot _preprocess/ [dataset] _preprocess.py
to account for the missing or extra videos. This script re-
quires specifying the directory to the videos and annotation
files.

To reproduce the results in the paper, simply exe-
cute scripts/main_results.sh. Otherwise, you
may run the commands individually. More exam-
ples can be found in the README.md file.  You
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may need to update the number of GPUs in the
file (-—nproc_per_node=num_gpus) and the batch
sizes in the configuration files (train_batch_size,
val_batch_size) accordingly based on your hardware.

After the experiment starts running, it will download all the
necessary pretrained models (e.g., CLIP) automatically. The
configuration file is mandatory in both the training and eval-
uation commands. The rest of the arguments are optional
and may be different depending on the experimental setting.
For example, ——freeze_cnn freezes the policy backbone,
which is the setting used in the paper. To run the no pol-
icy setting, we add a flag ——no_policy. ——diff and
——concat use the feature difference and feature concatena-
tion processing methods. Referto configs/config.py
for the complete list of arguments and their default values,
as well asmain_results. sh for the main experiments
and ablation_studies. sh for the ablation studies pre-
sented in the paper.

A.6 Evaluation and expected result

After the experiment starts running, the output log
will be both printed to the console and saved in
output/log/[datetime]/log.info. The exact
configuration used in the experiment and the best checkpoint
can both be found in output/models/ [datetime].
After training has finished, the script will automatically
use the best checkpoint to perform evaluation on the
test set. Expected evaluation output is as follows:

*xx%x% Validation information xx%x*x*
Num examples = 1000

Batch size = 32

Num steps = 32

gflops_table:

clip 4.4111 GFLOPS
policy 0.3190 GFLOPS
transformer 0.0038 GFLOPS
mlp 0.0005 GFLOPS
Num. of queries: 1000, Num. of videos:
1000

CLIP model: 11031 (68.94)%

Skip 1 frames: 4969 (31.06)%

GFLOPS/f: 3.364 GFLOPS/v: 53.832
AVG_FRAMES: 11.031

[t2v_metrics]EVAL epoch 0, R@1: 43.7,
R@5: 71.2, R@10 79.8, RE@50 94.5MedR: 2,
MeanR: 15.6

[v2t_metrics]EVAL epoch 0, R@1: 44.4,
R@5: 71.5, R@10 82.1, R@50 95.8MedR: 2,

MeanR: 10.6

Note that due to hardware differences, you may see a slight
variation in the evaluation results. However, the conclusion
of using mmSampler to achieve better performance than the
baseline while using fewer frames should still hold.
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Technical Appendix

B ALTERNATIVE MULTIMODAL
RETRIEVAL MODEL

In mmSampler, we finetune the pretrained CLIP ViT-B/32
model (Radford et al., 2021) as the downstream video re-
trieval model. In this section, we explore a variant of
the model, specifically the ViT-B/16 image encoder. ViT-
B/16 shares the same architecture as ViT-B/32, but receives
smaller patch sizes as input (i.e., more input tokens for the
same image size). Since the memory footprint and computa-
tional requirements for transformers scale quadratically with
input sequence length, a smaller patch size would introduce
a more expensive computational cost.

Table 6 illustrates the video-text retrieval performance of the
no-policy baseline using ViT-B/16 and mmSampler trained
end-to-end with the same model using MobileNetV?2 frame
features. Compared to the ViT-B/32 baseline, ViT-B/16
shows substantial improvements in all metrics, yet it uses
~4 times more GFLOPs per video. Despite the retrieval ben-
efits the new visual encoder brings, it is not computationally
efficient. In general, our design is able to outperform the
baseline in almost all the metrics, while saving 35%-51%
GFLOPs per video.

In this experiment, we reinforce the fact that mmSampler
can be plugged into different video retrieval models to select
a subset of salient frames for retrieval, which substantially
lowers the inference computational cost.

C ALTERNATIVE FEATURE EXTRACTORS
FOR THE POLICY NETWORK

In this section, we explore different feature extractors to
encode the frames into vector representations. We con-
sider several lightweight pretrained 2D CNN whose weights
are frozen during training, including MobileNetV2 (San-
dler et al., 2018), EfficientNet-B2 and EfficientNet-B3 (Tan
& Le, 2019). Alternatively, we investigate applying the
raw pixels directly instead of forwarding them to a feature-
extraction network, which substantially lowers the incurred
computational cost. The raw features are obtained by first
downsizing the frame into 56 x 56 pixels, converting it
to grayscale, and finally flattening the pixel values into a
fixed-size 1D array.

The results for the various feature extractors are presented in
Table 7. MobileNetV2 is the cheapest CNN feature extractor
out of the three presented, while consistently showing the
best performance across all three benchmark datasets. Raw
features are the least computational expensive and show
marginal improvement over the baseline. On ActivityNet
and DiDeMo, raw features are generally inferior to the CNN-

based feature extractors in terms of retrieval performance.
Efficientnet models have decent performance on the three
datasets but they do not display a strong accuracy-efficiency
trade-off compared to MobileNetV2.

D GFLOPS CALCULATION

To estimate the GFLOPs usage for our system, we first break
down mmSampler into different components: feature ex-
tractor, temporal modelling module, fully connected (FC)
layers, and downstream retrieval model. Only the GFLOPs
associated with the visual encoder of the CLIP model is
computed to compare the savings from selecting a subset
of frames. We compute the number of GFLOPs for each
component using the pt £1ops library (Sovrasov, 2021),
which takes in a PyTorch model and a dummy input to esti-
mate the theoretical multiply-add operations for the model.
Number of FLOPs for different components in mmSampler
is given in Table 8. Note that for EfficientNet models, we
directly take GFLOP numbers reported in their paper.

After obtaining the number of GFLOPs required for each
component, we compute the average number of frames used
per video during inference for each dataset. The average
number of GFLOPs per video is computed by multiplying
the number of frames kept by mmSampler with the complex-
ity of the CLIP model, and adding it to the total complexity
of the policy network per video. For example, suppose mm-
Sampler used 18 out of 32 frames, the estimated GFLOPs
per video is 18 x 4.4111 + 32 x (0.3190 + 0.0038 + 0.0005)
= 89.7 GFLOPS/video. For the no-policy baseline, the num-
ber of GFLOPs is simply the total number of uniformly
sampled frames multiplied by the GFLOPS of the CLIP
visual encoder. In the previous example, the value will be
32 x 4.4111 = 141.2 GFLOPs/video.

E QUALITATIVE RESULTS

To better understand the sampling behaviour, we also vi-
sualize the selected and skipped frames for some videos
in Fig. 5. We observe that most of the uninformative or
redundant frames are being skipped, which significantly
reduces the computational overhead while preserving the
key information in the video.
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Table 6. Comparison between the no-policy ViT-B/16 baseline denoted as CLIP4Clip and mmSampler for MSRVTT, ActivityNet, and
DiDeMo. Frame features processing method is adopted.

Text = Video Video = Text

Methods Datasets GFLOPs/v | R@1 R@5 R@I0 MdR MnR | R@l R@5 R@10 MdR MnR
CLIP4Clip (U, 16) MSRVTT 281.2 445 71.2 80.6 2 148 | 440 72.1 81.9 2 11.7
Ours-frame (P, 11.5) | MSRVTT 183.4 458 73.1 82.1 2 142 | 456 73.6 83.1 2 10.9
CLIPAClip (U, 32) | ActivityNet 562.5 445 75.5 86.6 2 6.4 458 754 87.2 2 6.2
Ours-frame (P, 16.4) | ActivityNet 297.9 442  75.1 86.5 2 6.6 459 77.0 87.5 2 6.0
CLIP4Clip (U, 32) DiDeMo 562.5 42.8 70.7 80.5 2 174 | 425 71.7 80.2 2 11.0
Ours-frame (P, 15.2) DiDeMo 277.3 443 724 80.9 2 164 | 433 71.0 80.1 2 10.4

Table 7. Comparison between the no-policy baseline and mmSampler with different feature extractors for MSRVTT, ActivityNet, and
DiDeMo. Frame features processing method is adopted.

Text = Video Video = Text

Methods Datasets GFLOPs/v | R@l R@5 R@10 MdR MnR | R@l R@5 R@10 MdR MnR
CLIP4Clip (U, 16) MSRVTT 70.6 422  68.7 79.2 2 16.5 | 42.1 704 81.2 2 11.7
Raw (P, 13.6) MSRVTT 60.1 423  69.9 80.1 2 156 | 429 702 82.1 2 11.3
MobileNetV2 (P, 11.0) MSRVTT 53.8 437 712 79.8 2 156 | 444 715 82.1 2 10.6
EfficientNet-B2 (P, 9.3) MSRVTT 57.1 429 702 79.6 2 15.0 | 424 69.8 79.9 2 11.3
EfficientNet-B3 (P, 10.7) | MSRVTT 75.9 41.7 711 80.5 2 162 | 42.1 704 80.4 2 11.5
CLIP4Clip (U, 32) ActivityNet 141.2 413 723 84.0 2 7.5 42.1  74.0 85.1 2 7.0
Raw (P, 15.6) ActivityNet 69.1 416 720 83.9 2 7.7 433 735 85.0 2 7.3
MobileNetV2 (P, 15.9) | ActivityNet 80.4 420 724 84.1 2 7.4 437 744 85.8 2 7.0
EfficientNet-B2 (P, 15.4) | ActivityNet 100.3 424 722 84.1 2 7.6 431 747 85.2 2 6.9
EfficientNet-B3 (P, 15.9) | ActivityNet 127.8 417 723 83.8 2 7.8 426 733 85.3 2 7.3
CLIPA4Clip (U, 32) DiDeMo 141.2 40.7 68.9 79.1 2 186 | 41.0 68.9 79.2 2 12.2
Raw (P, 15.6) DiDeMo 79.2 40.5 68.7 78.8 2 193 | 412 69.7 78.5 2 124
MobileNetV2 (P, 19.2) DiDeMo 94.9 414 70.1 80.0 2 183 | 41.8 709 80.5 2 11.0
EfficientNet-B2 (P, 15.8) DiDeMo 102.0 414 694 79.9 2 18.1 | 420 705 79.9 2 11.5
EfficientNet-B3 (P, 14.7) DiDeMo 122.4 409 692 78.6 2 18.1 | 41.6 693 79.5 2 11.3

Table 8. GFLOPs look-up table for different components in our system.

Component GFLOPs
CLIP (ViT-B/32) 44111
MobileNetV2 0.3190

1-Layer Transformer | 0.0038
FC Layers 0.0005
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(a) Four out of eight frames are skipped for video7376. Caption: broth is being added to a soup pot and stirred with a rubber
spatula.

(c) Five out of eight frames are skipped for video8661. Caption: a soccer player shoots a goal during a soccer game.

Figure 5. Example outputs for mmSampler on some of the videos in the MSRVTT dataset. Kept frames are outlined in green borders and
skipped frames are outlined in red. As in the examples, mmSampler can effectively discard uninformative or redundant frames.



