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ABSTRACT
Machine learning (ML) models may involve decision boundaries that change over time due to updates to rules and
regulations, such as in loan approvals or claims management. However, in such scenarios, it may take time for
sufficient training data to accumulate in order to retrain the model to reflect the new decision boundaries. While
work has been done to reinforce existing decision boundaries, very little has been done to cover these scenarios
where decision boundaries of the ML models should change in order to reflect new rules. In this paper, we focus
on user-provided feedback rules as a way to expedite the ML models’ update process, and we formally introduce
the problem of pre-processing training data to edit an ML model in response to feedback rules such that once the
model is retrained on the pre-processed data, its decision boundaries align more closely with the rules. To solve
this problem, we propose a novel data augmentation method, the Feedback Rule-Based Oversampling Technique
(FROTE). Extensive experiments using different ML models and real world datasets demonstrate the effectiveness
of the method, in particular the benefit of augmentation and the ability to handle many feedback rules.

1 INTRODUCTION

Machine learning (ML) classifiers are increasingly em-
ployed in critical decision-making processes such as loan
approvals, credit score assignment (Khandani et al., 2010),
and claims management (Singh & Urolagin, 2020). Much
focus in the research community has been on improving
accuracy of such ML models, evaluated on test data with
a similar distribution as the training data. However, to de-
ploy such ML models in the real world, one must address
problems that arise from the model being inherently gov-
erned and limited by the training data. In many applications,
domain expert knowledge could be used to improve per-
formance either where data coverage is sparse, or where
decision boundaries may have changed over time. Loan
approval policies are an example where training data may
reflect historical policies but not new policies with shifted
decision boundaries.

Naive options for incorporating expert feedback include
manually relabelling historical data and labelling new data.
Both are costly in terms of human intervention, and doing
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the latter alone compromises the accuracy of the deployed
model until enough new data is collected. While active
learning can reduce the amount of new data needed, the
burden may still be too high (Cakmak et al., 2010; Guillory
& Bilmes, 2011), and moreover during deployment, it may
not be possible to select which instances to label. Recent
work (Daly et al., 2021) has proposed a more efficient feed-
back mechanism using rules. This approach uses algorithms
for learning decision rules (Lakkaraju et al., 2016; Ribeiro
et al., 2018; Dash et al., 2018) to provide explanations for
arbitrary ML classifiers. The expert’s task is then limited
to reviewing and modifying a set of classifier predictions
and rule-based explanations, resulting in a feedback rule set
(FRS). Daly et al. (2021) propose a post-processing layer to
account for the feedback rules; however, the feedback is not
incorporated into the underlying model.

In this paper, we propose an algorithm called FROTE
(Feedback Rule-Based Oversampling Technique) to edit
an ML model for tabular data in response to user feedback
rules. FROTE thus complements the input transformation
method of (Daly et al., 2021). Given an input dataset, the
algorithm first modifies the training data if allowed, and then
augments it so that re-training the model on the augmented
data results in better alignment with the feedback rules.
FROTE can thus be used with any classification algorithm
that takes training data as input and produces a classifier as
output; the algorithm (which could be proprietary) is treated
as a black box. Unlike Daly et al. (2021), the user feedback
is directly encoded in the model.
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Figure 1. Left: Original classification boundary. Middle: FROTE generates synthetic instances to move decision boundary (after relabelling
and removing if permitted). Right: Generating synthetic instances where existing data is limited.

We use Figure 1 to be suggestive of a loan approval scenario
and to illustrate our solution. Suppose there is a new policy
to lower the ages of applicants for whom loans are approved.
Rather than crafting rules from scratch, the user relies on the
existing ML model and accompanying rule-based explana-
tions to capture relevant dependencies among a potentially
large number of features, and only modifies rules that in-
volve age. Given the resulting feedback rule set, the user
may wish to relabel and remove existing instances as shown
in Figure 1(b). FROTE then generates synthetic instances
that reflect both the feedback rules as well as the existing
data. Synthetic data generation can address the challenge
of insufficient training data in the region to be adjusted, as
seen in Figure 1(c). For data generation, we build upon the
SMOTE method (Chawla et al., 2002) in several ways; other
methods could also be adapted.

Our contributions can be summarized as follows: 1) We
formulate the problem of editing an ML model by pre-
processing a dataset based on user feedback rules. 2) A
novel data augmentation-based solution, FROTE, is pre-
sented. 3) FROTE is extensively evaluated using different
ML models, real-world datasets, and feedback rule set pa-
rameters to demonstrate its effectiveness, in particular the
benefit of augmentation, improved performance over the
state-of-the-art, and the ability to handle many feedback
rules.

2 RELATED WORK

To the best of our knowledge, the problem studied in this
paper is novel in that it differs in at least one of the following
aspects from the existing literature: 1) general editing of
ML models 2) based on user-specified feedback rules 3) via
model-agnostic data augmentation/pre-processing, where
the rules can enforce existing boundaries, or introduce new
boundaries through changing the dataset.

Data augmentation/pre-processing has been explored in
different problem settings. The class imbalance problem,
which deals with the unequal distribution of classes in train-
ing data, was tackled in the seminal work of Chawla et al.
(2002). Their Synthetic Minority Oversampling Technique
(SMOTE) randomly selects minority data points as base
instances and generates new data points that are convex
combinations of the base instances and their k nearest neigh-
bours. Han et al. (2005) extend SMOTE by synthesizing
data points that reinforce existing decision boundaries. Due
to its simplicity in the design of the procedure, as well as
its robustness, SMOTE has been applied to different type
of problems and has proven successful in a variety of ap-
plications from several different domains (Fernández et al.,
2018). While we build on SMOTE for data generation, our
model editing use case differs in going beyond reinforcing
existing boundaries to adjusting and introducing new ones.
While our contributions build upon these prior works in
terms of generating synthetic data instances, our use case is
not only to reinforce existing decision boundaries, but also
to enable a user both to adjust those decision boundaries
and introduce new ones.

More recently, a more specific use case has gained attention,
where data is processed in order to understand and mitigate
underlying biases through focusing on fairness. Within the
fairness and bias mitigation literature, pre-processing meth-
ods such as relabelling and reweighing (Calders et al., 2009),
data synthesis (Sharma et al., 2020), and data transformation
(Calmon et al., 2017) have been proposed.

We argue that the problem we tackle is a more general form
of user feedback that can support user concerns through
feedback rules, rather than the ones based on only the speci-
fied protected features.

Within the transfer learning literature, Dai et al. (2007);
Eaton & desJardins (2011) address a similar problem where
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test data does not follow the same distribution as training
data. They propose an iterative mechanism that re-weights
the old data to minimize error observed on the new data.
In (Eaton & desJardins, 2011), desJardins and Eaton pur-
sue a similar strategy. Neither approach however generates
synthetic instances.

In the generative models domain, synthetic data generation
is used for several tasks. For example, generative adversarial
networks (GANs) aim to improve the realism of generated
samples until the adversary cannot distinguish real from syn-
thetic data (Goodfellow et al., 2014). In Tanaka & Aranha
(2019); Douzas & Bacao (2018); Xu et al. (2019), GANs
and conditional GANs with different network architectures
are used to generate synthetic data to overcome class imbal-
ance as well as privacy issues. In (Douzas & Bacao, 2018),
a conditional version of GAN (cGAN) is used to generate
data for the minority class of various imbalanced datasets.
Overall, when comparing the performance of the classifiers
on imbalanced data sets that were augmented by the GAN
and SMOTE, the former provides better results but with the
cost of an higher complexity correlated to the training of
the networks. Xu et al. (Xu et al., 2019) generate tabular
synthetic data using conditional tabular GANs. Again these
do not support model editing based on rules.

Incorporating prior knowledge into support vector machines
(SVM) was reviewed by Lauer & Bloch (2008). Two forms
of prior knowledge were considered: 1. invariances to trans-
formations, to permutations and in domains of input space,
2. knowledge on the unlabelled data, the imbalance of the
training set or the quality of the data. Maclin et al. (2006)
make use of knowledge bases of rules and virtual support
vectors to add constraints to the optimization. Different from
our solution, these works target only SVM models. Another
work from Kapoor et al. Kapoor et al. (2010) support user
influence over ML algorithms by manipulating confusion
matrices, where the user is allowed to manipulate the initial
confusion matrix over the different classes.

Leveraging expert rules has been explored in the assisted la-
belling literature. Snorkel (Ratner et al., 2017) takes a weak
supervision approach to labelling training data by bringing
together label predictions from different sources, includ-
ing labelling functions that can be expert-provided patterns.
The labelling sources include labelling functions which can
be expert provided patterns and heuristics to predict labels.
A generative model is built to estimate the accuracy and
correlations of the different labelling sources and produces
probabilistic training data where each data point has a prob-
abilities distribution over all the labels and then can be used
to train a model. Awasthi et al. (2020) consider hybrid super-
vision from labelled instances as well as rules that generalize
them. The assisted labelling problem is different from ours
in that they seek to label unlabelled data whereas we already

have a model trained on a labelled dataset and wish to edit
the model, without negatively impacting accuracy for data
unaffected by the rules. In addition, in assisted labelling,
experts have to devise rules from scratch whereas in model
editing, they may only have to modify rules that capture
what the model has already learned. They provide a solu-
tion where labels are unavailable or noisy and seek to label
unlabelled data. Our goal is somewhat different, where we
assume the presence of a dataset and a model that may be
considered trusted and validated but the user wants to make
some adjustments or edits without negatively impacting the
model accuracy for unaffected data which should remain
unchanged.

The most closely related work by Daly et al. (2021) ad-
dresses user feedback rules, but not by editing the ML model.
Instead, transformations that map between the original and
feedback rules are obtained to yield a post-processing layer
called Overlay. When a new data point arrives for prediction,
Overlay checks to see if a feedback rule corresponds to the
data point and if so, applies the transformation, returning
the prediction of the transformed data point. While Overlay
enables immediate changes to an ML system by applying
the above transformations to the input, without retraining
the model, Daly et al. (2021) note that it is a “patch”. As
more feedback rules and their corresponding patches are
produced, the overall system consisting of the ML model
and these patches may become overly complex and difficult
to maintain. It is not difficult to imagine that even a single
expert could generate a large number of feedback rules. Ad-
ditionally, experiments by Daly et al. (2021) suggest and our
experiments confirm (Table 2) that one limitation of Overlay
occurs when a feedback rule differs too significantly from
the underlying model, a limitation that FROTE overcomes.
Moreover, in applications such as finance or spam detection,
Overlay’s transformations may incur additional undesirable
latency. For the reasons above, once short-term patches have
been applied, it may be preferable to directly incorporate
user feedback into the model, which is the problem that
FROTE solves.

3 PRELIMINARIES

As discussed in the Introduction, the premise of this work
is that 1) the distribution of future data (i.e. test data) is
different from that of training data, due for example to a
policy change or to the training data not being representative,
and 2) a domain expert understands the nature of the change
and communicates that through a set F of feedback rules,
i.e. a feedback rule set (FRS). To establish notation, let x ∈
X ⊂ Rd denote a set of attributes for decision-making, and
y ∈ Y = {c1, c2, . . . , cl} denote a class label. The existing
training data is a set of n instances (xi, yi), i = 1, . . . , n,
assumed to be drawn i.i.d. from a joint distribution pX,Y .
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3.1 Feedback Rules

We consider a generalization of decision rules beyond recent
works (Lakkaraju et al., 2016; Molnar, 2019) to allow feed-
back rules that are probabilistic. A feedback rule R = (s, π)
is thus a statement of the form IF the clause s is true THEN
the class label Y is distributed according to π. These are
discussed in turn below.

Clauses and coverage. A clause is a conjunction of one
or more predicates (also referred to as conditions) of the
form (attribute, operator, value). In our solution, the oper-
ators allowed for categorical attributes are {=, 6=}, and for
numeric attributes are {=, >, ≥, <, ≤}. An example of a
clause with three predicates is age < 29 AND marital-status
= ‘single’ AND income> 150K. We say that x ∈ X satisfies
a clause s, and reciprocally, a rule (s, π) covers x, if all the
predicates in s are true when evaluated on x. Given a dataset
D, coverage of a rule (s, π) and an FRSF = {(sr, πr)}mr=1

of m feedback rules are defined as follows:

cov(s,D) = {(x, y) ∈ D : x satisfies s}, (1)

cov(F , D) =

m⋃
r=1

cov(sr, D). (2)

Note that coverage involves only clauses s and attributes x.
If D is omitted as in cov(s), then it is understood to be the
entire domain X .

The reason for using logical clauses as above is that they
semantically resemble natural language and the way humans
think (Zhang & Deng, 2015; Letham et al., 2015; Molnar,
2019). Therefore it can be more natural for users to provide
feedback in the form of a rule, either of their own creation
or by modifying an algorithm-provided rule-based expla-
nation. This does require the rule’s conditions to be built
from intelligible features and favours smaller numbers of
conditions and rules (Lakkaraju et al., 2016).

Label distribution. Given a feedback rule (s, π) and
x ∈ cov(s), we assume that the class label is distributed as
Y ∼ π. We will mostly work with the deterministic case
where π is the Kronecker delta distribution for a class c,
i.e., Y = c with probability 1. This is the easiest case for a
human expert, who only has to specify the class c. However,
allowing probabilistic rules is useful for at least two rea-
sons: 1) accommodating conflicts between rules (discussed
next), and 2) allowing uncertainty in rules and providing
robustness against over-confident rules.

Rule conflicts. When feedback from multiple experts is
to be considered, the possibility of conflicts should be
taken into account due to contradictory opinions. Two rules

(s1, π1), (s2, π2) are conflicting if their coverages intersect,
cov(s1) ∩ cov(s2) 6= ∅, and π1 6= π2. We assume that all
such conflicts are resolved, for example through one of the
following options:

1. Removal of the intersection, i.e., clause s1 is changed
to s1 AND NOT s2, and s2 to s2 AND NOT s1.

2. Creation of a new rule for the intersection with a mix-
ture of the distributions, e.g. (π1 + π2)/2 or a more
general weighting. The intersection is then excluded
from the two original rules as in option 1.

3. If the two rules are provided by different experts, ask-
ing them to come to a consensus.

We assume that the final FRS is conflict-free through re-
peated application of the above operations for conflict reso-
lution.

When we consider the above alternatives, expert consensus
may be preferred as it is the most informed strategy. In the
absence of expert consensus, the mixture distribution of the
second option represents a mathematical consensus. Second
option could also be preferred when users are hesitant to
delete real data instances. On the other hand, first option
could be preferred if users are conservative and would rather
have no rule when rules conflict.

In addition to the above alternatives, using probabilistic
generative models can also be used in principle to handle
rule conflicts (Ratner et al., 2017). For example, if there
are multiple experts, rules from experts could be treated as
labelling functions, and inferred probabilistic labels can be
treated as assigned probabilities to rules in our setting. This
can be an alternative for conflict resolution and can aid in
assigning probabilities automatically instead of requiring
experts to provide them.

3.2 Problem Formalization

We are given 1) a conflict-free feedback rule set F , 2) an
initial training dataset D, and 3) a classification algorithm
A that, given a dataset D, trains a classification model MD.
The task is to create a dataset D̂ by augmenting D such
that when the model is retrained on D̂ using A to yield MD̂,
the objective function in (3) is minimized. To define the
objective function, let L1, L2 : Y × Y 7→ R be two loss
functions that compare two labels. We also assume for ease
of exposition that the rule coverage sets are disjoint, which
can be achieved by 1) resolving conflicts as described above,
and 2) merging rules that overlap but do not conflict. Then
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the objective function can be written as;

J
(
MD̂,F

)
=

∑
(sr,πr)∈F

Pr(X ∈ cov(sr))

× EX∼pX ,Y∼πr

[
L1

(
MD̂(X), Y

)
|X ∈ cov(sr)

]
+ Pr(X /∈ cov(F))

× EX,Y∼pX,Y

[
L2

(
MD̂(X), Y

)
|X /∈ cov(F)

]
. (3)

The summation in (3) applies to instances in the coverage
of the FRS and evaluates the retrained model’s predictions
MD̂(X) against labels Y distributed according to each feed-
back rule’s πr. We refer to the complement of this term
(i.e. 1 minus it) as model-rule agreement (MRA). The mo-
tivation for the name MRA comes from the case where L1

is the 0-1 loss. Then the expectation of 1−L1(MD̂(X), Y )
is the probability of agreement between MD̂(X) and Y .

The last term in (3) applies to instances outside cov(F)
and evaluates the predictions against labels following the
original distribution pX,Y . We refer to this term as outside-
coverage performance.

4 PROPOSED SOLUTION

Given an input dataset D, the goal of our proposed solution
FROTE is to produce an augmented dataset D̂ so that re-
training the model on D̂ minimizes the loss function defined
in equation (3). The initial dataset D could be the one used
to train the original model, or it could be a modified version
of this dataset. We show in the Experiments section and
supplement that FROTE works with different types of initial
datasets. The steps of FROTE are given in Algorithm 1.

Base instance selection. The adaptation of SMOTE used
by FROTE requires a set of base instances chosen from the
original dataset. These provide the basis for augmentation
to ensure that generated instances are similar to original
instances. Base instance selection occurs in two steps: pre-
selection of a base population (BP), denoted P , before the
main augmentation loop (line 4), and selection of subsets
of the BP, denoted B, within the loop (line 7). These are
described in the Base Instance Selection subsection.

Augmentation loop. In each iteration of FROTE, base in-
stances are selected from the BP (line 7) and corresponding
synthetic instances are generated (line 8) as described in
the Synthetic Instance Generation subsection. A temporary
dataset D′ is created (line 9) by combining these synthetic
instances with D̂, the current active dataset. The model is
retrained onD′ (line 10) and the loss function J is evaluated
(line 11). If the loss decreases (lines 12-15), D′ becomes the
current active dataset D̂. Otherwise, the generated instances
are discarded and D̂ is unchanged. This augmentation loop
proceeds until one of the termination criteria is met: 1. the
oversampling quota (controlled by oversampling fraction q)

is used up, or 2. the iteration limit τ is exceeded.

User Constraints. We regard τ and q as constraints deter-
mined by user preferences: τ is the number of times the user
is willing to run training algorithm A, and q is the allowed
amount of augmentation relative to the initial dataset. Given
τ and q, the number of generated instances per iteration is
set to q|D|/τ (line 1) to uniformly distribute the quota.

Algorithm 1: FROTE
Input: input dataset D, ML algorithm A, feedback rule set F
User Constraints: iteration limit τ , oversampling fraction q

Output: output dataset D̂

1 η ← q|D|/τ , D̂ ← D

2 MD̂ ← apply training algorithm A to D̂
3 ĵ ← ĴD̂(MD̂,F)

4 P ← PreSelectBP(D̂,F)
5 i ,N ← 0
6 while i < τ and N ≤ q × |D| do
7 B ← SelectBaseInstances(P, η)
8 S ← Generate(B)

9 D′ ← D̂ ∪ S
10 MD′ ← apply training algorithm A to D′

11 j′← ĴD̂(MD′ ,F)

12 if j′ < ĵ then
13 D̂ ← D′, N ← N + |S|
14 ĵ ← j′

15 P ← PreSelectBP(D̂,F),
16 end
17 i ← i + 1
18 end

4.1 Base Instance Selection

Whereas SMOTE randomly selects data points from the
minority class as the base population, our problem is more
challenging as it is driven by the loss J in (3) and the ideal
selection of base instances would maximally decrease this
loss. Referring to Algorithm 1, we denote by B the set of
selected base instances, S = Generate(B) the synthetic
instances generated from B, and A(D′) the model obtained
from the temporary dataset D′ = D̂ ∪ S. Then the goal is
to choose B to minimize

J(MD′ ,F) = J
(
A
(
D̂ ∪Generate(B)

)
,F
)
. (4)

There are multiple challenges in minimizing (4): 1) Choos-
ing B is a combinatorial subset selection problem. The size
of the subset |B| = η may be large (e.g. 100), and the size of
the BPP is larger still. 2) The training algorithmA is a black
box. Furthermore, it may be expensive to run to evaluate (4).
3) The expectations in J must be approximated with empir-
ical averages. We address this by using the current active
dataset D̂, replacing J with the empirical approximation ĴD̂
over D̂ (lines 3, 11). As a consequence however, even eval-
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uating (4) for all singleton B, e.g. all instances in P , would
incur complexity of at least O(|P||D̂|). This implies that
even a greedy selection algorithm, which would evaluate
O(η|P|) subsets, would have cubic complexity O(q|D|3/τ)
assuming η = q|D|/τ and |P| ∝ |D|.

Herein we take a simple approach to base instance selection,
consisting of 1) pre-selecting a BP to focus only on the
coverage set cov(F , D), 2) selecting subsets randomly, and
3) exploring more informed strategies that maintain low
computational complexity.

Base population pre-selection (line 4). Motivated by the
MRA term in equation (3), we restrict the BP to the cov-
erage cov(F , D). In our implementation, we maintain per-
rule BPs, i.e., P[r] for Rr ∈ F , and accordingly initialize
P[r] = cov(sr, D). However, rules may have little or no
coverage in the original datasetD, and the method described
in the Synthetic Instance Generation subsection requires cov-
erage of at least k+ 1. To handle this scenario, FROTE uses
rule relaxation to obtain a maximal partial rule set, denoted
as F̃ . During augmentation, an instance is selected to be
part of the base population if it is strongly covered, i.e. the
instance matches a rule within F exactly, or if it is weakly
covered, i.e. the instance only matches a rule partially. The
latter case is designed to handle a relaxed case when a rule in
F has zero support. In this case, we determine the maximal
partial rule, a version of the rule with the minimal condition
deletion that gives the maximum support. In other words,
we tried to find out the minimum change we can make to
the rule to give us the largest non-zero support. Since the
number of conditions within each rule set is low, such a max-
imal partial rule can be determined by a breath-first search
exhaustively by first removing one condition and then two
and so on.

Base population pre-selection. Base population pre-
selection procedure PreSelectBP is outlined in Algorithm 2.
For each rule in the feedback rule set F , FROTE requires
coverage of at least k + 1 to generate synthetic instances,
where k represents the number of nearest neighbors. There-
fore, conditions of a feedback rule R are relaxed if the
coverage of R is less than k + 1 (lines 7-18). During rule
relaxation, the goal is to remove minimum number of condi-
tions from Rs that will result in a maximum rule coverage.
To achieve this, PreSelectBP performs a breadth first search
on a tree of |Rs| levels, where at each level the nodes are
the remaining conditions in Rs. At each level, PreSelectBP
chooses a condition whose removal results in maximum
coverage in comparison with other conditions that exist at
that level (lines 8-18). The procedure returns the union of
the instances within the coverage of the relaxed feedback
rules.

Random subset selection (line 7). The simplest choice for

Algorithm 2: PreSelectBP
Input: input dataset D,
feedback rule set F ,
number of nearest neighbours k
Output: initial base population BP

1 L← k + 1
2 BP ← ∅
3 for each rule R in F do
4 if cov(R,D) < L then
5 max_sup← 0
6 max_cond_R← nil
7 while max_sup < L do
8 for each condition c in Rs do
9 R′ ← R

10 remove condition c from R′s

11 if R′s is empty then
12 max_sup← |D|
13 max_cond_R← R′

14 end
15 else
16 if cov(R′, D) > max_sup then
17 max_sup← cov(R′, D)
18 max_cond_R← R′

19 end
20 end
21 R← max_cond_R
22 end
23 end
24 end
25 BP ← BP ∪ cov(R,D)
26 end

selecting base instances is to randomly select η instances
from the BP, motivated in part by Chawla et al. (2002). We
refer to this strategy as random in the paper. More specif-
ically, base instances are selected on a per-rule basis as
detailed in the supplement. Despite its simplicity, we find
during the experiments that random appears to work well
empirically.

Subset selection via integer programming (line 7). We
also consider an integer programming (IP) approach, re-
ferred to as IP. Unlike random, IP takes into account the
current ML model MD̂ in seeking to generate synthetic in-
stances that have a greater effect on the objective J . The
model is accounted for using borderline instances, which
are data points that lie close to the decision boundaries of
the model and thus have more impact (Han et al., 2005).

To quantify the value of different base instances, we as-
sociate a weight wi with each base instance i in the BP
P . Weights are pre-computed using a similar strategy fol-
lowed in Han et al. (2005), where instances are classified
as noisy, safe, or borderline based on the number of nearest
neighbours with the same and different class labels, and
the highest weight is assigned to borderline instances (see
supplement for details).
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Let zi be a binary variable such that zi = 1 if the i-th in-
stance in the BP P is selected, and zi = 0 otherwise. Given
P , we define a matrix A with entries aji and dimensions
m×p, wherem represents the number of rules and p = |P|,
such that aji = 1 if instance i is covered by feedback rule j
and aji = 0 otherwise. Then the problem of selecting base
instances can be stated as the following IP:

max
z∈{0,1}p

∑
i∈P

wizi, s.t., k+1 ≤
∑
i∈P

ajizi ≤
η

m
, j = 1, . . . ,m.

(5)
The objective is to maximize the weighted selection of base
instances subject to lower and upper bounds on the number
of instances selected for each rule. Since the data augmenta-
tion step described in the next section seeks k neighbours,
the lower bound is set to k + 1. This also preserves the per-
rule diversity in the BP. The upper bound is the number of
instances to generate divided by the number of rules. Non-
uniform allocations of instances to rules are also possible.

Despite (5) being an IP, in practice it can be solved quickly
as linear relaxations directly provide integral optimal solu-
tions in most cases. Furthermore, IP avoids any evaluation
of the objective function (4) in selecting base instances. In
the supplement, we also discuss an approach that simplifies
the evaluation of (4) by using online learning in place of the
more expensive black-box algorithm A.

4.2 Synthetic Instance Generation

Motivated from SMOTE and its extension to categorical
attributes, SMOTE-NC (Chawla et al., 2002), we design a
methodology to generate synthetic instances (line 8 of Algo-
rithm 1) for each selected base instance in line 7. SMOTE
generates synthetic instances that lie between a base instance
and one of its k nearest neighbours, selected at random. For
numerical attributes, the generated value is distributed uni-
formly on the line segment between the base instance and
the neighbour. sing Equation 6:

fv = xfi + (xfj − xfi )× ω(0, 1) (6)

where ω(0, 1) denotes a random number between (0,1). For
categorical attributes, the value is the majority value among
the neighbours. Following the recommendation of Chawla
et al. (2002); Han et al. (2005), we set the number of neigh-
bours k = 5.

FROTE’s generation method differs from SMOTE in the
following ways: First, nearest neighbours are found without
the constraint that they have the same class label as the base
instance, but with the constraint that they satisfy the same
feedback rule (possibly relaxed). Second, we require that
the generated instance satisfies the conditions of the original,
unrelaxed rule. This happens automatically if the rule was
not relaxed, but if it was, then special logic is needed as

Table 1. Properties of the datasets used during the experiments.
#Ins, #Labels, and #Feat. stands for the number of instances, num-
ber of class labels and number of features (numeric/nominal) of
the datasets, respectively.

Dataset #Ins. #Feat. #Labels
Adult 45222 12(4/8) 2
Breast Cancer 569 32(32/-) 2
Nursery 12958 8(-/8) 4
Wine Quality (white) 4898 11(11/-) 7
Mushroom 8124 21(-/21) 2
Contraceptive 1473 9(2/7) 3
Car 1728 6(-/6) 4
Splice 3190 60(-/60) 3

described in the supplement. Third, the class label for the
generated instance is sampled from the distribution π of the
rule (or simply assigned if the rule is deterministic) rather
than being equal to the label of the base instance.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

Datasets, ML Models, Feedback Rules

To evaluate the effectiveness of FROTE, we experimented
with eight real-world benchmark datasets from UCI1, prop-
erties of which are provided in Table 1. To generate real-
istic feedback rules, we follow the process mentioned in
the Introduction by leveraging Boolean Rules via Column
Generation (BRCG) algorithm Dash et al. (2018) to ob-
tain a rule set explanation for an initial ML model, and
then artificially perturbing these rules to simulate users
providing feedback that deviates from the model’s predic-
tions. For each rule extracted from Dash et al. (2018), we
performed the following three perturbations until we gen-
erate 100 rules for each dataset with coverage satisfying
0.05 ≤ |cov(s,D)|/|D| < 0.25: For each rule extracted,
1. A predicate is randomly selected from the rule’s clause
and the operator is reversed. For instance, if the operator
is 6=, it is changed to =, and similarly if the operator is ≤,
it is changed to ≥, respectively. 2. Value of the selected
predicate is updated based on its values in the training
dataset. For instance, for categorical attributes, any ran-
domly selected value other than the value of the current
predicate is picked and assigned. Similarly for the numer-
ical attributes, a value within the range of the minimum
and the maximum values of that attribute observed in the
training dataset is assigned. 3. An existing condition from
any other rule is randomly picked and added to the rule’s
conditions. We generated 100 feedback rules in this manner
for each dataset, where each generated rule has coverage
satisfying 0.05 ≤ |cov(s,D)|/|D| < 0.25. Rules are de-

1https://archive.ics.uci.edu/ml/datasets.php
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Figure 2. Experiments with models trained on initial training dataset (initial), after relabelling (relabel), and after FROTE completes
augmentation (final). random selection strategy is used. Standard box plot shows interquartile range (IQR) and whiskers show 1.5× IQR
based on 30 draws for each of |F| ∈ {1, 3, 5}. Results with other datasets included in Section B.

terministic except for the probabilistic rules experiment in
Section B.

Classification models. We used three classification algo-
rithms: scikit-learn’s Random Forest (RF) and Logistic Re-
gression (LR), and LightGBM (LGBM) (Ke et al., 2017).
Default parameter settings are used except for max_iter
= 500 for LR and max_depth = 3 for RF. For find-
ing nearest neighbours in FROTE, scikit-learn’s Near-
est Neighbors (Pedregosa et al., 2011) algorithm with
algorithm=ball_tree is utilized.

FRS selection and train-test splitting. We experimented
with FRS sizes |F| ∈ {1, 3, 5, 8, 10, 15, 20}, and for each
run, we randomly draw this many rules from the pools of
100 generated as described above. We used the following
mechanism to vary the level of support of the FRS in the
initial training data. For each dataset D and FRS F , D is
partitioned into coverage (cov(F , D)) and outside-coverage
(D − cov(F , D)) sets. D − cov(F , D) is randomly parti-
tioned on a (80%−20%) basis into training and test. For the
coverage set cov(F , D), we vary the training coverage frac-
tion (tcf ), i.e. the fraction of the coverage set included in the
training set. That is, tcf×|cov(F , D)| randomly selected in-
stances are added to the training partition ofD−cov(F , D),
and the remainder to the test partition ofD−cov(F , D). We
experimented with tcf ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4}.
tcf = 0 tests the scenario where the FRS has no cover-
age in the initial training set, for example when a new rule
emerges.

We perform 30 to 50 runs as described in the previous para-

graph for each experimental setting, depending on the size
of the dataset. This method of randomly drawing a new rule
set and train-test split for each run increases the variability
of rule sets tested (and their impact on the results) compared
to fixing a rule set and performing cross-validation with it.
All algorithm variations are compared using the same rule
sets and splits.

Metrics. FROTE uses only the training dataset for augmen-
tation and all evaluation results are reported on the held-out
test set. We report values of the complement of J , J = 1−J ,
where J is a weighted average as in (3), weighted by rule
coverage probabilities Pr(cov(sr, D)) in the test set, the
first term is the MRA discussed previously (with L1 as 0-1
loss), and the last term is F1 score to evaluate model per-
formance on the outside-coverage population. In running
FROTE however, we simply use a 0.5-0.5 weighting be-
tween MRA and F1 score in evaluating ĴD̂. This is because
the test set coverage probabilities are not known to FROTE
and may not be equal to the training set probabilities.

Input dataset choices. We experiment with three choices
of input dataset D to FROTE. In addition to 1) taking the
training dataset as it is (denoted none for no modification),
instances in cov(F , D) that do not have the same class label
as the feedback rules covering those instances may be 2)
relabelled to agree with the covering rules (relabel) or 3)
dropped (drop). relabel is used in all experiments except for
the one that evaluates input dataset choices. It is important to
note that relabel and drop may not be possible if the user is
reluctant to make changes to the existing dataset for various
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data integrity reasons.

Configuration. The number of instances generated per it-
eration (η) is set to 200 for Adult dataset, 50 for Nursery,
Mushroom, Splice, and Wine datasets, and 20 for Car, Con-
traceptive and Breast Cancer datasets. τ = 200 is used as
the iteration limit for all the experiments. We used k = 5
and q = 0.5 for all the experiments except the ones we eval-
uated the effect of these two parameters. All experiments
were limited to 24 hours and runs that exceed this time limit
were terminated. We ran all experiments on a 2.6GHz CPU
with 20GB of RAM and they were run deterministically
with consistent random number generator seed (42).

5.2 Results and Discussion

Benefit of augmentation. In Figure 2, we compare the test
set J values obtained from models trained on 1) the initial
training dataset, 2) after relabelling based on the FRS (re-
label), and 3) after FROTE completes augmentation. The
comparison is shown for the three ML models, a range
of training coverages, and three of the datasets with the
remainder in Section B. Even after relabelling, FROTE’s
augmentation improves J for all models and datasets com-
pared to relabelling alone (final vs. relabel). This finding is
further supported by similar plots in Section B of differences
in J between final and relabel, the vast majority of which
are positive. Not surprisingly, the same conclusion holds
more strongly for the drop and none options (see Section
B).

Two trends are evident from Figure 2. First, the improvement
over relabel is larger for smaller tcf , and notably for the
difficult case of tcf = 0 in which the initial training dataset
has no coverage of the FRS. This shows that relabel is not
sufficient and there is a greater need for augmentation when
tcf is low. Second, the improvement is larger for LR, which
indicates that linear models may require more data to push
decision boundaries.

Comparison with the existing work. To the best of our
knowledge, the closest work to ours is Overlay (Daly et al.,
2021), which includes two approaches, Soft Constraints and
Hard Constraints. The former treats the user feedback as a
soft constraint and uses the prediction on the transformed
instance, and the latter considers the feedback as a hard
constraint and uses the feedback rules’ prediction for all
applicable instances. A similar setting as in the previous
experiments is used for this comparison. For each run with
a dataset, 3 rules are randomly selected and provided as the
Full Knowledge Rule Set (FKRS) (Daly et al., 2021) for
Overlay, and as the FRS for FROTE. For each rule set, 50%
of the coverage population is included in the training data
and rest in the test data. Similarly, for the outside-coverage
population, a 50%− 50% split is performed. The model is
trained on the training dataset, and FROTE, Soft Constraints

Table 2. Comparison with Overlay-Soft (soft constraints) and
Overlay-Hard (hard constraints) of Daly et al. (2021) on Breast-
Cancer and Mushroom datasets. Means and standard deviations
computed from 50 runs.

Dataset Model ∆J

Overlay-Soft Overlay-Hard FROTE

B.Cancer LR 90.008± 0.045 90.237± 0.212 0.030± 0.008
RF 0.001± 0.003 90.215± 0.204 0.041± 0.018
LGBM 0.006± 0.011 90.207± 0.180 0.033± 0.015

Mushr. LR 0.001± 0.004 90.158± 0.213 0.014± 0.015
RF 0.001± 0.004 90.153± 0.208 0.009± 0.008
LGBM 90.017± 0.091 90.150± 0.206 0.009± 0.009

and Hard Constraints are evaluated on the held-out test set.
Overlay is presented for binary classification problem and
the experiments reported in (Daly et al., 2021) are performed
using binary datasets. Therefore we experimented with only
the 3 binary datasets (out of 8), and results are displayed in
Table 2 (Results with the adult dataset together with sepa-
rate MRA and F-Scores are in Section B.) We observe that
FROTE performs significantly better than both approaches
of Overlay for all datasets. The performance of Soft Con-
straints and Hard Constraints differs greatly, which suggests
the user feedback rules are too divergent from the decision
boundaries of the initial ML model for Overlay to perform
well, in line with the findings of Daly et al. (2021). This
demonstrates that our solution for integrating user feedback
into models through pre-processing achieves a better per-
formance in comparison with a state-of-art post-processing
approach.

Number of feedback rules. One advantage of FROTE is
its capability to work with rule sets containing any number
of rules. Figure 3 displays J values in the same manner as
Figure 2 for feedback rule sets having 8, 10, 15 and 20 rules.
The improvement in J is maintained up to 20 rules. Results
with other datasets are provided in Section B. Overall, they
demonstrate the efficacy of FROTE with larger rule sets.

Base instance selection strategy. We now compare the
performance of the two base instance selection strategies,
random and IP. Table 3 shows the J improvements for mod-
els trained on the final augmented dataset relative to the
initial dataset. The amount of augmentation required (as a
fraction of the input dataset size) for these improvements
for both strategies is included in Section B. There is not
a clear winner between random and IP in terms of J (the
“win-loss-tie” record based on 3 decimal places is 11-8-5),
although IP generally adds fewer instances to the dataset.
One possible reason behind relatively good performance
of random is although IP appears more informed, random
may avoid “overfitting”, in the sense of selecting base in-
stances that improve the objective function evaluated on the
augmented training dataset but not on the held-out test set.
Looking at the MRA and F-Score separately (provided in
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Figure 3. Effect of feedback rule set size for the Breast Cancer dataset and random selection strategy. The same comparison as in Figure 2
is shown between initial, after relabel, and final (after FROTE). Each box and whiskers is computed from 30 runs with tcf = 0.2.

Table 3. Comparison of random and IP base instance selection
strategies. Means and standard deviations computed from all runs
for a given dataset and model.

Dataset Model ∆J

random IP

B. Cancer RF 0.000± 0.003 0.001± 0.006
LR 0.006± 0.022 0.006± 0.026
LGBM 0.001± 0.008 0.002± 0.010

Car RF 0.005± 0.020 0.006± 0.020
LR 0.022± 0.034 0.020± 0.029
LGBM 0.008± 0.033 0.008± 0.027

Mushroom RF 0.001± 0.017 0.004± 0.034
LR 0.005± 0.023 0.011± 0.049
LGBM 0.004± 0.037 0.006± 0.041

Adult RF 0.003± 0.014 0.003± 0.011
LR 0.008± 0.023 0.004± 0.012
LGBM 0.004± 0.015 0.003± 0.011

Wine RF 0.001± 0.007 0.001± 0.007
LR 0.056± 0.096 0.055± 0.094
LGBM 0.003± 0.015 0.003± 0.010

Contracep. RF 0.032± 0.081 0.038± 0.085
LR 0.041± 0.099 0.051± 0.102
LGBM 0.027± 0.066 0.026± 0.057

Nursery RF 0.031± 0.099 0.023± 0.076
LR 0.043± 0.088 0.029± 0.069
LGBM 0.035± 0.108 0.030± 0.096

Splice RF 0.003± 0.017 0.002± 0.012
LR 0.011± 0.031 0.007± 0.018
LGBM 0.014± 0.049 0.009± 0.037

Section B) for the results in Table 3, we see an improve-
ment in MRA without significant decrease (in some cases
an increase) in F-Score for both techniques, for all results.
However, the degree of improvement is dependent on the
dataset and model.

6 BROADER IMPACT AND DISCUSSION

One important point to note is that there is generally an
inflection point in terms of the number of data points added

where the cost to overall model performance starts to out-
weigh the improvement in MRA. This inflection point also
depends on the model used and the dataset. It can be ex-
plained by the data difficulty factors described in (Ste-
fanowski, 2016), namely an effect of too strong overlap
between classes, and a presence of too many examples of
one class inside the other class’s region. Another point we
want to highlight is that, we define good candidates as orig-
inal data points that satisfy a rule’s conditions completely.
If there are no such points, then FROTE uses rule relaxation
as discussed in the Base population pre-selection subsection
and in Algorithm 2. While rule relaxation tries to select
instances that are more similar to the population targeted
by the rule, it may indeed select instances that are far from
satisfying the original rule. However, this is mitigated by
requiring generated instances to still satisfy the conditions
of the original unrelaxed rule.

One limitation of the work is that it may be restricted to
tabular data, however, we believe similar mechanisms could
be used when considering images where Boolean rules could
show relevant images segments or features.

Our work supports model editing where the final ML model
will encode the decision processes of not just the underlying
data but also external knowledge. This ability can be lever-
aged to correct incorrect assumptions in the original data or
encoded updated policies. On the other hand this introduces
the ability for the model builder to influence the model
outcomes which could intentionally or unintentionally intro-
duce bias. The user feedback however is interpretable and
transparent and user influence is in the form of a Boolean
feedback rule. This supports easy integrating into a gover-
nance framework such as proposed in (Arnold et al., 2019)
where clear auditing of the original data, the feedback rules
and the newly created dataset can be stored to transparently
log the updates to the model and capture the lineage of the
data. Post processing analysis to compare the original and
the resulting model could also be leveraged to ensure un-
intended biases have not been introduces (Bellamy et al.,
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2019) along with generating an interpretable model com-
parison of the two models as proposed by Nair et. al. (Nair
et al., 2021). Additionally, FROTE achieves this while trying
to minimise the model accuracy for other segments of the
dataset. This is in contrast to human labelling or relabelling
tasks where the downstream impact of the newly labeled
data points may be unclear. Additionally, the source of the
newly labeled data, their level or expertise, familiarity with
the data are all opaque. One could argue peer reviewing a
feedback rule set to obtain consensus among stake holders
is relatively easy compared to ensuring a consistent view is
being used among data labellers.

7 CONCLUSION

We presented the problem of pre-processing training dataset
to edit an ML model based on feedback rules. We proposed
FROTE, a novel technique based on data augmentation,
to solve this problem. Empirical studies on real datasets
with different ML models demonstrate its effectiveness. Our
work supports model editing where the final model encodes
decision processes of not just the underlying data but also
external knowledge. This ability can be leveraged to correct
deficiencies in the original data or adapt to updated policies.
User feedback is interpretable and transparent as it is in
the form of Boolean rules, supporting clear auditing and
governance. A promising future direction is to experiment
on different base population selection strategies and opti-
mization techniques to select the base instances and their
neighbors together, in order to improve the performance.
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A SOLUTION DETAILS

Subset selection via integer programming. We elabo-
rate on the integer programming formulation for the subset
selection problem presented in the main paper. For a given
F we would like to determine a subset of the training data
within F that has the greatest influence on the model deci-
sion boundaries.

The weight wi reflects the value of a data point for the
final selection. Instances near the decision boundary are
more valuable, as it has a greater potentially to influence the
model. This weight is pre-computed as follows:

For each j, j ∈ D compute, p as the number of k neigh-
bours who have the same label, and q as the number of
k neighbours who have a different label. Here, the label
refers to the predicted label from a model we seek to edit. If
q >> p, the observation can be considered noisy, p >> q,
then the observation can be considered as safe, and if p ≈ q
the observation can be considered as borderline (Han et al.,
2005). Correspondingly, the weights wi can be assigned
based on these three cases such that, the borderline points
is assigned the largest weight. In our experiments, we set
wi = 3 for borderline and wi = 1 for noisy and safe data
points computed within k = 10 nearest neighbors.

Subset selection with online learning. As mentioned in
the main text, we also considered the use of online learn-
ing to simplify the evaluation of objective function (3), and
specifically to avoid running training algorithm A. We in-
stead take a proxy approach in which 1) the current model
MD̂ = A(D̂) is approximated by a (parametric) model M̂
to which online learning can be applied, and 2) the retrained
model MD′ is approximated by the result of online learn-
ing, starting from M̂ and updating based on the generated
instances Generate(B). Recalling that J is also replaced by
its empirical approximation ĴD̂ over D̂, the online learning
approximation can thus be written as

J
(
A
(
D̂ ∪Generate(B)

)
,F
)
≈

ĴD̂

(
OL
(
M̂,Generate(B)

)
,F
)
.

(7)

We investigated the use of 7 to approximate objective func-
tion (3) for singleton sets B = {i}, i ∈ P . Such evaluations
on singletons might be summed to provide a crude approxi-
mation to (3) for non-singleton B; the IP objective function
(4) is also a sum approximation in this sense. They could
also constitute the first iteration in a greedy algorithm for
selecting B.

Our experience thus far however is that even the evaluation
of (7) is still too computationally intensive to be practi-
cal (at least in terms of facilitating experimentation). To

be more specific, we used the Vowpal Wabbit library2 for
online learning with a plain logistic regression model M̂ .
Step 1) of approximating MD̂ with M̂ is done by train-
ing M̂ on dataset D̂ and the outputs of MD̂ on D̂. This
has computational complexity O(|D̂|). Likewise, step 2),
i.e. approximating MD′ by updating M̂ for each gener-
ated instance Generate({i}), i ∈ P , also has complexity
O(|P|) = O(|D̂|). However, evaluating ĴD̂ for each of
these updated models results in complexity O(|D̂|2), and
we have found this to be the slow step in our limited experi-
ments. Future work could consider further approximations
to the objective function that avoid higher than first-order
complexity in |D̂|.

Synthetic instance generation. Synthetic instance gener-
ation is used by the Generate() procedure within FROTE, as
outlined in Algorithm 1 of main paper (line 9). It is called
for each base instance and a randomly selected neighbor of
it in order to generate synthetic instances. Synthetic instance
generation uses two subroutines for populating categorical
and numerical attributes.

For populating categorical attributes, algorithm iterates
through each categorical attribute to assign a value. For
each categorical attribute, initially, all possible values for
that attribute are calculated and stored. These attribute val-
ues are sorted in the decreasing order of the number of times
they occur in the neighbors. Therefore, the first element
in the list is the value that occurs in the majority of the k
nearest neighbor instances of the base instance. If the cor-
responding attribute is part of one of the conditions of the
rule, then a special check is needed to make sure that the
assigned value satisfies the corresponding condition(s). For
instance, the algorithm ensures that for a condition with "6="
operator, the value assigned to the corresponding attribute
is different than the value of that corresponding condition.

The procedure iterates over each of the numerical attributes,
and for each attribute, if it is not part of any of the con-
ditions of the rule, the value to the corresponding nu-
merical attribute is assigned using a similar approach to
SMOTE (Chawla et al., 2002). If the attribute exists in a
condition where the operator is ’=’, then the value of the
corresponding condition is assigned. However, if the at-
tribute exists in a condition where the operator is one of
{’>’,’≥’,’<’,’≤’}, extra checks are performed to ensure
that the generated value satisfies the corresponding condi-
tions. Specifically, a window is defined with a minimum and
maximum value (lines 21-29) based on the specific opera-
tors. These bounds keep track of the minimum and/or the
maximum values that can be assigned to the corresponding
feature of the new instance. They are further adjusted based
on the base and neighbor instance values to make sure that

2https://vowpalwabbit.org

https://vowpalwabbit.org
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the new value that will be assigned will stay within the value
limits defined by the comparison operators. Finally a diff
value is assigned based on a tightest window determined
by these minimum and maximum values together with the
base and the neighbor instances’ corresponding attribute
values, and diff is then used to generate a value for the
corresponding attribute.
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B EXPERIMENTAL EVALUATION

B.1 Further Experimental Results

Benefit of augmentation. We compare the test set J values
obtained from the models that are trained on 1) the initial
dataset before FROTE, 2) after applying the modification
strategy, and 3) after FROTE completes augmentation. In
Figure 4, additional plots for Figure 3 of the main paper are
given, where the results with Splice, Nursery, Breast Cancer,
Mushroom and Car datasets are included. In Figure 4, the
improvements of the J values observed after 1. modifica-
tion strategy is applied, and 2. between the augmentation
process and mod strategy, is displayed. Both Figure 3 of the
main paper and Figure 4 show the results with the relabel
strategy. Figure 5 and Figure 6 show the results with the
none strategy, and Figure 7 and Figure 8 show the results
with the drop strategy. As can be observed from the figures,
the variance appears to be higher for both none and drop
strategies, since for the former, existing contradictory in-
stances are remained in the dataset, and for the latter, the
base instances are selected through rule relaxation which
increases the variety in the base instances. However, for
all mod strategies, we can conclude that augmentation can
improve MRA without much compromise-in some cases
increase- in ∆F-Score.

Comparison with the existing work. Additional results
for the comparison experiments with (Daly et al., 2021)
are included in Tables 9 and 10. We observe from the ta-
bles that our solution performs better than a state-of-art
post-processing approach, which confirms with the findings
presented in the main paper. When we examine the results
in Table 10, we see that even Hard Constraints has a signifi-
cantly higher MRA than the Soft Constraints for all datasets,
it performs very poorly on the outside coverage population,
as can be seen from the ∆F-Score values. This demonstrates
that a pure post-processing approach can suffer if the rules
are deviated from the underlying model. Similar findings are
observed for the Soft Constraints, however Soft Constraints
suffers less from the deviation in the rules, since it considers
models decisions after applying changes to the data instance
based on the rules learnt so far.

Relation between the level of deviation of the rule labels
from the ground truth labels. For scenarios when rules’
labels deviate from the labels of data instances in test sub-
set, FROTE performs better than both Overlay techniques.
Experiments in (Daly et al., 2021) used rules that are learnt
from the whole dataset, therefore they ensure that ground
truth labels are well aligned with rule labels. In our exper-
iments, we perturb the rules so that the rule labels do not
align with ground truth any more. We performed additional
experiments to demonstrate this effect, in other words, the
relation between the level of deviation of the rule labels
from the ground truth labels on the performance of different

techniques.

The following steps are followed to perform this experiment:

1. Extract rules from the whole dataset using BRCG
technique (Dash et al., 2018) through using a logistic
regression surrogate.

2. Perturb the rules. The rule perturbation procedure takes
a rule and a decrease in accuracy threshold, τ . It tries
to change one of the values in one of the conditions in
if part of the rule such that, the ratio of the difference
between the support of the original rule (R) and the per-
turbed rule (R’) is between [τ -0.05, τ+0.05]. For the
numerical attributes, we randomly change the numeri-
cal value in the condition, whereas for the categorical
attributes, we randomly assign one of the values in the
permitted value list for that corresponding attribute.
One thing to note is that, with this perturbation proce-
dure, we cannot always achieve an accuracy decrease
as required by τ . In such a scenario, that rule in the set
remains as it is, therefore not perturbed.

3. After steps 1 and 2, we store each ruleset, which is the
FRS for FROTE, and FKRS for the Overlay together
with its support, corresponding perturbed rule and the
perturbed rule’s support.

4. Divide the dataset into (%80-%20) train-test split in an
informed manner such that, we randomly select (%80)
of the population that are accurately covered by the
rules in train split. Same performed for the population
that are not accurately covered by the rules.

5. Both FROTE and Overlay takes the train dataset, same
model, ruleset created in Step 3 (same ruleset for both
FRS and FKRS).

6. After the algorithms complete, the solutions are eval-
uated on the held out test dataset and the MRA and
F-Score’s are recorded.

The above procedure is run for 50 times randomly for each
dataset, and results are averaged over these 50 runs. Both
means and standard deviations are shown as part of the
results. During these experiments, we use Breast Cancer and
Banknote datasets from UCI 3, which were both used during
evaluations in (Daly et al., 2021). In Table 4, examples of
the perturbed rules for Banknote dataset are given.

Results are given in Table 5. For the Banknote dataset, F-
Score columns are empty since the rules (FRS/FKRS) cover
the whole population of the dataset. Therefore, there does
not exist any instance within both the train and the test
dataset that are not covered by the rules.

3https://archive.ics.uci.edu/ml/datasets/
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Figure 4. Additional plots for Figure 2 in the main paper. Experiments with models trained on the initial dataset before FROTE (initial),
after applying the relabel mod strategy, and after FROTE completes augmentation (final). The comparison is shown as a function of the
training coverage fraction of the feedback rule sets and for different ML models and the Splice, Nursery and Breast Cancer, Mushroom
and Car datasets. The random selection strategy is used. Standard box plot showing interquartile range (IQR) and whiskers showing 1.5
times IQR based on 30 random draws for each of |F| ∈ {1, 3, 5}.
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Figure 5. Additional plots for Figure 2 in the main paper. Experiments with models trained on the initial dataset before FROTE (initial),
after applying the none strategy, and after FROTE completes augmentation (final). mod− imp and final− imp represent the differences
in J between mod and initial and final and mod, respectively. The comparison is shown as a function of the training coverage fraction of
the feedback rule sets and for different ML models and all the datasets. The random selection strategy is used. Standard box plot showing
interquartile range (IQR) and whiskers showing 1.5 times IQR based on 30 random draws for each of |F| ∈ {1, 3, 5}.

As we can see from the results, the more the ruleset accu-
racy decreases, the more the MRA of Overlay-Soft tends to
decrease for both datasets. However, FROTE’s performance
increases as we have less instances that are correctly covered
by the rules. Therefore, for less accurate rules with respect to
the current dataset, FROTE performs better. In other words,
if we have less accurately supporting instances in the dataset,
FROTE performs better than Overlay considering MRA. For
F-Score, performances are similar, however Overlay-Hard’s
performance is very low when we check the F-Score. This
is due to the fact that, Overlay-Hard completely depends on
the rule logic, therefore if rules are accurate, Overlay-Hard
performs very well for instances that are covered by the
rules. That also explains why its performance is highest for
Banknote dataset, since the whole dataset is covered by the
rules.

Augmentation progress. In Figure 9, we evaluate J on
the held-out test set for intermediate models trained on D′

(i.e. augmented training dataset at the end of each iteration)
as a function of the number of synthetic instances added,
to illustrate how these change for different models and tcf
values. For all models, J improves more quickly for lower
training coverage. RF needs fewer instances to reach J = 1

in comparison with LR and LGBM. This again suggests that
non-linear models like RF may require less data to edit than
linear models.

Number of feedback rules. Additional plots for displaying
the effect of number of rules on the performance of the
solution are given in Figure 10. For all datasets, we experi-
mented with |F |={8,10,15,20}, however for some datasets,
for |F |=15 and |F |=20, no such conflict-free F can be found
out of 500 rules. Therefore, we included the results for the
experiments for which a conflict-free rule set with the ex-
perimented size can be formed.

As it is observed from the results, FROTE improves J both
after the relabel modification strategy and after the data
augmentation. Overall, results demonstrate the efficacy of
the approach even with larger rule sets.

Base instance selection strategy. Performance of the two
base instance selection strategies, IP and random were com-
pared in the main paper using the improvement in J . In
Table 6, we have included the number of instances added to
achieve those improvements. In Table 7, improvements in
MRA and F-Score are reported separately. We observe that
the improvement in J is highly dominated by the improve-
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Table 4. Examples for rules and corresponding perturbed rules for Banknote dataset for different perturbation degrees (decrease in accuracy
for the rule sets).

Dataset Decrease in Accuracy Original Rule/Perturbed Rule
Banknote [%5-%15] IF (curtosis≤ 4.5641) THEN target_class = 0 (661)

IF (curtosis≤ 2.5875) THEN target_class = 0 (563)

IF (variance≤ -3.3125) THEN target_class = 1 (137)
IF (variance≤ -3.4982) THEN target_class = 1 (123)

IF (curtosis≤ 1.4238 and skewness≤ 5.82499 and variance≤ 2.2892) THEN target_class = 1 (325)
IF (curtosis≤ 1.4238 and skewness≤ 5.82499 and variance≤ 0.8765) THEN target_class = 1 (286)

IF (skewness≤ 0.7201 and variance≤ -0.40804) THEN target_class = 1 (292)
IF (skewness≤ 0.7201 and variance≤ -0.93395 THEN target_class = 1 (256)

IF (curtosis≤ 7.8929 and skewness≤ -3.3895 and variance≤ 0.49571) THEN target_class = 1 (80)
IF (curtosis≤ 7.8929 and skewness≤ -3.3895 and variance≤ -0.6987) THEN target_class = 1 (70)

Banknote [%65-%75] IF (curtosis≤ 4.5641) THEN target_class = 0 (661)
IF (curtosis≤ -1.8100) THEN target_class = 0 (186)

IF (variance≤ -3.3125) THEN target_class = 1 (137)
IF (variance≤ -4.9341) THEN target_class = 1 (39)

IF (curtosis≤ 1.4238 and skewness≤ 5.82499 and variance≤ 2.2892) THEN target_class = 1 (325)
IF (curtosis≤ 1.4238 and skewness≤ 5.82499 and variance≤ -2.1109) THEN target_class = 1 (87)

IF (skewness≤ 0.7201 and variance≤ -0.40804) THEN target_class = 1 (292)
IF (skewness≤ 0.7201 and variance≤ -3.04252 THEN target_class = 1 (74)

IF (curtosis≤ 7.8929 and skewness≤ -3.3895 and variance≤ 0.49571) THEN target_class = 1 (80)
IF (curtosis≤ 7.8929 and skewness≤ -3.3895 and variance≤ -1.92584) THEN target_class = 1 (22)

Table 5. Comparison with Overlay-Soft (soft constraints) and Overlay-Hard (hard constraints) of (Daly et al., 2021) on BreastCancer and
Banknote datasets. Logistic Regression model is used. Means and standard deviations computed from 50 runs.

Dataset
Decrease
in Accuracy(%)

F − Score MRA

Overlay-Hard Overlay-Soft FROTE Overlay-Hard Overlay-Soft FROTE
B. Cancer [%5−%15] 0.188± 0.163 0.877± 0.204 0.936± 0.035 0.876± 0.111 0.871± 0.027 0.879± 0.023

[%25−%35] 0.313± 0.295 0.811± 0.210 0.939± 0.033 0.868± 0.156 0.886± 0.027 0.920± 0.020
[%45−%55] 0.250± 0.267 1.000± 0.000 0.955± 0.031 0.885± 0.111 0.786± 0.032 0.920± 0.020
[%65−%75] 0.303± 0.281 0.866± 0.151 0.938± 0.037 0.906± 0.127 0.771± 0.028 0.967± 0.014

Banknote [%5−%15] − − − 0.908± 0.069 0.776± 0.136 0.586± 0.007
[%25−%35] − − − 0.888± 0.069 0.760± 0.112 0.625± 0.006
[%45−%55] − − − 0.898± 0.083 0.783± 0.102 0.707± 0.009
[%65−%75] − − − 0.910± 0.072 0.768± 0.115 0.813± 0.011

ment in MRA.

Probabilistic rules. In this experiment, we consider prob-
abilistic rules, where the label distribution π is not just a
Kronecker delta for one of the classes. The experiment pro-
vides a brief demonstration of the ability of probabilistic
rules to represent uncertainty and mitigate the effect of an
over-confident expert rule. We consider an extreme case
of this where the expert provides a single feedback rule,
but the test distribution remains the same as the training
distribution, i.e., the expert is wrong and the rule does not
take effect. (We use only a single feedback rule to try to
isolate the effect of having a probabilistic rule and avoid
interactions among rules.) We also set tcf = 0 (so relabel
and drop initializations are not applicable).

We run FROTE with the following label distribution π for
instances generated under the rule: With probability p, the

label is equal to the class c specified by the feedback rule.
With probability 1− p, it is equal to the label of the corre-
sponding base instance, except when that label is c, in which
case the label of the generated instance is chosen uniformly
at random from classes other than c. Thus overall, the labels
of generated instances are equal to c with probability p, and
otherwise they approximately follow the distribution of the
training data (as represented by the base instances) restricted
to classes other than c. The case p = 1 is the deterministic
case used in the other experiments. With p < 1, the user of
FROTE can express less than full confidence in the expert
rule and rely more on the existing training data.

Table 8 shows the MRA and J improvements for different
probabilities p. In this case, since the feedback rule is not
in effect for test data, MRA just measures agreement with
respect to labels following the original distribution pX,Y ,
within the coverage of the rule. The MRA column shows
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Table 6. Experiments with IP and random selection strategies for all datasets and models. Number of instances are included as an
additional column to Table 2 of the main paper. ∆#Ins/|D| is the number of instances added (as a fraction of the dataset size) that leads
to the reported improvements. Means and standard deviations are computed from all runs performed with a given dataset and model.

Dataset Model ∆J (random) ∆J (IP) ∆#Ins/|D| (random) ∆#Ins/|D| (IP)
B.Cancer RF 0.000± 0.003 0.001± 0.006 0.011± 0.016 0.015±0.042

LR 0.006± 0.022 0.006± 0.026 0.298± 0.326 0.199±0.266
LGBM 0.001± 0.008 0.002± 0.010 0.011± 0.016 0.014±0.036

Car RF 0.005± 0.020 0.006± 0.020 0.001± 0.003 0.001±0.004
LR 0.022± 0.034 0.020± 0.029 0.227± 0.225 0.113±0.183
LGBM 0.008± 0.033 0.008± 0.027 0.001± 0.003 0.001±0.004

Mushroom RF 0.001± 0.017 0.004± 0.034 0.001± 0.002 0.001±0.002
LR 0.005± 0.023 0.011± 0.049 0.036± 0.136 0.016±0.064
LGBM 0.004± 0.037 0.006± 0.041 0.001± 0.002 0.001±0.002

Adult RF 0.003± 0.014 0.003± 0.011 0.005± 0.047 0.004±0.009
LR 0.008± 0.023 0.004± 0.012 0.356± 0.507 0.185±0.352
LGBM 0.004± 0.015 0.003± 0.011 0.059± 0.096 0.046±0.083

Wine RF 0.001± 0.007 0.001± 0.007 0.004± 0.033 0.003±0.016
LR 0.056± 0.096 0.055± 0.094 0.136± 0.135 0.096±0.098
LGBM 0.003± 0.015 0.003± 0.01 0.002± 0.009 0.003±0.009

Contracep. RF 0.032± 0.081 0.038± 0.085 0.000± 0.001 0.001±0.001
LR 0.041± 0.099 0.051± 0.102 0.011± 0.019 0.008±0.013
LGBM 0.027± 0.066 0.026± 0.057 0.001± 0.003 0.001±0.003

Nursery RF 0.031± 0.099 0.023± 0.076 0.001± 0.003 0.001±0.002
LR 0.043± 0.088 0.029± 0.069 0.144± 0.162 0.031±0.044
LGBM 0.035± 0.108 0.030± 0.096 0.001± 0.003 0.001±0.002

Splice RF 0.003± 0.017 0.002± 0.012 0.009± 0.047 0.008±0.044
LR 0.011± 0.031 0.007± 0.018 0.091± 0.116 0.046±0.079
LGBM 0.014± 0.049 0.009± 0.037 0.009± 0.047 0.007±0.040

that setting p = 1.0, i.e., completely following the expert
rule, does not give as good a performance as setting p to
a lower, less confident value. This pattern however is not
as clear looking at the J column. In reality, the best value
of p is not known a priori as it depends on the exact extent
to which the test data (in this case, the distribution pX,Y )
conforms to the expert rule. Nevertheless, Table 8 suggests
that there is a benefit to using a probabilistic rule with p < 1
if there is reason to be less confident in the validity of the
feedback rules.

Experiments with k parameter. In Table 11, experiments
with different k values are reported. For each k parame-
ter being evaluated, the improvement in J is reported. As
can be seen from the results, larger k values decreases the
∆J for Wine and Car datasets for all models, whereas the
∆J is higher for higher values of k for the Random Forest
model both for the Contraceptive and Breast Cancer datasets.
Therefore, the effect of k on the performance is not conclu-
sive, and the effect of it depends on both the dataset and the
model under consideration.
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Table 7. MRA and F-Score reported separately for the results in Table 1 of the main paper. Same with Table 1, results are reported for IP
and random selection strategies.∆MRA and ∆F-Score represent the improvement in the corresponding metrics (mean± std). Means
and standard deviations are computed from all runs performed with a given dataset and model.

Dataset Model ∆ MRA (IP) ∆MRA (random) ∆F-Score (IP) ∆F-Score (random)
Breastcancer RF 0.003± 0.042 0.002± 0.038 0.000± 0.005 0.000± 0.003

LR 0.047± 0.116 0.039± 0.102 −0.006± 0.014 −0.006± 0.015
LGBM 0.013± 0.092 0.014± 0.098 0.000± 0.006 0.000± 0.005

Car RF 0.018± 0.063 0.015± 0.069 0.000± 0.003 0.000± 0.003
LR 0.096± 0.112 0.109± 0.135 −0.020± 0.028 −0.026± 0.031
LGBM 0.024± 0.083 0.024± 0.099 0.000± 0.002 0.000± 0.002

Mushroom RF 0.009± 0.081 0.002± 0.027 −0.000± 0.000 −0.000± 0.000
LR 0.045± 0.158 0.024± 0.111 −0.000± 0.001 −0.000± 0.001
LGBM 0.024± 0.141 0.018± 0.128 −0.000± 0.000 −0.000± 0.000

Adult RF 0.011± 0.053 0.012± 0.073 −0.000± 0.001 −0.0± 0.001
LR 0.072± 0.170 0.075± 0.192 −0.003± 0.005 −0.003± 0.007
LGBM 0.026± 0.108 0.026± 0.117 0.000± 0.001 0.000± 0.001

Wine RF 0.018± 0.096 0.020± 0.107 −0.001± 0.005 −0.000± 0.005
LR 0.360± 0.306 0.354± 0.309 −0.020± 0.023 −0.023± 0.026
LGBM 0.043± 0.169 0.037± 0.155 0.001± 0.005 0.001± 0.008

Contraceptive RF 0.070± 0.151 0.059± 0.144 −0.000± 0.009 −0.000± 0.007
LR 0.115± 0.214 0.095± 0.203 −0.007± 0.019 −0.010± 0.025
LGBM 0.048± 0.104 0.049± 0.119 −0.001± 0.010 −0.000± 0.009

Nursery RF 0.059± 0.192 0.074± 0.226 −0.000± 0.001 −0.000± 0.001
LR 0.097± 0.217 0.131± 0.240 −0.002± 0.004 −0.008± 0.013
LGBM 0.073± 0.227 0.082± 0.242 −0.000± 0.000 −0.000± 0.000

Splice RF 0.006± 0.026 0.009± 0.036 −0.001± 0.004 −0.001± 0.004
LR 0.025± 0.046 0.035± 0.071 −0.002± 0.006 −0.004± 0.010
LGBM 0.022± 0.098 0.032± 0.116 0.000± 0.002 0.000± 0.002

Table 8. Experiments with probabilistic rules. Means and standard
deviations computed from 50 runs for LR model and for the given
datasets. For each run, |FRS| = 1, and tcf = 0. random selection
strategy is utilized during the experiments.

Dataset Probability ∆MRA ∆J

Mushroom p = 0.4 0.206± 0344 0.007± 0.012
p = 0.6 0.242± 0.386 0.009± 0.014
p = 0.8 0.249± 0.390 0.009± 0.014
p = 1.0 0.173± 0.296 0.006± 0.011

Wine p = 0.4 0.416± 0.305 90.011± 0.024
p = 0.6 0.448± 0.317 90.010± 0.021
p = 0.8 0.423± 0.348 90.011± 0.020
p = 1.0 0.338± 0.327 90.008± 0.016

B. Cancer p = 0.4 0.005± 0.015 0.003± 0.007
p = 0.6 0.005± 0.015 0.002± 0.006
p = 0.8 0.007± 0.015 0.002± 0.007
p = 1.0 0.005± 0.015 0.003± 0.006

Table 9. Comparison with Overlay-Soft (soft constraints) and
Overlay-Hard (hard constraints) of Daly et al. (2021) on Adult
dataset. Means and standard deviations computed from 50 runs.

Dataset Model ∆J

Overlay-Soft Overlay-Hard FROTE

Adult LR 90.015±0.034 90.107±0.111 0.025±0.039
RF 0.114±0.013 90.121±0.019 0.036±0.039
LGBM 0.102±0.021 90.018±0.180 0.240±0.043
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Table 10. Experiments with Overlay (Daly et al., 2021). Overlay-Hard and Overlay-Soft refers to the Hard Constraints and Soft Constraints
approaches of Overlay. The comparison is shown for different ML models and the Breast Cancer, Mushroom and Adult datasets. random
selection strategy is used for FROTE. Means and standard deviations are computed from 50 runs, where for each run a different set of 3
rules are used.

Model ∆MRA ∆F-Score
B. Cancer

Overlay-Soft Overlay-Hard FROTE Overlay-Soft Overlay-Hard FROTE
LR 0.008± 0.021 0.021± 0.232 0.080± 0.168 −0.012± 0.058 −0.313± 0.248 −0.014± 0.022
RF 0.005± 0.015 0.071± 0.224 0.097± 0.194 0.000± 0.000 −0.299± 0.238 −0.002± 0.007
LGBM 0.016± 0.032 0.072± 0.218 0.880± 0.238 −0.000± 0.001 −0.272± 0.198 −0.001± 0.009

Mushroom
Overlay-Soft Overlay-Hard FROTE Overlay-Soft Overlay-Hard FROTE

LR 0.046± 0.091 0.202± 0.34 0.049± 0.033 −0.001± 0.004 −0.168± 0.223 −0.000± 0.001
RF 0.021± 0.114 0.205± 0.34 0.040± 0.032 0.000± 0.000 −0.166± 0.220 0.000± 0.000
LGBM 0.155± 0.302 0.208± 0.34 0.049± 0.033 −0.023± 0.093 −0.163± 0.218 0.000± 0.000

Table 11. Experiments with different values of k parameter. Results are reported using random. ∆J represent the improvement in the
corresponding metric (mean± std). Means and standard deviations are computed from 20 runs for each row in the table.

Dataset Model k = 3,∆J k = 5,∆J k = 8,∆J k = 10,∆J
Contraceptive RF 0.268± 0.156 0.204± 0.150 0.199± 0.116 0.159± 0.080

LR 0.470± 0.280 0.484± 0.289 0.464± 0.286 0.447± 0.264
LGBM 0.305± 0.132 0.288± 0.142 0.222± 0.096 0.256± 0.130

Wine RF 0.525± 0.193 0.518± 0.185 0.513± 0.174 0.503± 0.189
LR 0.750± 0.257 0.750± 0.256 0.748± 0.255 0.747± 0.256
LGBM 0.506± 0.15 0.455± 0.158 0.437± 0.125 0.429± 0.132

Breastcancer RF 0.178± 0.147 0.200± 0.145 0.226± 0.193 0.230± 0.218
LR 0.315± 0.265 0.308± 0.258 0.208± 0.225 0.168± 0.204
LGBM 0.320± 0.252 0.323± 0.223 0.276± 0.236 0.269± 0.195

Car RF 0.305± 0.104 0.250± 0.090 0.195± 0.057 0.185± 0.093
LR 0.660± 0.276 0.563± 0.286 0.473± 0.190 0.414± 0.163
LGBM 0.340± 0.137 0.233± 0.089 0.209± 0.078 0.183± 0.068
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Figure 6. Additional plots for Figure 2 in the main paper. Experiments with models trained on the initial dataset before FROTE (initial),
after applying the none strategy, and after FROTE completes augmentation (final). mod− imp and final− imp represent the differences
in J between mod and initial and final and mod, respectively. The comparison is shown as a function of the training coverage fraction of
the feedback rule sets and for different ML models and all the datasets. The random selection strategy is used. Standard box plot showing
interquartile range (IQR) and whiskers showing 1.5 times IQR based on 30 random draws for each of |F| ∈ {1, 3, 5}.
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Figure 7. Similar setting with Figure 1 except results are presented for drop modification strategy.
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Figure 8. Similar setting with Figure 1 except results are presented for drop modification strategy.
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Figure 9. Augmentation progress evaluated on the held-out test set for different models and tcf values on the Adult dataset. The objective
function J (median and 5-95 percentiles) is shown as a function of the number of instances added to the dataset during augmentation.
Results are averaged over 90 runs, and for all runs, |F| = 3, the mod-strategy is relabel, and random selection is used.
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Figure 10. Additional plots for Figure 3 in the main paper. Effect of feedback rule set size for the Car, Contraceptive, Nursery and Splice
datasets are given using the random selection strategy. The same comparison as in Figure 1 is shown between initial (before FROTE),
after relabel, and final (after augmentation). Each box and whiskers is computed from 20 runs with tcf = 0.2, α = 0.8, k = 5.


