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ABSTRACT

Applications of neural networks on edge systems have proliferated in recent years but the ever-increasing
model size makes neural networks not able to deploy on resource-constrained microcontrollers efficiently. We
propose bit-serial weight pools, an end-to-end framework that includes network compression and acceleration
of arbitrary sub-byte precision. The framework can achieve up to 8 x compression compared to 8-bit networks
by sharing a pool of weights across the entire network. We further propose a bit-serial lookup based software
implementation that allows runtime-bitwidth trade-off and is able to achieve more than 2.8 x speedup and 7.5 X
storage compression compared to 8-bit networks, with less than 1% accuracy drop.

1 INTRODUCTION

The ever-increasing size of neural network models and rapid
proliferation of machine learning in resource-constrained
edge devices have catalyzed research into a variety of model
compression techniques, as well as software and hardware
acceleration of deep learning on edge devices.

General-purpose microcontrollers have been a platform of
choice for edge devices due to their low power, low cost
and programmability. However, this comes at the cost of
limited memory: these processors usually do not have any
DRAM and often have less than 2MB total memory (SRAM
+ Flash); and small available compute power: these pro-
cessors usually have small datapaths and simple pipelines
running at modest clock rates. This makes the execution of
complex machine learning models on this ubiquitous class
of processors very challenging. A variety of model compres-
sion techniques have, therefore, garnered attention in the
embedded machine learning community (Berthelier et al.,
2021).

Weight sharing (Nowlan & Hinton, 1992) as a model com-
pression technique shares a set of weight vectors across the
entire neural network, so that only the indices of the shared
weight vectors need to be stored, instead of actual weight
values. For convolutional neural networks (CNNs), weight
sharing methods can achieve compression ratios between 4-
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16x, compared to 8-bit baselines. Since weight sharing does
not modify the structure nor the precision of the network,
it can be combined with other compression techniques like
pruning and quantization to further improve compression
ratio and runtime. Furthermore, recent works (Choi et al.,
2018; Banner et al., 2018) have shown that sub-byte quanti-
zation of weights and/or activations can achieve inference
accuracy comparable to full-precision networks.

Though weight sharing and sub-byte quantization are both
promising for storage and runtime improvement, neither
has native support in microcontroller-class general purpose
processors commonly deployed in edge devices. As a result,
these compression techniques can often hurt performance
rather than improve it. For instance, processing a neural
network with sub-byte precision naively can lead to worse
runtime due to bit unpacking overhead (Hu et al., 2018).
Hence, there is a need for optimized software implementa-
tions of weight-shared neural networks, as well as methods
that can support and accelerate sub-byte precision neural
networks on microcontrollers.

In this work, we present a framework for efficiently deploy-
ing large neural networks on small microcontrollers. The
proposed framework contains two parts. The first part is
neural network compression, where a pool of weight vectors
(e.g., a1l x 8 8-tuple of weights) along channel dimension
are shared across the entire network. We refer to networks
using our weight sharing method as weight pool networks
in the rest of this paper. The second part of the framework
is the software implementation of weight pool networks on
microcontrollers, where we utilize bit-serial lookup tables
to support and accelerate weight pool networks with 8-bit
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or lower activation bitwidth. The main contributions can be
summarized as follows.

* We show that z-dimension weight pools, as small as
512 total parameters can realize popular networks such
as ResNet and MobileNet with negligible accuracy
loss.

* We develop a bit-serial lookup based method for ef-
ficient arbitrary-precision execution of weight pool
networks on general purpose microcontrollers. This
delivers 2.38X speedup (compared to well-optimized
ARM CMSIS-NN library (Lai et al., 2018)) at 8-bit
precision and even greater speedup at lower bitwidth
on popular neural networks.

* We explore the design-space of weight pool networks
experimentally to develop an optimized software imple-
mentation of weight pool networks targeted for small,
memory-starved microcontrollers.

* We show that weight pool arbitrary precision networks
can be 2.8X faster and 6.51X more compact than CM-
SIS on ResNet-10, with less than 1 percent drop of
accuracy on CIFAR-10, and better compression and
speedup can be achieved on larger networks.

The next section outlines the motivation behind the bit-serial
weight pool approach.

2 ADDRESSING COMPRESSION AND
QUANTIZATION CHALLENGES FOR
GENERAL PURPOSE PROCESSORS

Compression with weight pools. Our weight pool net-
works essentially store vectors of weights along the channel
dimension as one entry. The 3D filters used in CNNs would
then be composed of these vectors. For instance, a 3 x 3 x 32
filter would use 3 x 3 x 4(= 36)1 x 8 weight vectors se-
lected from the available pool of weight vectors. There is
no limitation on the reuse of vectors. Weight pool networks
would reduce the parameter storage from the total number
of parameters in the network to the total size of the weight
pool. If done correctly, this can reduce parameter storage
requirements of neural networks by orders of magnitude
with minimal accuracy drop. Furthermore, the parameter
storage here becomes independent of network size.

However, naively implementing weight pool networks
would likely worsen inference latency because of additional
memory reads (some form of index storage lookup followed
by the actual weight lookup) with no reduction in total num-
ber of operations. One could try reducing the number of
operations by directly storing the results of the (partial) dot
product on the weight pools. For a pool vector size of 8, it

would replace 8 multiply-accumulate operations with one
memory lookup. Unfortunately, for 8-bit activations, this
would require a lookup table size of 28% entries for just one
pool vector which is impractical.

Arbitrary precision computation using bit-serial arith-
metic. Like conventional neural networks, the activation
bitwidth of weight pool networks can be reduced to sub-byte
regions while still achieving decent accuracy on many tasks.
The sub-byte activation bitwidth provides an opportunity to
improve the runtime and overall energy efficiency.

Sub-byte precision is not well supported in most microcon-
trollers (or most processors in general). Naively implement-
ing networks with sub-byte activation bitwidth is not useful
as it would worsen runtime because of the bit unpacking
overhead with no actual compute reduction (since underly-
ing hardware still executes higher precision arithmetic).

To support and accelerate neural networks with sub-byte
activation bitwidth, bit-serial multiplication seems to be a
suitable candidate since it processes a multiplication serially
by looping through all the bits of one operand. The runtime
of bit-serial multiplication is proportional to the bitwidth of
the bit-unrolled operand. There are many bit-serial multipli-
cation based hardware neural network accelerators (Li et al.,
2021; Judd et al., 2016; Sharma et al., 2018), but there is no
support of bit-serial multiplication in microcontrollers due
to the lack of bit-serial multipliers.

Bit-serial-lookup-based weight pool networks. We ad-
dress the challenges outlined above by doing bit-serial exe-
cution but saving computation by lookup of partial dot prod-
uct results on pool vectors. Since activations are processed
one bit at a time (most significant to least significant bit),
the dot product lookups only need to be on 1-bit operands.
Therefore, the lookup table for activation bitwidth of 8 bits
is just 2% entries. This would replace 8 multiply-accumulate
operations with 8 memory reads and accumulations. Later
we show how despite this, substantial runtime reduction
can be achieved by careful implementation optimizations
leveraging the value reuse properties of weight pools. Fur-
thermore, reducing activation bitwidth now just amounts to
truncating the temporal bit-serial execution earlier which
gives proportionate further runtime improvement.

3 BIT-SERIAL WEIGHT PooOL
METHODOLOGY

Figure 1 shows the high-level flow of the proposed frame-
work, which is split into two parts. The left block shows
the compression part, where the input is a pretrained CNN.
The corresponding weight pool and weight indices (original
weights are converted to indices of the weight pool) are gen-
erated and the pretrained CNN is hence compressed. Analy-
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sis of minimum activation bitwidth of the compressed CNN
is carried out afterward. Finally, the dot product lookup
table is generated from the weight pool, and loaded into
microcontrollers’ flash memory along with weight indices
and precision information. The compression part is entirely
executed on the host side and the generated weight pool
CNN is sent to the microcontroller.

The second part is CNN inference acceleration, which is
executed on the microcontroller. At this stage, the original
CNN has already been compressed and transformed into
weight pool CNN, and the activation bitwidth has been
determined. The framework uses a bit-serial lookup table
based algorithm to accelerate the inference of weight pool
CNNs, and is able to further improve runtime by reducing
the activation bitwidth. The rest of this section describes
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Figure 1. High level flow of the proposed framework. Pretrained
weights are clustered into weight vectors pool, any fine tuning and
activation bitwidth selection are done offline. At inference time,
the processor only stores the weight pool dot product results and
indices to weight vectors used in the network.

each of these steps in detail.

Weight pool networks achieve compression by sharing a
fixed pool of weight vectors among all the layers of a net-
work, so that the network only needs to store indices of the
weight pool, plus the weight pool itself. In this work we
use a weight sharing pipeline similar to (Son et al., 2018)
to generate weight pool CNNSs, but instead of clustering 2D
convolutional kernels, we apply the clustering algorithm
along the z-dimension of a 3D filter (clustering across the
filter channels) as shown in Figure 3. Figure 2 shows the pro-
posed training pipeline. The pretrained weights are grouped
into 1 x 8 weight vectors along the channel dimension and
clustered using K-means clustering (with a cosine distance
metric to avoid scaling dependence). After the clustered
weight pool is generated, the original CNN’s weights are
converted to the indices of the weight vectors in the weight
pool. The network is retrained to fine-tune the weight in-
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Figure 2. Overall flow of generating a weight pool network from a
pretrained network.

dices assignment (with a fixed weight pool) and fully con-
nected layer’s weights. The backward pass updates the
network weights and the forward pass reassigns indices to
the nearest weight pool vector. Weight pool network may be
further fine-tuned, if needed, for reduced activation bitwidth.

\4 Group weight over
channel dimension

Grouped weight vectors

Figure 3. Visualization of the z-dimension weight grouping. This
example shows a 8 x 3 x 3 filter with weight vector size of 4.
The weights are grouped in the channel dimension and same color
represent weights in a single group. After the z-dimension group-
ing, 18 4 x 1 x 1 weight vectors (6 are shown in the figure) are
generated for the given filter.

To show the effectiveness of the z-dimension weight pool
and determine the optimal pool size, we benchmark the
3 x 3 kernel weight pool (xy-dimension weight pool) with
and without scaling coefficient, as well as the proposed z-
dimension weight pool using ResNet-14 (modified ResNet-
18 (He et al., 2016) with last block truncated) on the CIFAR-
10 dataset. For each setup three weight pool size are tested.
The result is shown in Figure 4. For all three weight pool
sizes, the z-dimension weight pool performs slightly better
than the xy-dimension weight pool with coefficients and sig-
nificantly better than the xy-dimension weight pool without
scaling coefficients. Regarding the pool size, 64 is enough
for this network and 32 also achieves a decent result.

The reason for the better accuracy of the z-dimension
weight pool is more weights are grouped together in the
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Group size 4 8 16
Accuracy (%) 91.22 | 91.13 | 87.96

Table 1. Accuracy of z-dimension weight pool with different group
size. The network is ResNet-14 and dataset is CIFAR-10. Original
network accuracy is 92.26%.

xy-dimension weight pool than the z-dimension (9 vs 8).
Considering a 3x3 convolution layer with weight shape
(8,8,3,3), the total number of possible unique weight vectors
for 64 weight pool size is 642 for z-dimension and 6454
for xy-dimension. Another reason might be if a certain 2D
kernel (a channel of an entire filter) has high importance, the
z-dimension weight pool can closely reconstruct this kernel
by sacrificing other channels, while for xy-dimension it can
only be directly chosen from the weight pool.
§$

Figure 4. Accuracy of weight pool ResNet-14 with different setups,
on the CIFAR-10 dataset. For a weight pool with 3 x 3 kernels, its
setups are denoted by xy_n_(coeff), where n means the weight pool
size (how many weight vectors in the weight pool) and coeff means
the version with scaling coefficients. For the z-dimension weight
pool, the setups are denoted by z_n_g8, where n is the weight pool
size and g8 means the weight vector size (group size) is 8. The
original accuracy is 92.26%.
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Table 1 shows the accuracy results of different group size
(weight vector size) for z-dimension weight pool on ResNet-
14. Clearly, a group size of 8 achieves a good balance be-
tween compression ratio and network accuracy. We choose
8 as the default group size so the weight pool contains mul-
tiple 1 x 8 weight vectors. Compared to clustering 3 x 3
kernels, clustering along z-dimension has a few advantages:

It achieves the same or better network performance
(accuracy) without the additional scaling coefficient as
used in (Son et al., 2018), which improves the com-
pression ratio from 4.5x (clustering 3 x 3 kernels) to
8X over an §-bit network.

e It is more flexible. It can fit networks with arbitrary
kernel sizes including 1 x 1 kernels, and can apply to
fully connected layers as well.

The main rationale behind our choice of using the z-
dimension weight pool is not its accuracy but its flexibility.
It can work on all filter sizes including 1 x 1 filters, while the
xy-dimension weight pool only works on 3 x 3 filters. The
accuracy for the xy-dimension weight pool is severely im-
pacted for 5xS5 filters due to the reduction in representability
(>10% accuracy drop on CIFAR-10).

Grouping weights along z-dimension for layers with depth
less than 8 (e.g., typical input layers in image CNNs) incurs
underutilization. In most, if not all popular CNNs, such
reduced depth layers account for a small fraction of storage
and compute. Therefore, we choose to keep such layers
(usually just the first layer) uncompressed for better infer-
ence accuracy. Not compressing the first layer has minimal
impact on compression ratio and runtime for most CNN’s
since the first layer usually just have three input channels.
Another alternative can be grouping all the channels together
and zero pad the vector size to 8.

Although the main focus of this work is compressing and
accelerating CNNs, we apply the weight pool compres-
sion on one dense network to demonstrate the generaliza-
tion capability of weight pool compression. We evaluate
a 3-layer dense network (784-256-128-10) using the Fash-
ionMNIST dataset. The original accuracy is 88.65% and
after weight pool compression (64 vectors) the accuracy
is 88.01% (< 1% reduction). This is a promising result
for adopting the weight pool compression to other types of
networks.

3.1 Lookup Table Based Bit-serial Computation

As introduced in section 2, lookup tables can be used to
accelerate convolutions by looking up the vector dot product
results directly from memory, instead of computing them.
Lookup table offers a trade-off between space complexity
and time complexity, and can improve runtime when the
memory is large enough and fast enough. However, for dot
product operations, the size of lookup table can be huge.
Consider the dot product between two 8-element vectors
with 8-bit precision, the total number of entries required for

8
the lookup table is 28°" = 3.40x 1038, Clearly, such lookup
table implementation is not feasible unless the lookup table
size can be massively shrunk.

The huge lookup table size is partly caused by both inputs
having no restriction on their values, leading to 65536 total
input combinations for a simple two-input multiplication.
However, this is not the case for weigh-pool networks. Un-
like normal neural networks where inputs and weights can
be any possible values, weights are fixed for weight pool
networks, meaning a single 8-bit multiplication only re-
quires 256 lookup table entries. The lookup table size for
the aforementioned 8-element dot product operation with
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weight fixed is 1.84 x 109 entries, which is significantly
smaller than 3.40 x 1032, but still impractical.

Wo
Wy
W,
W.
[10 L, I,I, I I I 17} o W
4
Input vector Ws
We
W,
Weight
vector
(a)

LsB Too T10 T26 Iso Tap Isp Igo I70 We 2°
Tor Tn1 Ipg I3y Iy Iy Iy Iy Wy 2t
Toy Inp Ipp Iy Iy, Iy Iy Iy W, 22
Loz Ta3 Ip3 I3 Iy3 Iss Iz Iys ° W ° 23
Ton Taa Tog T5g Tag Iss Igq Igg W, 24
Tos Tas Ips I35 Iys Iss Igs Iys Ws 28
Tos Ta6 To6 Is6 Tas Ise Les I76 We 28

MSB Ioy 107 Iy Is; Iy Is; Iy Iy W, 27

Decomposed input matrix Weight Power-of-2

vector vector

(b)

Figure 5. Visualization of the bit decomposition step. (a): The
original 8-element dot product between input and weight vectors.
(b): The original dot product is transformed into matrix-vector
multiplication followed by dot product after bit decomposition.
I, means the n® bit (starting from LSB) of the mt" element.
The original input vector is decomposed into an 8 X 8 matrix with
each element representing a single bit. Each column represents all
the bits of an input value while each row represents a unique bit
position of all input values. The weight vector is kept the same
and is multiplied with all the bit positions of input. The result
of the matrix-vector multiplication should be the dot product of
input and weight vector at every input bit position. The result is
then multiplied with the power-of-two vector which represents bit
weights to generate the final dot product result.

To further reduce the lookup table size and support bit-serial
multiplication, a key step in our proposed method is bit
decomposition. For an N-element dot product between input
and weight vector (both M bits), the dot product between
input (activation) vector and weight vector can be calculated
as:

N-1
@'-u’}’:Zaixwi (1)

i=0
Where a; and w; are the i-th elements of vectors @ and w

respectively and N is the width of the dot product. The
input element a,; can be decomposed as:

M-—1
ai =Y 2 xa;j] )
j=0

Where a;[j] is the j-th bit (from LSB) of activation a;, and
M is the bitwidth of the activation. Hence each input ele-

ment is decomposed into M binary values each representing
a single bit, and the input vector is hence decomposed into
an M x N matrix where each row represents a bit position.
Each time one row (one bit position) of the input matrix is
multiplied with the weight vector by looking up the correct
dot product result, and then the result is multiplied with the
corresponding bit weight. This step is repeated M times
until all the bits are processed and all the results are accumu-
lated to calculate the final result. Doing so, the dot product
is effectively calculated in a bit-serial way, and it takes M
iterations to compute the original dot product. Figure 5
visualizes the decomposition process using the 8-element
8-bit dot product example.

3.2 Lookup Table Bitwidth and Weight Pool Storage

By decomposing the input vector, the lookup table only
needs to store the results of the dot product between N
1-bit input elements and N fixed weight elements. The
required lookup table size is thus reduced to 2V entries,
which is 256 entries for the 8-element dot product example.
Assuming 64 fixed weight vectors are needed for a weight
pool network (we will show later 64 is enough for most
cases), and the results are stored in 8-bit precision, the total
lookup table storage for the entire network is just 16 kB.
Since the lookup table needs to be stored in memory, this
storage overhead should be considered when calculating the
overall compression ratio of weight pool networks. Besides
the activation/weight vector length [NV, We also denote the
lookup table bitwidth by B; and the size of weight pool by
S, the formula for lookup table storage in bits is:

Storageryr = 2N x S x B, 3)

For a network with W total weight parameters and weight
bitwidth of B,,, the total network storage in bits is W x B,,.
Assuming all the weights of the network are compressed by
the weight pool method, the maximum compression ratio
that can be achieved is:

W x By,

CR= 4
(% x logsS +2N x S x By) @

, where the term % x logaS is the weight index storage.
logsS is the minimum bitwidth required for the weight
index, but in actual implementation it may be more efficient
to use 8 or 16 bits.

Interestingly, the weight bitwidth of weight pool networks
can be arbitrary since the weights are not explicitly stored.
The entire weight pool is converted to a lookup table and
the dot product results are stored instead of weights. In this
case, the lookup table bitwidth matters, as it determines how
much memory space is required for storing the lookup table,
as well as the inference accuracy of the network. Storing
the lookup table at low bitwidth essentially reduces bitwidth
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(precision and/or range) of dot-product partial sums and
may compromise the inference accuracy. We experimentally
show that 8-bit lookup table precision is good enough for
most cases. The full results are shown in 5.3.

3.3 Activation Bitwidth and Weight Pool Network
Runtime

In terms of theoretical runtime performance, for the 8-
element 8-bit dot product example, the proposed method
requires 8 iterations to loop over bit positions and each it-
eration contains two memory loads (input and result), one
shift and one accumulates operation. The weight indices are
the same for all the bits and hence can be shared. Normal
convolution also requires 8 iterations to loop over individual
vector elements and each iteration requires two memory
loads (activation and weight), one multiplication and one ac-
cumulation. This analysis shows that our proposed method
has an almost identical theoretical runtime compared to the
8-bit baseline without considering overheads and optimiza-
tions. This is a promising result since the proposed method
can have better runtime than the baseline by simply reducing
the activation bitwidth below 8 bits. We will show that with
various reuse and optimizations, our proposed method has
better runtime even at 8-bit activation bitwidth compared to
the 8-bit baseline using ARM’s CMSIS library (Lai et al.,
2018).

4 WEIGHT PooL IMPLEMENTATION:
OVERHEADS AND OPTIMIZATIONS

There are many runtime overheads associated with software
bit-serial processing and weight sharing. Here we discuss
these overheads and the corresponding optimizations to
overcome them.

4.1 Bit Unpacking Overheads and Optimized Dataflow

For software sub-byte precision computation, bit unpack-
ing causes significant runtime overhead since processors
typically are byte-addressable. For our bit-serial lookup
method, the bit decomposition step needs to unpack each
element of the input vector into individual bits, and the
same bit position of different input elements (rows of the
decomposed input matrix in Figure 5) should be grouped to-
gether for lookup table computation. Doing this in software
requires iterating over all the input elements and for each
input element there is an inner loop to extract all the bits.
For the 8-element, 8-bit dot product example, 64 iterations
are required for a single dot product, while only 8 itera-
tions are required for the actual computation. Implementing
bit unpacking for every dot product can significantly slow
down the runtime, making it roughly 9x slower than base-
line hence negating any potential speedup by reducing the

activation bitwidth.

To address the bit unpacking overhead, we utilize input reuse
in our dataflow so that the bit unpacking step (activation
vector decomposition) can be shared. For CNNs, the same
input can be reused for all the filters of a layer, so that the bit
unpacking overhead per result lookup is reduced by a factor
equal to the number of total filters in a layer. To implement
input reuse and share the bit unpacking overhead, we order
the loops such that the filter lookup is inside the loops over
input channels and filter x, y dimensions. The activation
vector decomposition (bit unpacking) is implemented right
before the filter loop, so that the decomposed activation
matrix can be reused. Algorithm 1 shows the overall flow
including the modified loop order. The bit-unpacking step
happens at line 7 of Algorithm 1. For a convolution layer
with NV filters, the time spent on bit unpacking is reduced
by a factor of NV and is significantly less than the time spent
on result lookup for most layers.

Algorithm 1 The simplified algorithm flow of the bit-serial
lookup table implementation. Number of input channel
group is number of total input channels divided by weight
vector size.

1: for loop over batch do

2:  for loop over output x-dimension do

3: for loop over output y-dimension do
4: for loop over kernel x-dimension do
5 for loop over kernel y-dimension do
6: for loop over input channel groups do
7. Activation vector decomposition (bit
unpacking
Lookup table caching (flash to ram)
9: if Precomputation then
10: for loop over weight pool vectors do
11: for loop over activation bits do
12: Results lookup
13: Shift and accumulate
14: Store results in RAM
15: for loop over filters do
16: Precomputed results lookup
17: else
18: for loop over filters do
19: for loop over activation bits do
20: Result lookup
21: Shift and accumulate

4.2 Memory Latency and Lookup Table Caching

In a typical microcontroller, flash memory is used as the
main storage and SRAM is used for holding variables dur-
ing computation. Flash memory has more storage space
than SRAM but operates slower. However, due to SRAM’s
limited size (typically 16-128 kB), it can only be used to
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hold activations and some temporary variables. The net-
work weights are normally stored in flash memory (size
ranges from 128 kB - 2 MB), and during the computation
the weights are loaded from the slower flash memory. For
weight pool networks, the lookup table size is typically 8-
32 kB, which is similar to the SRAM size of some small
microcontrollers. For such really tiny, low-cost processors,
the lookup table cannot fit in SRAM and need to be stored
in flash, hence the result lookup latency will be higher and
hurt runtime.

To improve the result lookup latency, we cache the active
part of the lookup table in SRAM. Before explaining what
is the active part of a lookup table, we first discuss how data
can be arranged inside a lookup table. The lookup table
of the proposed method contains the dot product results
between all weight vectors and all possible input (activa-
tion) bit vectors. There are two ways to order the lookup
table contents when storing them in memory, one is weight
oriented order and the other is input oriented order. Visu-
alization of the two lookup table orders are shown in the
appendix. Assume the total number of weight vectors in
the weight pool is S and the activation bitwidth is M. For
weight oriented order, the lookup table can be split into
S smaller concatenated lookup tables, each containing the
results of all possible inputs related to a single weight vector.
For input oriented order, the lookup table consists of 2
smaller lookup tables and each of them contains the results
of one input with all weight vectors. Input oriented order
is more compatible with input reuse dataflow since a few
blocks (results corresponding to the bit-vectors generated
by the input matrix decomposition) of the lookup table is re-
peatedly accessed in the filter loop, with other blocks of the
lookup table staying idle. We utilize this property and cache
the active blocks of the lookup table from flash to SRAM
during computation. We use input oriented lookup table in
our implementation to reduce the flash access overhead and
improve runtime.

In our implementation, the dataflow is configured to boost
input reuse, and lookup table accesses can also benefit from
this dataflow by caching the lookup table in SRAM. In
our input reuse dataflow, after activation decomposition the
activation vector is multiplied with corresponding weight
vectors for all filters. In this case, only a portion of the
lookup table related to the generated activation vectors will
be used inside the filter loop. Still considering 8-bit acti-
vation bitwidth and weight pool size of 64. After the bit
decomposition step, 8 activation bit vectors are generated.
For the input oriented lookup table, only 8 blocks of the
original lookup table each with 64 entries (weight pool size)
that corresponds to the activation bit vectors will be actively
used in the filter loop. The total size of the active lookup
table is just 512 bytes, which is small enough to fit into most
microcontroller SRAMs.

Hence, as shown in line 8 of Algorithm 1, before entering
the filter loop, we load the active portion of the lookup table
from flash and cache them in SRAM. Figure 7 visualizes the
lookup table caching process. The overhead of this lookup
table caching step is again compensated by sharing it across
all the filters. Doing so in the innermost loop of the lookup
table results will be loaded from SRAM instead of flash,
therefore the overall runtime can be improved.

Input oriented LUT

Flash

Input 0 | Input 1| Input2 | Input3 | Input4 Input5 | Input &

Input 7

Cachin, weight vector 0 \weight vector S|

SRAM Input 1 | Input 5

Figure 6. Visualization of lookup table caching. Green blocks
represent active lookup table regions corresponding to the input
vectors that are shared across filters. Red blocks represent the
inactive lookup table regions. Active regions are cached into
SRAM before the filter loop and the function only accesses lookup
table results from SRAM.

To validate the analysis, we benchmark the lookup table
caching optimization against the implementation without
lookup table caching (everything else is the same) on indi-
vidual layers with a different number of filters. The results
are shown in Figure 7 (orange bars). The lookup table
caching version outperforms baseline for all 4 layer configu-
rations, and the speedup scales with the number of filters in
the layer (due to better reuse). While lookup table caching
only marginally improves runtime for layers with 32 filters,
it achieves more than 1.4x speedup for layers with 192
filters.

4.3 Weight Pool Computation Reuse Through
Precomputation

The main property of weight pool networks is that a small
pool of weight vectors is shared across the entire network.
We have shown that using a pool of 32 or 64 8-element
weight vectors is enough for maintaining the accuracy, and
such pool sizes are often smaller than the number of filters
of a large convolution layer, which can be more than 256.
The relatively small pool size offers computation reuse op-
portunities on large convolution layers to further improve
the runtime of weight pool networks.

A property of CNNs is that the same input vector can be
reused for all the filters of a convolution layer. For weight
pool networks, weights are selected from a group of weight
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vectors and the total number of distinct weight vectors is
the pool size (32 or 64). If a convolution layer has more
filters than the pool size, an input vector will inevitably mul-
tiply with some weight vectors multiple times when looping
over filters. In other words, for a weight pool network, the
maximum number of unique dot products that need to be
computed for a given input vector is the weight pool size,
regardless of the actual number of filters in that layer. To
avoid unnecessary computation for large convolution layers,
precomputation can be used to only compute the necessary
dot products between inputs and weights and store them in
another lookup table, hence repeated (bit-serial) computa-
tion will be replaced with result lookups. Another way to
avoid repeated computation is memoization, where the dot
product results are dynamically memoized during compu-
tation (inside the filter loop). We compare and evaluate the
two methods (analysis is in appendix) and precomputation
performs better. The simplified flow of precomputation is
shown in lines 9-16 of Algorithm 1.

Precomputation should only be used for large convolution
layers as its benefits rely on a large number of filters (it im-
proves runtime when the number of filters of a layer is larger
than the weight pool size). For a given layer, precomputa-
tion is used only when the number of filters is larger than the
pool size. To demonstrate the effectiveness of precomputa-
tion, we combine precomputation with lookup table caching
and evaluate the speedup against baseline implementation,
using the same benchmark in section 4.2. The results in
figure 7 show that for layers that have more filters than the
weight pool size, precomputation can further improve the
runtime of the lookup table caching version. For a layer with
192 filters, precomputation + lookup table caching achieves
2.45x speedup against baseline implementation and is 1.7 %
faster than just using lookup table caching. However, for
layers with number of filters that are smaller or equal to
the weight pool size, precomputation hurts runtime. This
result supports our analysis that precomputation should not
be used for those layers.

Run-time accuracy trade-off Precomputation not only
accelerates wide convolution layers, it also offers another
way to make trade-offs between runtime and accuracy, be-
sides adjusting the activation precision. For a relatively
wide network that contains layers wider than 32 filters, the
runtime can be improved by reducing the weight pool size.

Name Model SRAM Flash Core  Freq.
(kB)  (kB) (MHz)

MC-large | F207Z2G 128 1024 CM3 120

MC-small | FI03RB 20 128 CM3 72

Table 2. STM Nucleo family microcontrollers used for benchmark-
ing. Both use ARM Cortex M3 for the core.
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Figure 7. Relative speedup of just lookup table caching (orange)
and precomputation + lookup table caching (green) against base-
line implementation. Four 3 X 3 convolution layers with different
number of filters are tested. The number of channel is set to be
same as number of filters and the input size is 16 x 16. Weight
pool size is 64.

Although we observed that a weight pool size of 64 works
reasonably well in most cases and we set 64 as the default
size, 32 is also good enough for many cases. The runtime
can be improved with a tiny drop in accuracy by reducing
the weight pool size in such cases.

S EVALUATION
5.1 Experimental Setup

We evaluate the accuracy and runtime of the z-dimension
weight pool method on five different networks: Tiny-
Conv (Lai et al., 2018), MobileNet-v2 (Sandler et al.,
2018), ResNet-10 (ResNet-18 with last two blocks trun-
cated), ResNet-14 (ResNet-18 with last block truncated)
and ResNet-s (scaled-down version of ResNet-18 used in
(Banbury et al., 2021)). We use 2 datasets, CIFAR-10 and
Quickdraw-100 (100 classes), and form 5 network-dataset
combinations. All ResNets are tested on CIFAR-10 while
MobileNet-v2 and TinyConv are tested on Quickdraw-100.
The network structures are adjusted slightly to fit CIFAR-
10 and Quickdraw-100. For the weight pool version of
MobileNet-v2, only the 1 x 1 point-wise convolution layers
are compressed using the weight pool. Depth-wise convo-
lution layers are kept uncompressed since they do not fit
our proposed implementation. Theoretically the depth-wise
layers can be compressed using the xy-dimension weight
pool, but it is not necessary - those layers account for a very
small portion of storage (2.93%) and runtime.

All the accuracy results are evaluated using the PyTorch
framework. For network training and retraining, SGD is
used as the optimizer with learning rate scheduling, and
batch size set to 128. For runtime results, we use two mi-
crocontrollers as shown in Table 2. We use ARM Compiler
version 6 and runtime is measured using the built-in cycle
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counter. The frequency is set to maximum frequency for
both boards.

5.2 Compression Ratio

Network Total CR LUT overhead
param

TinyConv 81600 2.32 29.8%

ResNet-s 170928 4.43 29.7%

ResNet-10 665280 6.51 13.8%

ResNet-14 2729664 7.55 4.3%

MobileNet-v2 | 2249792 6.22 4.5%

Table 3. Total number of parameters (uncompressed), overall com-
pression ratio (CR) and lookup table overhead of the selected
networks. The lookup table overhead is the proportion of lookup
table storage to the total network storage after compression.

Table 3 shows the total number of parameters and the overall
compression ratio of the networks with weight pool size of
64. The lookup table overhead is also shown and is compres-
sion limiting only for small networks such as TinyConv. The
compression ratio improves as the network size increases,
and is close to the theoretical maximum (8 x) for ResNet-14
(and even larger networks). Smaller networks further suffer
in compression since the first convolution layer and fully
connected layers are not compressed, whose effect is not
well amortized. !

5.3 Accuracy Evaluation
5.3.1 Weight Pool Size

We first study the impact of weight pool size alone on ac-
curacy without any quantization effects. Table 4 shows the
accuracy of the z-dimension weight pool compression with
three weight pool sizes without any activation quantization
compared to an uncompressed floating-point baseline. A
weight pool size of 64 ensures little accuracy drop for most
networks and is our default for all experiments unless oth-
erwise mentioned. ResNet-s, being already compressed,
is tougher to compress without accuracy loss. The results
demonstrate the effectiveness of the z-dimension weight
pool compression, even for already small CNNs like Tiny-
Conv and ResNet-s.

5.3.2  Lookup Table Bitwidth

For the proposed bit-serial lookup table implementation,
the dot product results between decomposed activation bit-

!Compressing fully connected layer with weight pools im-
proves the compression ratio for Resnet-s (TinyConv) to 4.5(3.1)
but at the cost of 0.7%(2.8%) additional accuracy drop. These
compression ratios improve further to 5.7 (4.2) if weight pool size
of 32 is used albeit, again at 0.5%-1% additional accuracy drop.
In this work we do not compress them as they do not improve
compression for most networks but affect accuracy.

Network [ Original 32 64 128
CIFAR-10
ResNet-s 85.3 82.0 83.0 84.0
ResNet-10 91.0 89.3 89.8 90.1
ResNet-14 92.3 90.7 91.1 91.0
Quickdraw-100
TinyConv 82.2 81.7 82.2 82.3
MobileNet-v2 | 86.5 86.7 86.8 86.9

Table 4. Accuracy (%) of the z-dimension weight pool with differ-
ent weight pool sizes on selected network-dataset combinations.
Original means original network accuracy and 32/64/128 are the
weight pool size.

vectors and weight vectors are stored in the lookup table,
and the bitwidth of the lookup table may affect inference
accuracy.

To evaluate the impact of lookup table bitwidth on network
accuracy, we simulate the proposed bit-serial lookup im-
plementation using PyTorch. Results in table 5 show that
a lookup table bitwidth of 8 loses no accuracy and is the
default for our experiments unless otherwise mentioned.
Furthermore, since most processors are byte-addressable,
using a bitwidth smaller than 8 would incur performance
overheads albeit delivering a better storage compression for
small networks.

Lookup table bitwidth
Network No- 16 8 4
LUT
CIFAR-10
ResNet-s 83.0 83.0 82.9 82.3
ResNet-10 89.6 89.9 89.9 89.4
ResNet-14 91.1 91.1 91.1 90.4
Quickdraw-100
TinyConv 82.2 82.2 82.1 81.6
MobileNet-v2 | 86.8 86.6 86.6 85.5

Table 5. Inference accuracy (%) of bit-serial lookup table imple-
mentation. No-LUT column shows accuracy that not using lookup
table implementation. The activation bitwidth is 8 bit.

5.3.3 Activation Bitwidth

Although activation bitwidth does not affect the storage of a
weight pool network, it affects the runtime when the weight
pool network is implemented using the proposed bit-serial
lookup table approach. We use an iterative search algorithm
to determine the optimal range when quantizing activations.
The weight pool size is 64 and the lookup table bitwidth
is 8 for all cases. Table 6 shows that for 8-bit activation
bitwidth, almost all networks achieve floating point accuracy
(i.e.,“64” column in Table 4). At 5-bit activation bitwidth,
most networks still maintain less than 1% accuracy drop
except for MobileNet-v2 which is quantization-unfriendly
(Sheng et al., 2018; Yun & Wong, 2021). Moreover, for
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lower bitwidths, the accuracy drop can be compensated by
retraining the network with activation quantization. After
retraining, activation bitwidth can go down to 3-4 bit within
1% accuracy drop for all networks except for MobileNet-v2,
which requires 5 bits.

5.4 Runtime Evaluation

5.4.1 Impact of Activation Bitwidth

1
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Figure 8. Speedup against 8-bit bit-serial lookup implementation
for different activation bitwidths. (a): results without precomputa-
tion. (b): results with precomputation. The input size is 16 x 16
and number of channels and filters are both 128. Weight pool size
is 64.

One of the main contributions of the proposed framework
is the support of accelerating runtime by reducing activa-
tion bitwidth. We evaluate the runtime improvement from
an 8-bit baseline on a layer with 128 channels and filters
and pool size of 64 in Figure 8, using MC-large. Without
precomputation, the speedup scales linearly according to
activation bitwidth, and is almost 4 x for 1-bit activation
(less than the 8 x theoretical speedup because of the fixed
bit unpacking overhead). For the precomputation case, as
the activation bitwidth reduces, the runtime of the bit-serial
loop during precomputation reduces, but the runtime for
precomputed results lookup does not change and starts to
dominate the runtime. However, precomputation already
accelerates the runtime significantly so the overall speedup
is still better for large layers.

5.4.2 Full-network Benchmark

To evaluate the overall runtime performance of the proposed
method, we evaluate the full-network runtime performance
on both microcontrollers with weight pool sizes of 32 and
64, and compare with ARM CMSIS implementation when-
ever possible. Only convolution layers are benchmarked
since we do not apply weight pool on the fully connected
layers. The results are shown in Table 7. For the minimum
activation bitwidth case, the results for the 32-vector weight
pool are for reference only, since the minimum bitwidth is
determined from the results of the 64-vector weight pool.

For all setups, the proposed implementation achieves better
runtime than CMSIS and the speedup is better for larger
networks. With less than 1% accuracy drop, the “right

bitwidth” weight pools can achieve over 2.8 x speedup over
CMSIS for medium-sized CNNs like ResNet-10 and around
2x speedup for smaller CNNs like ResNet-s and TinyConv.
There are several factors that make the speedup smaller for
small CNNgs, including lack of precomputation opportunity,
more bit unpacking overhead and the relatively larger impact
of not accelerating the first layer. Larger CNNs (ResNet-14,
MobileNet-v2) do not fit into the microcontroller memory
without the weight pool compression and hence a runtime
comparison is not possible. Overall, the proposed method
improves CMSIS runtime on CNNs regardless of network
structure and activation bitwidth, and the speedup is larger
for large networks.

5.5 Comparison with Binarized Networks

The theoretical compression ratio of a weight pool network
is similar to the compression ratio of binarized networks
but with much better accuracy. (Romaszkan et al., 2020)
evaluates the implementation of binarized networks on mi-
crocontrollers and reports 2 —4 x speedup compared CMSIS
8-bit implementations. For comparison, we trained the bina-
rized version of TinyConv and the accuracy for CIFAR-10 is
barely 66.9% as opposed to 81.2% with weight pools. Our
method achieves 14.3% higher accuracy with just 1.24 x
runtime overhead.

6 RELATED WORK
6.1 Neural Network Weight Sharing

The concept of weight sharing in neural networks can be
dated back to 1992 (Nowlan & Hinton, 1992), as an ap-
proach to simplify neural networks. Recently, weight shar-
ing has been applied to convolution neural networks, by
clustering and sharing 2D convolution kernels (Son et al.,
2018; Wu et al., 2018) for all layers of the network. With
tiny or almost no drop in accuracy, weight sharing can sig-
nificantly compress the parameters of the neural network,
which leads to 4.5 to 36x reduction in CNN’s storage
requirement, depending on the exact sharing method and
baseline precision.

6.2 Lookup Table Based Vector Multiplication
Acceleration

Lookup table is a widely used method to improve runtime
by replacing computation with memory lookup. There are
many works (Deng et al., 2019; Sutradhar et al., 2020; Fer-
reira et al., 2021) try to accelerate deep neural networks
with lookup tables by memorizing vector multiplication re-
sults. However, due to the huge lookup table size (GB+) re-
quired for memorizing all possible results of a vector-vector
multiplication, all of them are DRAM based in-memory
accelerators, hence they are not software solutions.
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Activation bitwidth Min. bitwidth
Network 8 7 6 5 4 3 < 1% ad
CIFAR-10
ResNet-s 82.9 83.0 83.1 82.9 82.5 80.4(80.4) 4
ResNet-10 89.9 89.9 89.8 89.6 88.9(89.2) 84.5(87.8) 4
ResNet-14 91.1 91.1 91.0 90.8 90.6(91.0) 88.5(90.2) 3
Quickdraw-100
TinyConv 82.1 81.8 81.2 79.3(82.0) 69.2(81.2) 36.0(77.4) 4
MobileNet-v2 | 86.6 86.5 86.0 83.6 (85.9) 77.9(84.0) 36.4(73.0) 5

Table 6. Inference accuracy (%) of weight pool networks with different activation bitwidths. Results in brackets are accuracy after
retraining. The last column shows the minimum activation bitwidth with less than 1% accuracy drop. The lookup table bitwidth is set to 8

bit.

Network [ CM. 64-8 32-8 64-m  32-m
MC-large

TinyConv 1.06 0.83 0.75 0.60 0.57

ResNet-s 0.60 0.49 0.43 0.31 0.28

ResNet-10 5.28 3.00 222 1.87 1.61

ResNet-14 / 3.46 2.59 1.92 1.73

MobileNet-v2 | / 3.60 3.12 3.07 2.78
MC-small

TinyConv 1.95 1.49 1.33 0.99 0.89

ResNet-s 1.24 1.07 0.89 0.63 0.55

Table 7. Full-network inference latency (in seconds) with different
setups for both microcontrollers. CM. stands for CMSIS imple-
mentation, -8 means 8-bit activation precision while -m means
minimum activation precision that has less than 1% accuracy drop
that determined in Table 6. 32 and 64 are the weight pool size. /
means the network cannot fit into flash memory.

6.3 Software Based Convolution Acceleration for
Sub-byte Precision

There are a few software-focused works that develop algo-
rithms to deploy sub-byte neural networks on CPUs. (Yu
et al., 2019) utilizes a single multiplication instruction to
implement multiple sub-byte multiplications through bit-
packing, and is able to show performance improvement
for four-bit input and ternary weight network over 16-bit
baselines. (Cowan et al., 2018) and (Cowan et al., 2020)
share the same main concept and propose a software method
and corresponding optimizations for CPUs to compute sub-
byte precision more efficiently by utilizing the popcount
instruction. However, as their method has a time complexity
proportional to the total number of weight bits times the
total number of activation bits, moderate speedup over 8-bit
baseline can only be demonstrated on very low activation
and weight bitwidth (2-3 bits). (Umuroglu & Jahre, 2017)
is another work that targeting extremely low precision CNN
acceleration, with a similar idea that utilizes the popcount
instruction. Current software methods for accelerating sub-
byte neural networks have limited use cases due to their
strict requirements on activation and weight bitwidth. For
many applications, quantizing both activation and weight

to 2-3 bits can severely impact the learning capability of
neural networks. Besides, some versions require advanced
instructions that are not available for low-power microcon-
trollers like ARM Cortex MO and M3. We do not directly
compare against these works as the target applications and
platforms are not the same and they do not offer arbitrary
sub-byte precision acceleration.

7 CONCLUSION

We have proposed the first framework for efficiently deploy-
ing weight pool networks on resource-constrained proces-
sors, with compression, training and execution methodolo-
gies. The proposed weight pool networks with bit-serial
lookup table implementation support and accelerate arbi-
trary sub-byte precision execution, and can achieve up to
2.8x speedup and up to 7.5x compression compared to
8-bit networks, with less than 1% drop in accuracy. The pro-
posed framework is more efficient on large networks, both
in terms of compression and speedup, therefore is suitable
for deploying large neural networks on small microcon-
trollers. We are able to fit and accelerate relatively large
CNNs like MobileNet-v2 on a microcontroller with 1IMB
Flash memory, which otherwise will not fit in the processor
memory.
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A LoOOKUP TABLE ORDER

There are two orders that partial dot product results of the
weight pool can be stored in the lookup table, which is input
oriented order and weight oriented order, as shown in Figure
9. For weight oriented order, the lookup table can be split
into S smaller concatenated lookup tables, each containing
the results of all possible inputs related to a single weight
vector. For input oriented order, the lookup table consists
of 2M smaller lookup tables and each of them contains the
results of one input with all weight vectors.

Weight oriented LUT order

weight vector 1 | weight vector 2 | weight vector 3 weight vector S
5*2N total entries
Input O | Input 1 | Input2 | Input 3 ‘ Input 2N-1
(a)
Input oriented LUT order
’ Input 0 ‘ Input 1 ‘ Input 2 ‘ ‘ Input oN-1 ‘
5*2N total entries
weight vector 0|weight vector 1 weight vector S

(b)

Figure 9. Two LUT data orders. (a) shows the weight oriented
LUT order and (b) shows the input oriented LUT order.

B PRECOMPUTATION VS MEMOIZATION

There are two ways to avoid repeated dot-product computa-
tions, one is precomputation and the other is memoization.
For precomputation the dot products are computed between
the input vector and all weight vectors in the weight vector
pool, before the filter loop starts. Inside the filter loop, the
dot product results are directly looked up from the precom-
puted results, using the corresponding weight vector as the
input to the lookup table. Dot products are not precomputed
for the memoization method, instead, the dot product is
computed normally inside the filter loop and the result is
memoized if it has not been previously computed. If the
weight vector has been already computed, it will be retrieved
from the saved results and skip the computation. If many of
the weight vectors in the weight vector pool are not being

layer number \ # filters \ # unique weight vectors

3 64 385
7 128 54.4
11 256 61.9

Table 8. Profiling results of three layers from ResNet-14 with a
64-vector weight pool. The three columns show the layer number,
number of filters in that layer and the average number of unique
weight vectors that an input vector need to multiply with.

used for a given convolution layer, memoization may per-
form better than precomputation since fewer dot products
are computed. However if most of the weight vectors in the
weight vector pool are being used, precomputation should
be a better choice due to the additional computation and
branching in memoization caused by its checking logic.

To determine the optimal method, we profiled the weight
vector assignment using ResNet-14 (ResNet-18 without the
last block) with weight pool compression. Table 8 shows
the profiling results of three layers with different number
of filters. The weight pool size is 64. The third column
shows the average number of unique weight vectors that an
input vector needs to multiply with, and the maximum value
should be the weight pool size. The results suggest that for
layers with more than 64 filters, an input vector needs to
multiply with most of the weight vectors in the weight pool,
hence precomputation should work better than memoization.
Even for a layer with 64 filters, an input vector on average
needs to multiply more than half of the weight vectors in
the weight pool. The relatively high weight pool utilization
ratio means the overhead caused by the memoization can
overshadow the benefit it brings. We profiled the runtime of
memoization assuming only 32 (out of 64) weight vectors
are used for the entire network, which is less than the actual
number. Yet the runtime on a ResNet-14 is 1.02x slower
than not using memoization.



