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ABSTRACT
This paper presents the first industry-standard open-source machine learning (ML) benchmark to allow perfor-
mance and accuracy evaluation of mobile devices with different AI chips and software stacks. The benchmark
draws from the expertise of leading mobile-SoC vendors, ML-framework providers, and model producers. It
comprises a suite of models that operate with standard data sets, quality metrics and run rules. We describe the
design and implementation of this domain-specific ML benchmark. The current benchmark version comes as a
mobile app for different computer vision and natural language processing tasks. The benchmark also supports
non-smartphone devices, such as laptops and mobile PCs. Benchmark results from the first two rounds reveal the
overwhelming complexity of the underlying mobile ML system stack, emphasizing the need for transparency in
mobile ML performance analysis. The results also show that the strides being made all through the ML stack
improve performance. Within six months, offline throughput improved by 3×, while latency reduced by as much
as 12×. ML is an evolving field with changing use cases, models, data sets and quality targets. MLPerf Mobile
will evolve and serve as an open-source community framework to guide research and innovation for mobile AI.

1 INTRODUCTION

Mobile artificial intelligence (AI) applications are increas-
ingly important as AI technology becomes a critical differ-
entiator in smartphones, laptops, and other mobile devices.
Consequently, laptops and smartphones have incorporated
application-specific integrated circuits (ASICs) on the hard-
ware front to support AI in an energy-efficient manner. The
software front includes many code paths and AI infrastruc-
tures to support machine-learning hardware efficiently.

While support for mobile AI applications is becoming a dif-
ferentiating capability, seeing through the mist of competing
solutions is difficult for fairly evaluating improvements in
performance and efficiency. Figure 1 shows the number
of different code pathways for generating results on mo-
bile SoCs. The dashed lines represent mere possibilities,
whereas the solid lines indicate actual submissions from
various organizations. Different code paths yield different
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performance results. Therefore, benchmark-performance
transparency is essential, as it reveals which code paths were
taken, making the performance results reproducible and in-
formative for consumers. OEMs, SoC vendors, researchers,
and consumers can all benefit when mobile devices employ
AI in ways they can compare transparently and fairly.

However, a key challenge for developing a robust mobile
AI benchmark is, first and foremost, understanding the com-
plex landscape of the mobile computing ecosystem. The
end-user performance of a mobile AI device is more than
its AI hardware capability in isolation. Instead, a more ac-
curate measurement results from the AI hardware coupled
with its ML-software framework, whose net performance is
shrouded beneath layers of developer options, deployment
scenarios, and the OEMs’ lifecycles. This complexity is not
discussed nor relevant for major server-side inference bench-
marks (Gao et al., 2019; Reddi et al., 2020). As such, there
is a need for a domain-specific benchmark that can critically
compare and evaluate systems with mobile-specific models,
numerics, frameworks, metrics, and methodology.

To address the challenge, we take an open-source,
community-driven approach. A consortium of mobile ven-
dors and academic organizations with shared interests, yield-
ing collective expertise in mobile neural-network models,
data sets, and submission rules, have developed the MLPerf
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Figure 1. There are many ways to exercise a mobile SoC’s rich
suite of accelerators, which is why transparency is key.

Mobile benchmark to ensure the results are relevant to the in-
dustry and academia (MLCommons, 2020a), and beneficial
to consumers while being transparent and reproducible. The
following five principles inform the benchmark’s design:

1. The benchmark must capture the real-world mobile
system complexity involved in delivering AI perfor-
mance to users who procure a commercial device.

2. The benchmark must identify mobile-specific models
and represent diverse tasks that are challenging and
resist model- and domain-specific optimizations.

3. Each task should have an appropriate accuracy and
minimum quality threshold that matches and reflects
the metrics that matter for mobile AI device end-users.

4. The testing conditions must closely match the envi-
ronments in which mobile devices typically serve,
such as ambient temperature and battery power.

5. Performance results must be publicly reproducible
outside the submitting organization as commercial
mobile devices are globally accessible and to foster
generational ML advancements on prior achievements.

Our approach to addressing principles 1–5 was to develop
an industry-neutral open-source MLPerf Mobile app that all
benchmark tests must use. The initial version has a set of
four mobile-specific neural network models for three com-
puter vision (CV) tasks and one natural language processing
(NLP) task, each with its own accuracy and minimum qual-
ity targets. The app passes these models to the back-end
layer, which is an abstraction that allows different hardware
(and software) vendors to optimize their implementations for
neural networks. The app also has a presentation layer for
wrapping the more technical benchmark layers and the Load
Generator (“LoadGen”). The LoadGen allows representa-
tive testing of different inference platforms and use cases
by generating inference requests in a pattern and measuring
specific parameters (e.g., latency, throughput, or latency-
bounded throughput). The benchmark also offers a headless
version of the mobile application that enables laptops run-
ning non-mobile OSs to use the same benchmarks.

Two rounds of MLPerf Mobile submissions have been com-
pleted (MLCommons, 2021b). Comparing the results be-
tween these two generations reveals these key takeaways:

• Benchmarking drives generational improvements. Be-
tween two versions of the benchmark (six months),
latency improved by 2× on average and by 12× in one
case. Developing principled methods to measure mo-
bile ML performance is important to drive innovation.

• There is no one size fits all. The results show a range
of hardware and software approaches to implement
neural network models efficiently on mobile devices.
The approach needs to be driven by the app use case.

• Accelerator level parallelism (ALP) is important. Ven-
dors exercise multiple hardware accelerators concur-
rently to maximize offline throughput performance.
Therefore, there is a need for managing hardware ALP.

• State-of-the-art should compare against vendor-
backends. Mobile AI accelerators often rely on vendor-
specific SDKs and custom backends to unleash their
full potential as more general-purpose frameworks like
NNAPI can lead to 10% slower performance, or worse,
be 7× slower due to buggy support (Buch et al., 2021b).

• Numerics (still) matter. Not all mobile ML tasks benefit
from INT8 quantization. Tasks like NLP require FP16
arithmetic to be useful in real deployments, implying
not everything needs a dedicated AI accelerator.

Ideally, researchers would track MLPerf Mobile’s bench-
mark tasks, accuracy metrics, quality thresholds, rules, etc.,
to present industry-relevant evaluations that practitioners
can adopt to bridge the gap between research and prac-
tice. As the mobile AI landscape is vastly different from
desktop and cloud AI deployments, our open-source mo-
bile app can be a common baseline for integrating various
ML frameworks and models, facilitating “out of the box”
research needed for reproducibility on real devices and simu-
lators. Supported by MLCommons (MLCommons, 2020b),
MLPerf Mobile will continue to evolve and stay up-to-date.

2 MOBILE AI ECOSYSTEM CHALLENGES

Mobile AI performance is shrouded behind multiple layers
of complexity. We describe these important factors that sig-
nificantly impact mobile AI performance in the real world:
hardware heterogeneity, software fragmentation, developer
options, deployment scenarios, and OEM life cycles. Each
by itself leads to performance variability, but the combina-
tion makes AI benchmarking extremely challenging.

2.1 Hardware Heterogeneity

A given device may have a spectrum of AI-performance
capabilities, depending on which processing engines it uses.
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Figure 2. Application-development options.

Smartphones contain complex heterogeneous chipsets that
provide many different compute units and accelerators. A
typical mobile system-on-a-chip (SoC) complex includes
a CPU cluster, GPU, DSP, neural processing unit (NPU),
Hexagon Tensor Accelerator (HTA), Hexagon Vector Exten-
sions (HVX), and so on. Any or all of these components can
aid in machine-learning (ML) inference. Moreover, many
smartphones today are Arm-based, but the CPU cores gener-
ally implement a heterogeneous “big.LITTLE” architecture
(Arm, 2011). Some SoCs even have big-CPU clusters where
some CPUs clock faster than others. Also, devices fall into
different tiers with different hardware capabilities at differ-
ent prices, varying in their memory capacity and storage
features. Any processing engine can run ML workloads, but
this flexibility also makes benchmarking AI performance
difficult. Hence, there is a need for a transparent way to
benchmark a smartphone’s AI-hardware performance.

2.2 Software Fragmentation

The mobile software ecosystem is heavily differentiated
from the OS to the run-time ML framework. The diversity of
different software code paths can drastically affect hardware
performance. Hence, a transparent mechanism for operating,
introspecting, and evaluating a mobile device is essential.

Mobile devices employ various OSs: Android, iOS, Win-
dows, Ubuntu, Yocto, etc. Each OS has an ecosystem of ML
application programming interfaces (APIs) and application-
deployment options that necessitate particular solutions. Nu-
merous APIs have served in the development of ML appli-
cations. A single SoC or OEM device will often have to
support a vendor SDK and/or a plurality of frameworks.

SoC vendors offer a proprietary software development kit
(SDK) that generates optimized binaries so ML models can
run on SoC-specific hardware. These vendors also make
engineering investments to support more generic frame-
works, such as TensorFlow Lite (TFLite) (Google, 2019)
and NNAPI (Google, 2020), that provide a compatibility
layer to support various accelerators and device types. But
as resources are limited, SoC vendors prioritize their SDKs,

(a) (b) (c)

Figure 3. ML-application deployment scenarios.

resulting in less-optimal generic-framework support.

The diversity of vendor SDKs and framework-support lev-
els are all reasons why the mobile-ML software ecosys-
tem is fragmented. This situation complicates hardware-
performance assessment because the choice of software
framework has a substantial effect. A high-performance
SoC, for instance, may deliver low performance, owing to
an ill-matched framework. For example, even if a SoC in-
tegrates a high-performance ML accelerator, if a generic
Android framework like NNAPI does not support it with
high-performance driver back ends, the accelerator will func-
tion poorly when handling a network (Buch et al., 2021b).

2.3 Developer Options

The ecosystem allows application developers to choose
among several different approaches to enable machine learn-
ing on mobile devices, making it necessary to have an open-
source methodology for understanding performance. Appli-
cation developers can work through a marketplace such as
Google Play (Google, 2012) to create mobile-app variants
for every SoC vendor if they follow a vendor-SDK approach
(Figure 2a). However, doing so presents a scalability chal-
lenge because of the increased time to market and additional
development costs. An alternative is to create an application
using a native OS/framework API such as NNAPI, which
provides a more scalable approach (Figure 2b). Neverthe-
less, this alternative has a crucial shortcoming: it is only
viable if SoC vendors provide good back-end drivers to the
framework, necessitating cooperation between them and
the framework designers. A final alternative is to bind the
neural-network model to the hardware. Doing so allows
compilation of the model to a particular device, avoiding
reliance on any particular run time (Figure 2c), but this lacks
device portability which is needed for mobile computing.

2.4 Deployment Scenarios

Mobile ML applications have many potential uses. Details
of the use case determine the extent to which an ML model
is optimized for the hardware and how it runs, because of
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strong or weak ties to the device. Developers primarily
build applications without specific ties to vendor implemen-
tations. They may design custom neural-network models
that can run on any device. Thus, mobile devices often run
apps that employ unknown models for a variety of hard-
ware (Figure 3(a)). OEMs, on the other hand, build their
ML applications for their own devices. Therefore, both the
models and the device targets are known at deployment time
(Figure 3(b)). A service provider (e.g., Verizon or AT&T)
that uses a variety of hardware solutions may, however, sup-
port its service with known models, in which case both the
models and the hardware are known (Figure 3(c)). Devel-
opment of the applications deployed in these scenarios may
also take place in various ways. OEMs that manufacture
devices can use vendor SDKs to support their applications
with minimal extra effort. Given these options, it is neces-
sary to know which of these underlying approaches is being
used to produce the measured AI performance results.

2.5 OEM Lifecycle

A variety of other factors, ranging from how OEMs package
software for delivery to how software updates are issued,
also affect hardware-performance measurements. OEMs
employ vendor SoCs and associated software releases to
produce commercial mobile devices. OEMs pick up the
software updates (such as framework enhancements) from
the SoC vendors and bundle them with other updates for
periodic release. Usually, a delay occurs between the time
when an SoC vendor releases a software update and when
that performance update sees deployment. The delay is
months long. Moreover, commercial devices receive OEM
updates only for a fixed period, so they will not benefit from
software-performance enhancements afterward. Thus, get-
ting reproducible numbers is difficult without transparency.

3 MLPERF MOBILE BENCHMARKS

To tackle the challenges, we developed MLPerf Mobile (ML-
Commons, 2020a). A key aspect of our work is the method-
ology more so than the specifics of a benchmark version.

3.1 Benchmark Design Philosophy

The ML landscape is evolving and there are a plethora of
models in the wild. Mobile ML systems include a wildly
wide range of use cases, ranging from light-weight (e.g.,
classification on small 300x300 pixel images) to heavy-
weight (e.g., 50 MP camera on Xiaomi for 5× zoom) tasks.
Grappling with the rich diversity of tasks and models re-
quires a long-term perspective focused on building a robust
benchmark. In the initial version, we intentionally selected
a few machine-learning tasks that represent light- and mid-
weight mobile use cases that are stable, rather than picking
models that are still evolving where there is no agreement

on which mobile ML model versions are broadly applica-
ble. We chose networks for a small set of tasks based on
their maturity and applicability to different hardware (CPUs,
GPUs, DSPs, NPUs, etc.). As we show later in the evalua-
tion section, benchmarking these initial models still yields
helpful insights about hardware performance across various
deployment scenarios. We discuss and present our plans to
extend the benchmark suite tasks over time in Appendix E.

3.2 ML Tasks and Models

Image classification. We selected MobileNetEd-
geTPU (Howard & Gupta, 2019), a well-optimized mo-
bile model that usually provides good performance on dif-
ferent SoCs. MobileNetEdgeTPU is a descendent of the
MobileNet-v2 family optimized for low-latency and mobile
accelerators. The architecture is based on convolutional
layers with inverted residuals and linear bottlenecks, sim-
ilar to MobileNet v2. Still, it is optimized by introducing
fused inverted bottleneck convolutions to improve hardware
utilization and by removing hard-swish and squeeze-and-
excite blocks. Evaluation of the MobileNetEdgeTPU ref-
erence model employs the ImageNet 2012 validation data
set (Russakovsky et al., 2015) and requires 74.66% (98% of
FP32 accuracy) Top-1 accuracy. Before inference, images
are resized, cropped to 224x224, and then normalized.

Object detection. Our v0.7 reference model is the Sin-
gle Shot Detector (SSD) (Liu et al., 2016) with a Mo-
bileNet v2 backbone (Sandler et al., 2019)—a choice that is
well adapted to constrained computing environments. SSD-
MobileNet v2 uses MobileNet v2 for feature extraction and
uses a mobile-friendly SSD variant called SSDLite (Sandler
et al., 2019) for detection. SSD prediction layers replace
all the regular convolutions with separable convolutions
(depthwise followed by 1x1 projection). SSD-MobileNet
v2 reduces latency by decreasing the number of operations;
it also reduces the memory that inference requires by never
fully materializing the large intermediate tensors. Two SSD-
MobileNet v2 versions acted as the reference models for
the object-detection benchmark, one model replacing more
of the regular SSD-layer convolutions with depth-separable
convolutions than the other does. We used the COCO 2017
validation data set (Lin et al., 2015) and, for the quality met-
ric, the mean average precision (mAP). The target accuracy
is an mAP value of 22.7 (93% of FP32 accuracy). The pre-
processing stage resizes the image to 300x300—typical of
resolutions in smartphones—and then does normalization.

In v1.0, we updated the reference model to Mo-
bileDets (Xiong et al., 2021) with the SSDLite that is more
geared toward stressing mobile hardware accelerators such
as mobile CPUs, GPUs, EdgeTPUs and DSP. A key fea-
ture of MobileDets is that in addition to using inverted
bottlenecks as the only building block, it injects regular



MLPerf Mobile Inference Benchmark: An Industry-Standard Open-Source Machine Learning Benchmark for On-Device AI

Version Area Task Reference Model Data Set Quality Target
v0.7, v1.0 Vision Image classification MobileNetEdgeTPU (4M params) ImageNet 2012 (224x224) 98% of FP32 (76.19% Top-1)
v0.7, — Vision Object detection SSD-MobileNet v2 (17M params) COCO 2017 (300x300) 93% of FP32 (24.4% mAP)
—, v1.0 Vision Object detection MobileDET-SSD (4M params) COCO 2017 (320x320) 95% of FP32 (28.5% mAP)
v0.7, v1.0 Vision Semantic segmentation DeepLab v3+ (2M params) ADE20K (512x512) 97% of FP32 (54.8% mIoU)
v0.7, v1.0 Language Question answering MobileBERT (25M params) Mini Squad v1.1 dev 93% of FP32 (93.98% F1)

Table 1. MLPerf Mobile benchmark suite. In the second version (v1.0) of the benchmark, we updated the object detection model to be
more representative of industry needs and this is also reflected in the more stringent quality target requirements.

convolution operations into the neural network. Regular
convolutions help improve the accuracy-latency trade-off on
several hardware accelerators when placed at the appropriate
positions in the network. We continue to use COCO 2017
validation set for testing with mAP as the quality metric.
The image input size is different in MobileDets. It increases
the input image resolution from 300x300 to 320x320. Mo-
bileDets has fewer parameters than MobileNets v2, but the
high image resolution demands increased computation.

Semantic image segmentation. Our reference model for
this task in the first version is DeepLab v3+ (Chen et al.,
2018) with a MobileNet v2 backbone. DeepLab v3+ origi-
nates from the family of semantic image-segmentation mod-
els that use fully convolutional neural networks to directly
predict pixel classification (Long et al., 2015; Eigen & Fer-
gus, 2015) as well as to achieve state-of-the-art performance
by overcoming reduced-feature-resolution problems and in-
corporating multiscale context. It uses an encoder/decoder
architecture with atrous spatial pyramid pooling and a mod-
ular feature extractor. We selected MobileNet v2 as the
feature extractor because it enables state-of-the-art model
accuracy in a constrained computational budget. We chose
the ADE20K validation data set (Zhou et al., 2017) for its
realistic scenarios, cropped and scaled images to 512x512,
and (naturally) settled on the mean intersection over union
(mIoU) for our metric. Additionally, we trained the model
to predict just 32 classes (compared with 150 in the original
ADE20K data set); the 1st to the 31st are the most frequent
(pixel-wise) classes in ADE20K, and the 32nd represents all
the other classes. The mIoU depends on the pixels whose
ground-truth label belongs to one of the 31 most frequent
classes, boosting its accuracy by discarding the network’s
bad performance on low-frequency classes.

Question answering. We selected MobileBERT (Sun et al.,
2020), a BERT model that is well suited to resource-limited
mobile devices. Further motivating this choice is the
model’s state-of-the-art performance and task-agnostic na-
ture: even though we consider question answering, Mobile-
BERT is adaptable to other NLP tasks with only minimal
fine-tuning. We trained the model with a maximum se-
quence length of 384 and use the F1 score for our metric.
This task employs the Stanford Question Answering Dataset
(Squad) v1.1 Dev (Rajpurkar et al., 2016). Given a question
and a passage from a Wikipedia article, the model must ex-
tract a text segment from the passage to answer the question.

Others. Our current network choices reflect common use-
cases. Most mobile ML use cases involve computer vision.
But building on our design philosophy (Section 3.1), Ap-
pendix E discusses our plans to extend the benchmark. For
example, a mobile version of RNN-T for speech is in the
works and we will continue to add new models in the future.

3.3 Reference Code

We provide reference-code implementations in the Tensor-
Flow and TensorFlow Lite (TFLite) formats. We choose TF
because it is vendor-neutral and most vendor backends can
easily import TF code and models into their internal opti-
mization frameworks. The reference code’s goal is to iden-
tify the critical model-invocation stages. For instance, the
reference benchmarks implement the preprocessing steps
and the model’s input-generation procedure. Benchmark
submitters may readily adopt the code for their submission.
Or they may choose to optimize these stages (e.g., rewrite
them in C instead of Python) for performance—as long as
they employ all the same stages and take the same steps
to maintain equivalence. All reference models have 32-bit
floating-point weights, and the benchmark additionally in-
cludes an 8-bit quantized version (with either post-training
quantization or quantization-aware training, depending on
the tasks). The reference implementations are available as
open-source and free for users to download (MLPerf, 2019).

The reference implementation is poorly optimized. Ven-
dors that submit results to MLPerf must inherit the refer-
ence code, adapt it, and produce optimized glue code that
performs well on their hardware. For example, to handle
(quantized) inference, they need to invoke the correct soft-
ware back end (e.g., SNPE or ENN) or an NNAPI driver to
schedule code for their SoC’s custom hardware accelerators.

4 LOAD GENERATOR

This section describes how we generate load onto the system
under test (SUT) and measure inference performance.

4.1 LoadGen

To enable testing of various inference platforms and use
cases, we devised the Load Generator (“LoadGen”) (ML-
Commons, 2019), which creates inference requests in a pat-
tern and measures some parameters (e.g., latency, through-
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put, or latency-bounded throughput). It logs information
about the system during execution to enable post-run vali-
dation. Submitter modification of the LoadGen software is
forbidden to ensure the testing behavior remains intact.

As Figure 4 shows, the LoadGen uses the data sets as inputs
to the SUT. It feeds the entire data set to the SUT to verify
that the model delivers the required accuracy in accuracy
mode. It provides only a subset of images to the SUT to
measure steady-state performance in performance mode. A
seed and random-number generator allows the LoadGen to
select samples from the data set for inference, precluding
unrealistic data-set-specific optimizations.

For pre-processing, the typical image-preprocessing tasks—
such as resizing, cropping, and normalization—depend on
the ML model. This stage implements data-set-specific
preprocessing that varies by task, but all submitters must
follow the same steps. Post-processing is a data-set-specific
task that covers all the ops needed for accuracy calculations.
For example, computing the Top-N results for an image
classifier requires a Top-K op / layer after the softmax layer.

The backend for the reference benchmark implementation
(Section 3.3) is a TFLite smartphone back end that option-
ally includes NNAPI and GPU delegates. We also provide a
“dummy” back end as an example reference for proprietary
back ends; submitters replace it with whatever corresponds
to their system. For instance, Qualcomm would replace the
dummy with SNPE, and Samsung would replace it with
ENN. The back end corresponds to other frameworks such
as OpenVINO for laptops and similar large mobile devices.

4.2 Execution Scenarios

The LoadGen provides two execution modes: single stream
and offline. They reflect the operating behavior of many
mobile applications in the real world. In the single-stream
scenario, the application sends a lone inference query to the
SUT with a sample size of one. That size is typical of smart-
phones and other interactive devices where, for example,
the user takes a picture and expects a timely response. The
LoadGen injects a query into the SUT and waits for its com-
pletion. It then records the inference run length and sends
the next query. This process repeats until the LoadGen has

issued all the samples (1,024) in the task’s corresponding
data set or a minimum run time of 60 seconds has passed.

In the offline scenario, the LoadGen sends all the samples
to the SUT in one burst. Although the query sample size
remains one, as in the single-stream scenario, the number
of samples in the query is much larger. Offline mode is-
sues 24,576 samples—enough for sufficient run time. This
choice reflects applications that require multi-image process-
ing, simultaneous processing of batched input, or concurrent
application of models such as image classification and per-
son detection to photos in an album. The implementation is
usually a batched query with a batch size larger than one.

These metrics are based on best practices derived from in-
dustry feedback and open (sometimes grudging) consensus.

4.3 System Under Test

We designed the LoadGen to take advantage of any mobile
device type (laptop, tablets, or smartphones). Smartphones
can use the reference MLPerf Android app that supports
TFLite delegates and NNAPI delegates. The app queries
the LoadGen, which then queries input samples for the task,
loads them to memory, and tracks the time required to ex-
ecute the task. For laptops, submitters can build a native
command-line application. The LoadGen integrates this ap-
plication, and it supports back ends such as the OpenVINO
run time. The application generates logs consistent with
MLPerf rules, validated by the submission checker. The
number of samples necessary for performance mode and
for accuracy mode remains identical to the number in the
smartphone scenario. The only difference is the absence of
a graphical user interface for the laptop devices.

5 MODEL OPTIMIZATIONS

We describe the process to produce high-performance results
for submission. In practice, MLPerf Mobile is a competition
to produce the most competitive system performance.

5.1 Numerics

A submitter may implement minimal changes to the model
if they are mathematically equivalent or approved approxi-
mations to make the model compatible with their hardware.
The rules prohibit altering the AI models to reduce their
computational complexity; banned techniques include chan-
nel pruning, filter pruning, and weight skipping. However,
some amount of quantization techniques are permissible.

The reference models are frozen TensorFlow FP32 check-
points, and valid submissions must begin from these frozen
graphs. Submitters can export a reference FP32 TFLite
model. They can generate fixed-point models with INT8 pre-
cision from the reference FP32 models using post-training
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quantization (PTQ), but they cannot perform quantization-
aware training (QAT). Network retraining alters the neural-
network architecture, so model equivalence is difficult to ver-
ify. Also, retraining allows the submitters to use their train-
ing capabilities (e.g., neural architecture search) to boost
inference throughput, changing the benchmark’s nature.

Depending on submitter needs, however, we provide QAT
versions of the model. All participants mutually agree
on these QAT models as being comparable to the PTQ
models. In general, QAT reduces accuracy loss relative
to PTQ. Therefore, we chose the minimum-accuracy thresh-
olds (“Quality Target” in Table 1) on the basis of what is
achievable through post-training quantization without any
training data. For some benchmarks, we generated a refer-
ence INT8 QAT model using the TensorFlow quantization
tools; submitters can employ it directly in the benchmark.

Some hardware cannot deploy TensorFlow-quantized mod-
els directly, and organizations may need different fixed-point
formats to match their hardware. In such cases, we only
allow post-training quantization without training data from
a reference model. For each model, we specify a calibration
data set (typically 500 samples or images from the training
or validation data set) for calibration in the PTQ process.
Submitters can only use the approved calibration data set.

5.2 Vendor Optimized Backends / SDKs

Most chipset organizations rely on optimized software back-
ends (or libraries) to extract the best performance from
their SoCs, which often support many different hardware
accelerators (CPUs, GPUs, NPUs, DSPs, etc.). Smartphone
companies that use proprietary vendor backends or dele-
gates implement their back-end interface to the reference
MLPerf app (Figure 5, Section 5.2). To run the neural-
network models, such back ends query the correct library
(TensorFlow, TFLite, the Exynos Neural Network SDK, or
the SNPE SDK). For laptops, submitters can build a native
command-line application. The LoadGen integrates this ap-
plication, and it supports back ends such as the OpenVINO
run time. The application generates logs consistent with
MLPerf rules, validated by the submission checker. The
number of samples necessary for performance mode and
for accuracy mode remains identical to the number in the
smartphone scenario. The only difference is the absence of
a graphical user interface for laptop-based devices.

Figure 5 shows how we support all this flexibility. The refer-
ence TensorFlow models are at the root of the entire process,
which follows one of three paths. Code path 1 allows
submitters to optimize the reference TensorFlow models for
implementation through a proprietary back end (e.g., SNPE
for Qualcomm or ENN for Samsung), then schedule and
deploy the networks on the hardware. Code path 2 allows

TF Models

Vendor 
SDK Tool

TFLite
Convertor

Vendor 
Format

TFLite
(.tflite)

MLPerf Mobile 
Android App

TFLite delegate/ 
NNAPI in App

Custom or “dummy” 
backend in App

Vendor SDK

Android OS 
Smartphones + Tablets

Windows & Linux 
Tablets and Laptops

Apple iOS
Smartphones + Tablets

1

3

2

+

+

Figure 5. Benchmark supports many devices and code paths.

submitters to convert the reference TensorFlow models to a
mobile-friendly format using an exporter. These models are
then easy to deploy on the device, along with appropriate
quantizations, using the TFLite delegates to access the AI-
processing hardware. Code path 3 allows non-smartphone
submitters to run the reference TensorFlow models through
non-mobile back ends (e.g., OpenVINO) on laptops and
tablets with operating systems such as Windows and Linux.

6 RUN RULES

We developed a strict set of run rules that allow us to repro-
duce submitted results through an independent third party.
All of the MLPerf Mobile run rules and conditions are based
on best practices derived from industry input and feedback.

6.1 Reproducibility Guidelines

Test control. The mobile app runs the models in a specific
order. For each one, the model runs on the validation set to
calculate the accuracy. Performance mode follows. Single-
stream mode measures the 90th-percentile latency over at
least 1,024 samples for a minimum run time of 60 seconds
to achieve a stable performance result. Offline mode reports
the average throughput necessary to process 24,576 samples;
in current systems, the run time exceeds 60 seconds. These
values were based on input from the member organizations.

Thermal throttling. ML models are computationally heavy
and they can trigger run-time thermal throttling to cool the
SoC. We recommend maintaining an air gap with proper
ventilation and avoid flush contact with any surfaces. Also,
we require room-temperature between 20 and 25 °C.

Cooldown interval. The app provides a break setting of 0–
5 minutes between the individual tests to allow the phone to
reach its cooldown state before starting each one. If the suite
is to run multiple times, we recommend a 10-min break.

Battery power. The benchmark runs while the phone is bat-
tery powered, but we recommend a full charge beforehand
to avoid entering power-saving mode.
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Figure 6. We see a 2× improvement between v0.7 and v1.0.

6.2 Result Validation

We require that the SUT be commercially available before
publication, enabling a more tightly controlled validation,
review, and audit process. The SUT includes both the hard-
ware and software components. Submissions include all of
the mobile benchmark app’s log files, unedited. Post sub-
mission, all of the results are independently audited, along
with any modified models and code used in the respective
submissions. The vendor backend (but not the toolchain)
is included. We also evaluate any private vendor SDKs
to allow auditing of the model conversion process. The
audit process comprises an examination of log files, mod-
els, and code for compliance with the submission rules and
verification of their validity. It includes verification of the
system’s reported accuracy and latencies. To verify results,
we build the vendor-specific app, install it on the device (in
the factory-reset state), and reproduce the latency and/or
throughput numbers, along with accuracy. The results are
valid if our numbers are within 5% of the submitted scores.

7 INSIGHTS FROM BENCHMARK RESULTS

To understand what is to be gained from benchmarking,
we dissect the first two rounds of MLPerf Mobile submis-
sions. We compare version 0.7 of the results (MLCommons,
2020c) to version 1.0 (MLCommons, 2021b). SoC manufac-
turers submitted the results using the app (see Appendix A).
In addition to the insights we present here, there are various
other use cases of the benchmark (see Appendix B).

7.1 Insight 1: Benchmarking Leads to Improvements

Over about six months, the submitting organizations had
new offerings with improved ML capabilities, both in terms
of hardware and software. Results were collected on end-
user consumer devices that incorporate the SoC chipsets.
Figure 6 compares the improvement in latency for each
of the ML tasks across the two generations. Results are
grouped by SoCs. The figure also shows the average gain
for each of the ML tasks. The performance of the ML tasks
improved by ∼2×. The performance improvement resulted
from all smartphones SoCs advancing to a new generation.

The specific hardware improvements vary across each of the
SoC families. We summarize the main reasons here and pro-
vide additional system improvement details in Appendix C.

The Samsung Exynos 2100 outperforms the 990 by 12.7× on
the segmentation task. This is cause the hardware improved
by more than 2×. But the software also played a crucial
role–its uplift was 6×. Exynos 2100 has critical features that
reduce data transfer between IP blocks, which are enabled in
software through improved scheduling. The improved Qual-
comm Snapdragon 888’s new Hexagon 780 can perform 26
TOPS (73% faster than 865+) along with a resigned DSP mi-
croarchitecture. The new MediaTek’s Dimensity originally
had a single core MediaTek Deep Learning Accelerator
(MDLA), while the Dimensity 1100 has dual MDLA cores.
Associated with these changes are the software drivers. The
Dimensity 1100 uses the Neuron Delegate to replace the
NNAPI Delegate, when it is possible, as NNAPI has syn-
chronization overheard due to the intermediate hardware
abstraction layer (Figure 2b), and also discussed in Table 3.

On the laptop front, improvements primarily came from
software enhancements and minimal hardware changes. In
terms of CPU frequency, Intel’s Core i7-11375H (Intel,
2020) is 1.1× better than i7-1165G7 (Vera, 2020); in terms
of GPU frequency, i7-11375H is about 1.04× better com-
pared to i7-1165G7. For image classification and object
detection, the benchmark runs on CPU. Hence, the improve-
ments are from an increase in CPU frequency. Segmentation
and NLP models need more TOPs compared to classification
and detection. For this reason, Segmentation and NLP mod-
els work best on an integrated GPU (iGPU). Though there
is a slight improvement in iGPU performance (4% improve-
ment), we see a large improvement in NLP performance
and a marginal increase in segmentation performance. NLP
improvement is due to the OpenVINO quantized kernel.

7.2 Insight 2: No One Size Fits All Tasks & Models

No one solution dominates all the benchmarks at the overall
benchmark-level and task-specific level. Figure 7 plots the
single-stream results for the three smartphone chipsets on
each benchmark task from the v0.7 version; the same gen-
eral trend holds true for the v1.0 version. The figure shows
throughput and latency results. Each chipset offers a unique
differentiable value. MediaTek’s Dimensity scored the high-
est in object-detection and image-segmentation throughput.
Samsung’s Exynos performed well on image classification
and NLP, where it achieved the highest scores. Qualcomm’s
Snapdragon is competitive for image segmentation and NLP.

The image-classification task also employs an offline mode
for batch processing; here, Exynos delivered 674.4 frames
per second (FPS) and Snapdragon delivered 605.37 FPS.
These data points are not shown in Figure 7. Also, not all
submitters are required to submit to this offline scenario.
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Figure 7. Results from the first round (v0.7) (MLCommons, 2020c). We observe similar trends in v1.0 submission round.

Table 2 shows the details behind Figure 7. Because MLPerf
Mobile emphasizes transparency, the table includes specifics
for how a benchmark is executed in the single-stream mode
and the offline mode. The table shows the numerics (top of
cell), framework (middle of cell), and accelerator (bottom of
cell) used to produce the results. The table shows that vari-
ous hardware combinations are used to achieve good mobile
AI performance. No one hardware unit dominates all ML
tasks. In all cases, the CPU is the backbone (not included
in the table) that is orchestrating the overall execution—
including doing pre- and post-processing and other tasks the
benchmark does not measure. In contrast, as shown in the
last row of each cell, the GPU, DSPs, NPUs, and AIPs are
focused on delivering high-performance AI execution.

7.3 Insight 3: Accelerator Level Parallelism is Here

The results generally highlight another important point that
to deliver the best performance vendors rely on multiple ac-
celerators concurrently, more recently referred to as acceler-
ator level parallelism (ALP) (Hill & Reddi, 2019). Relying
on multiple accelerators allows the ML compiler frame-
work to intelligently schedule portions of the neural net-
work graph operations to different execution engines that
best match the operation’s needs. Table 2 includes details
for the image classification offline mode. In offline mode,
the focal point is the throughput of the system (not latency).

Across the offline mode results (second column) in Table 2,
multiple accelerators are used concurrently to maximize
performance. For example, Exynos uses both the NPU and
the CPU together. Similarly, on the Snapdragon chipsets,
the Hexagon Tensor Accelerator (HTA) and Hexagon Vector
Extensions (HVX) are used concurrently as part of the AI
processing (AIP) cluster. On the core i7 SoC, both the
CPU and the integrated GPU are used simultaneously. It is
uncommon to exercise ALP in the latency-bounded single-
stream scenario because the overhead of managing multiple
concurrent accelerators can quickly become a bottleneck.

7.4 Insight 4: ML Frameworks Play a Crucial Role

Given the heterogeneity of the ecosystem, the NNAPI run-
time module is a library sitting between an app and its
backend drivers. It is designed to be a common baseline

for ML on Android devices and to distribute that workload
across ML-processor units, such as CPUs, GPUs, DSPs,
and NPUs. But nearly all submissions in Table 2 make use
of proprietary frameworks (Figure 5). Vendor SDKs, such
as ENN and SNPE, give SoC vendors control over their
SoC’s performance. They can control which processor unit
or accelerator to use for AI and what optimizations to apply.

All laptop submissions employ INT8 and achieve the desired
accuracy on vision and language models. For single-stream
mode, because just one sample is available per query, some
models are incapable of fully utilizing the GPU’s compu-
tational resources. Therefore, the back end must choose
between the CPU and GPU to deliver the best overall perfor-
mance. For example, small models such as MobileNetEd-
geTPU use the CPU. For offline mode, multiple samples are
available as a single query, so inference employs both the
CPU and GPU. This level of detailed control is strongly tied
to the system’s capabilities and only the hardware vendors
are well-suited for this sort of fine-grained optimization.

Table 3 shows the performance difference for v1.0 tasks be-
tween using the generic NNAPI delegate and the optimized
Neuron Delegate. The latter has full support for MediaTek’s
Dimensity 1100. Using the optimized framework driver can
lead to over 10% difference in performance. This is because
the standard NNAPI driver does not yet fully support multi-
MDLA, which we discussed previously in Section 7.1.

7.5 Insight 5: Numerics Still Matter for Some Tasks

Quantization is crucial for mobile deployments because
quantized inference runs faster and provides better perfor-
mance and memory bandwidth than FP32 (Han et al., 2015).
The accuracy tradeoff for quantized models (especially since
no retraining is allowed in the benchmark) is tolerable in
smartphones, which seldom perform safety-critical tasks.

However, it is not always about INT8. Mobile-device de-
signers prefer both INT8 and FP16 (Table 2). All the mobile-
vision tasks employ INT8 heavily. Most vendors rely on this
format because it enables greater performance and consumes
less power, preserving device battery life. NLP favors FP16,
which requires more power than INT8 but offers better accu-
racy. More importantly, submitters use FP16 because most
AI engines today lack efficient support for non vision tasks.
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Image Classification
(single-stream)

Image Classification
(offline)

Object Detection
(single-stream)

Image Segmentation
(single-stream)

Natural-Language Processing
(single-stream)

ImageNet ImageNet COCO ADE20K Squad
MobileNetEdge MobileNetEdge SSD-MobileNet v2 DeepLab v3+ - MobileNet v2 MobileBERT

MediaTek
Dimensity 820
(smartphone)

UINT8,
NNAPI (neuron-ann),
APU

Not applicable
UINT8,
NNAPI (neuron-ann),
APU

UINT8,
NNAPI (neuron-ann),
APU

FP16,
TFLite delegate,
Mali-GPU

Samsung
Exynos 990

(smartphone)

INT8,
ENN,
NPU+CPU

INT8,
ENN,
NPU+CPU

INT8,
ENN,
NPU+CPU

INT8,
ENN,
NPU+GPU

FP16,
ENN,
GPU

Qualcomm
Snapdragon 865+

(smartphone)

UINT8,
SNPE,
HTA

UINT8,
SNPE,
AIP (HTA+HVX)

UINT8,
SNPE,
HTA

UINT8,
SNPE,
HTA

FP16,
TFLite delegate,
GPU

Intel
Core i7-1165G7

(laptop)

INT8,
OpenVINO,
CPU

INT8,
OpenVINO,
CPU+GPU

INT8,
OpenVINO,
CPU

INT8,
OpenVINO,
GPU

INT8,
OpenVINO,
GPU

Table 2. Myriad combinations of numerics, software run times, and hardware, reinforcing the need for transparency.

MediaTek
Dimensity 1100

Image
Classification

Object
Detection

Image
Segmentation

NNAPI Delegate 2.48 ms 5.05 ms 20.56 ms
Neuron Delegate 2.23 ms 4.77 ms 20.02 ms
% Improvement 10.08% 5.54% 2.70%

Table 3. Vendor-optimized delegates tend to perform better.

8 RELATED WORK

Compared to existing mobile AI benchmarks, MLPerf Mo-
bile is different in the following ways, all of which we
believe are requirements to drive the industry forward:

1. need a system-level machine learning benchmark,
designed to exercise the complete mobile system,
compared to micro-benchmarking small pieces.

2. put accuracy first and measure performance with
respect to a minimum quality target, based on com-
munity consensus, rather than measuring performance
for unchecked and arbitrary model quality targets.

3. be an open-source benchmark that provides trans-
parency into results and implementations where
submitters are required to submit their code for audits

4. support many vendor backends/SDKs and NNAPI
and TFLite delegates to unleash the SoCs’ capabilities.

5. be driven and audited by the industry, which fosters
fair and representative performance evaluations.

Due to space constraints and the lack of transparency into ex-
isting benchmarks, we indicate at least a few major require-
ments that are missing from prior art in Table 4. We provide
additional details to the extent possible in Appendix D.

One crucial requirement missing from all the other bench-
marks is that they are not driven by industry collaboration
and consensus. A community-driven effort leads to the adop-
tion of best practices that are fair to everyone. Moreover, it
helps amortize the overhead of developing a complex bench-
mark like MLPerf to meet all five requirements. It is for this

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5
Aitutu 3 7 7 3 7
AI-Benchmark 3 7 7 7 7
AIMark 3 7 7 3 7
Android MLTS 7 7 3 3 7
GeekBenchML 3 7 7 7 7
Neural Scope 3 7 7 7 7
TF Lite 7 7 3 3 7
UL Procyon AI 3 7 7 7 7
Xiaomi 3 7 3 7 7

MLPerf Mobile 3 3 3 3 3

Table 4. Comparison to other mobile ML benchmarks where they
are missing (7) at least one (or more) requirement(s).

exact reason that Table 4 shows that the other benchmarks
are each missing at least one major feature requirement.

Another major difference is measuring performance with
respect to an minimum accuracy target. Table 1 shows the
targets we set based on academic community and industry
consensus, as well as ML consumers’ feedback. Our targets
are all >93% FP32 (Table 1), even for int8 models. Other
benchmarks show results for arbitrary accuracy targets that
are less (if at all) meaningful. For example, GeekBenchML
reports performance for int8 models with 52% of FP32
accuracy for object detection and 81% of FP32 accuracy for
image classification (Geekbench, 2019). We leave it up to
the reader to interpret if such results are practically useful.

9 CONCLUSION

This paper outlines the challenges, issues, and opportunities
we faced over two years of research and development to en-
gineer an acceptable benchmark across multiple competing
organizations. We hope that the observations we make and
the app we provide enables architects, designers, and devel-
opers to push the frontiers of mobile ML systems. There
are several ongoing developments—expanding the suite,
measuring end-to-end performance, evaluating iOS, ML
framework benchmarking, measuring power and supporting
rolling submissions. Details are presented in Appendix E.
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APPENDIX

A MLPERF MOBILE APP

Measuring mobile AI performance in a fair, reproducible,
and useful manner is challenging but not intractable.

As discussed previously in Section 2, the need for trans-
parency owes to the massive hardware and software diver-
sity, which is often tightly coupled with the intricacies of
deployment scenarios, developer options, OEM lifecycles,
and so on. MLPerf Mobile focuses on ensuring transparency
for consumers by packaging the submitted code into an app.
the app is readily accessible to the public (MLCommons,
2021a). Moreover, the associated “backend” code is readily
available for review under the MLPerf rules.

Figure 8a shows the MLPerf Mobile startup screen. With a
simple tap on the “Go” button, the app runs all benchmarks
by default, following the prescribed run rules (Figure 8b),
and clearly displays the results. It reports both performance
and accuracy for all benchmark tasks (Figure 8c) and per-
mits the user to view results for each one (Figure 8d). Fur-
thermore, the configuration that generates the results is also
transparent (Figure 8e). This allows users to understand
what hardware and software configuration yielded the high-
performance results. This transparency level is the critical
missing feature from many off-the-shelf benchmarks as de-
scribed in the Related Work (Section 8).

B MYRIAD USE CASES

While we highlight a few interesting observations in Sec-
tion 7, there are many other use cases in the wild.

Application developers want to know what real-world per-
formance may look like on a device. The benchmark pro-
vides insight into the software frameworks on the various
“phones” (i.e., SoCs) for these application developers. More
specifically, the benchmark can help them quickly identify
the most optimal solution for a given platform. For applica-
tion developers who deploy their products “into the wild,”
the benchmark and the various machine-learning tasks offer
a deep perspective on the end-user experience for an actual
mobile AI application.

OEMs want to standardize the performance assessment
methodology across different mobile chipset offerings. SoC
vendors employ the same tasks, models, data sets, metrics,
and run rules, making the results comparable and repro-
ducible. Given the hardware ecosystem’s vast heterogeneity,
the standardization that the benchmark provides is vital for
progress.

Model designers want to package new machine learning
models into the mobile app so that organizations can then
easily share and reproduce the results. The app, coupled

with the LoadGen, allows model designers to test and eval-
uate the model’s performance on a real device rather than
using operation counts and model size as heuristics to es-
timate performance. This feature closes the gap between
model designers and hardware vendors—groups that have
struggled to share information efficiently and effectively.

Mobile users wants to make informed purchasing decisions.
Many users want to know whether upgrading their phone to
the latest chipset will meaningfully improve their experience.
To this end, they want public, accessible information about
various devices—something MLPerf Mobile provides. In
addition, some power users want to measure their device’s
performance and share that information with performance-
crowdsourcing platforms. Both are important reasons for
having an easily reproducible mechanism for measuring
mobile-AI performance.

Researchers often require reproducibility to push state-
of-the-art technologies. As such, researchers can employ
the mobile-app framework to test their methods and tech-
niques for improving model performance, quality, or both.
The framework is open-source and freely accessible to
academia (MLCommons, 2021a). The app can enable re-
searchers to integrate their ML optimizations and reproduce
more recent results from the literature.

Technical analysts rely on reproducibility and transparency
to provide an “apples-to-apples” comparison to assess gener-
ational performance improvements. MLPerf Mobile makes
it easy to reproduce vendor-claimed results and interpret
them because it shows how the device achieves a particu-
lar performance number and how it is using the hardware
accelerator.

C SYSTEM IMPROVEMENTS: V0.7 TO V1.0
In this section, we provide a discussion about the hardware
and system improvements that led to the significant perfor-
mance improvement between benchmark v0.7 and v1.0.

The Samsung Exynos Exynos 990 (Samsung, 2020) has a
dual-core neural processing unit (NPU) and an Arm Mali-
G77 GPU. The Exynos 2100 has an 8-core CPU on a tri-
cluster architecture with more than 30% improved multi-
core performance, Arm Mali-G78 MP14 GPU with more
than 40% performance improvement, and an AI engine with
a triple-core NPU and a DSP, based on 5nm EUV delivering
powerful performance and more than 2× the efficiency than
the previous generation. But the software also played a
crucial role. The uplift was 6×. Exynos 2100 has critical
features that reduce data transfer between IP blocks, which
are enabled in software through improved scheduling.

The Qualcomm’s Snapdragon 865+ (Qualcomm, 2020)
uses the Hexagon 698 processor for AI acceleration. It
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(a) Startup screen (b) Running (c) Reporting results (d) Run details (e) Configuration settings

Figure 8. MLPerf Mobile app.

clocks in at 15 TOPS and has a Adreno 650 GPU. The im-
proved Snapdragon 888’s new Hexagon 780 can perform 26
TOPS (73% faster than 865+). It also boasts a redesigned
DSP microarchitecture. In the Hexagon 865 DSP, the scalar,
vector and tensor execution engines were discrete indepen-
dent blocks. In the Hexagon 780, the new IP block fuses
all the scalar, tensor, and vector capabilities into a single
monolithic IP, increasing ML workloads’ performance for
the second version (v1.0).

The MediaTek’s Dimensity 820 (MediaTek, 2020) uses an
AI processing unit (APU) 3.0, an FP16 and INT16-capable
accelerator optimized for camera and imaging functions (Lin
et al., 2020). The SoC also has a 5-core GPU. The new
Dimensity 1100 is similar in features except that it is man-
ufactured on a 6 nm vs 7 nm process node with a more
powerful GPU that is helpful for ML-task acceleration. The
Dimensity 820 has single core MediaTek Deep Learning
Accelerator (MDLA), while the Dimensity 1100 has dual
MDLA cores. Associated with these changes are the soft-
ware drivers. The Dimensity 1100 uses the Neuron Delegate
to replace the NNAPI Delegate, when it is possible, as
NNAPI has synchronization overheard due to the intermedi-
ate hardware abstraction layer (Figure 2b).

For v0.7, Intel’s Willow Cove (Intel, 2020) includes its
CPU and first-generation integrated Xe-LP GPU, a Tiger
Lake i7-1165G7 (Vera, 2020). For v1.0 submission, they
used a TGL i7-11375H laptop. In terms of CPU frequency,
i7-11375H is about 1.1× better than i7-1165G7; in terms of
GPU frequency, i7-11375H is about 1.04× better compared
to i7-1165G7. For image classification and object detection,
the benchmark runs on CPU. Hence, the improvements are
from an increase in CPU frequency. Segmentation and NLP

models need more TOPs compared to classification and de-
tection. For this reason, Segmentation and NLP models
work best on an integrated GPU (iGPU). Though there is
a slight improvement in iGPU performance (4% improve-
ment), we see a large improvement in NLP performance
and a marginal increase in segmentation performance. NLP
improvement is due to the OpenVINO quantized kernel.

D DETAILED PRIOR ART COMPARISON

In this section, we provide a detailed comparison of other
existing mobile AI benchmarks as compared to the summary
we provided in Section 8. The key differences stem from
the following:

• Performance: We support vendor SDKs.
Other benchmarks can only support NNAPI
and TFLite delegates (e.g., see results here:
https://browser.geekbench.com/ml/v0/inference).
While it is easier for developers to use NNAPI and
TFLite delegates, they don’t showcase the hardware’s
full capabilities. Table 3 shows performance varies
by 10% based on delegates. But depending on the
chipset, performance between delegates and vendor
SDKs can vary (sometimes) by 7x due to poor/buggy
op implementations (eg. Fig 5 (Buch et al., 2021b))!
OEMs use vendor SDKs to speed up everyday apps
like photos, camera etc. So OEMs want devices to
perform well, and benchmarking vendor SDKs is
essential. But this needs open-source + vendor support,
which only the MLPerf Mobile benchmark supports.

• Accuracy: In MLPerf Mobile, accuracy comes
first. Performance is measured with respect to that
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minimum quality target. Table 1 shows the accuracy
targets we set based on community and industry
consensus. Our quality targets are all >93% FP32
(Table 1). Other benchmarks show results for arbitrary
accuracy targets that are less (if at all) meaningful,
e.g. int8 models with 52% of FP32 accuracy for
object detection and 81% of FP32 accuracy for
image classification. Such models would not be
deployed and will indeed mislead the industry. See e.g.
https://browser.geekbench.com/ml/v0/inference/94248.

• Transparency: MLPerf is the only transparent mo-
bile ML benchmark. Geekbench ML, AI-Benchmark,
etc. do not transparently provide and/or describe
their summary-score/weighting rationale, model prove-
nance, quantization method, and optimization tech-
niques. This makes reproducibility nearly impossible,
unless with MLPerf Mobile.

• Validity: MLPerf has a results audit process (Section
VI.B). MLPerf hires an independent auditor to review
and replicate the results using the vendor-submitted
code. Unlike MLPerf, none of the other benchmarks
do this, nor do they make their code publicly available.

More specifically, here are the detailed comparsions against
the benchmarks listed in Table 4.

Aitutu employs vendor SDKs to implement image classifi-
cation based on the Inception V3 neural network (Szegedy
et al., 2015), using 200 images as test data (Antutu, 2021;
2019). The object-detection model is based on SSD-
MobileNet (Howard et al., 2017; Liu et al., 2016), using
a 600-frame video as test data. The benchmark score is a
measure of speed and accuracy—faster results with higher
accuracy yield a greater final score. However, it is a closed-
source application which limits result transparency.

AI-Benchmark performs an machine-learning-
performance evaluation on mobile systems with AI
acceleration that integrate HiSilicon, MediaTek, Qualcomm,
Samsung, and UniSoc chipsets (Ignatov et al., 2019).
It evaluates 21 deep-learning tasks, including inference
speed, accuracy and stability. It runs pre-selected models
with various bit widths (INT8, FP16, and FP32) on
the CPU and open-source or vendor-proprietary TFLite
delegates. Performance-report updates appear on a
website (AI-Benchmark, 2019) after each major release
of TFLite/NNAPI and new SoCs with AI acceleration.
However, vendors cannot provide optimized SDKs solutions
as in MLPerf, which makes a big difference.

AImark by Master Lu (Ludashi) (AImark, 2018) is an An-
droid and iOS application, and uses vendor SDKs to im-
plement its benchmarks. It includes ResNet-34 (He et al.,
2015), Inception V3 (Szegedy et al., 2015), SSD-MobileNet
(Howard et al., 2017; Liu et al., 2016), and DeepLab v3+

(Chen et al., 2018). The benchmark judges mobile-phone
AI performance by evaluating recognition efficiency, and it
provides a line-test score. However, it too is closed-sourced
which limits transparency and adoptability.

Android Machine Learning Test Suite (MLTS) is part of
the Android Open Source Project (Google, 2017). MLTS
includes an app that allows us to test the latency and accu-
racy of quantized and floating-point TFLite models (e.g.,
MobileNet and SSD-MobileNet) against a subset of the
Open Images Dataset (Kuznetsova et al., 2020). It contains
tests to validate the behavior of the drivers in corner case
conditions, not do performance benchmarking.

GeekBenchML assesses mobile ML inference perfor-
mance (Geekbench, 2019). It supports TFLite and NNAPI
delegates, but it lacks supports for vendor SDKs backends
which are important for OEM applications and unlocking
the full SoC performance. Also, it lacks strict minimum ac-
curacy targets (e.g. Table 1), without which the performance
results can be meaningless.

MLPerf Inference is another industry-standard open bench-
mark (Reddi et al., 2020). MLPerf Mobile serves the smart-
phone industry (4 Billion devices), which presents its own
unique challenges as discussed in Section 2. Our findings
around ALP, NNAPI vs. vendor SDKs etc. are domain-
specific and reveal insights that are unique to mobile device
performance, which MLPerf Inference does not because it is
a benchmark for server-scale ML deployments, not mobile.

Neural Scope from National Chiao Tung University (Neu-
ralScope, 2020a;b) developed an NNAPI application sup-
porting FP32 and INT8 precisions. The benchmarks com-
prise object classification, object detection, and object seg-
mentation, including MobileNet v2 (Sandler et al., 2019),
ResNet-50 (He et al., 2015), Inception V3, SSD-MobileNet
(Howard et al., 2017; Liu et al., 2016), and ResNet-50 with
atrous-convolution layers (Chen et al., 2017). Users can run
the app on their mobile devices and immediately receive a
cost/performance comparison, but it lacks the open-source
transparency that is direly needed.

TensorFlow Lite provides a utility to measure the latency
of any TFLite model (Google, 2019). A wrapper API is
also available to reference how these models perform when
embedded in an Android application. Users can select the
NNAPI delegate, and they can disable NNAPI in favor of a
hardware-offload back end. It is focused on benchmarking
individual TFLite operators’ performance, not ML tasks
with rules and metrics.

UL Procyon AI Inference Benchmark from UL Bench-
marks, VRMark (UL, 2020a;b) is an Android NNAPI CPU-
and GPU-focused AI benchmark. It contains MobileNet
v3 (Howard & Gupta, 2019), Inception V4 (Szegedy et al.,
2015), SSDLite MobileNet v3 (Howard & Gupta, 2019; Liu



MLPerf Mobile Inference Benchmark: An Industry-Standard Open-Source Machine Learning Benchmark for On-Device AI

et al., 2016), DeepLab v3 (Chen et al., 2018), and other mod-
els. It also attempts to test custom CNN models but uses
an AlexNet (Krizhevsky et al., 2012) architecture to evalu-
ate basic operations. The application provides benchmark
scores, performance charts, hardware monitoring, model
output, and device rankings. But it only compares NNAPI
implementations on FP and INT-optimized models, not other
frameworks.

Xiaomi’s Mobile AI Benchmark provides an end-to-end
open-source tool for evaluating model accuracy and latency
(Xiaomi, 2018). The tool includes a daily performance-
benchmark run for various neural-network models (mainly
on the Xiaomi Redmi K30 Pro smartphone). The tool has a
configurable back end that allows users to employ multiple
ML-hardware-delegation frameworks (including MACE,
SNPE, and TFLite). However, it is not designed for the
broad ecosystem of different vendors’ mobile devices.

E FUTURE WORK

To enable the myriad use cases and reveal additional mobile
processor insights, we are engaged in numerous activities.

Expanding the benchmark suite is an obvious area of im-
provement. We are working to expand the scope to include
more tasks and models, along with different quality targets.
Examples include additional vision tasks, such as super-
resolution, as well on-device speech recognition (He et al.,
2018). Our current network choices reflect common use
cases, most mobile ML use cases involve computer vision.
But our NLP Q&A task & Mobile BERT task are heavier.
Speech RNN-T is in the works - we’re working with Google
and Facebook engineers to build a mobile model version.

Mobile has more heavy-duty models than our initial selec-
tion. Super-resolution and high-resolution models are im-
portant use cases, but they are still evolving. However, there
is no agreement on which mobile ML versions are broadly
applicable for these types of use cases. Also, the metrics
for evaluating these tasks are not clearly defined. The other
issue is a lack of commercially distributable datasets for
these tasks. Thus, to begin, we included reliable models that
were stable and could be improved over time.

End-to-end performance is important as user-perceived
latency includes often includes pre- and post-processing
overheads, and it has been shown to be non-negligible (Buch
et al., 2021a). In the future, we may consider extending the
scope of measurements.

iOS support recently became available. Example uses can
be found online (Schilling, 2021). Apple’s iOS is a major
AI-performance player that brings additional hardware and
software diversity and we expect results in the near future.

Measuring software frameworks is essential. As we de-

scribed in Section 2, software performance—and, more
importantly, its capabilities—is crucial to unlocking a de-
vice’s full potential. Enabling apples-to-apples comparison
of software frameworks on a fixed hardware platform has
merit. The back-end code path in Figure 5 (code path 1) is
a way to integrate different machine-learning frameworks
to determine which one achieves the best performance on a
target device.

Power measurement is a major area of potential improve-
ment. Since mobile devices are battery-constrained, evalu-
ating mobile AI’s power draw is important. While we cur-
rently do not account for power, most smartphone chipsets
are capped at a 3W TDP, so it provides an artificial ther-
mal/power ceiling.

Rolling result submissions are needed as new devices fre-
quently arrive, often in between the calls for submissions.
We plan to add “rolling submissions” to encourage ven-
dors to submit their scores continuously, which would allow
up-to-date and consistent reporting of the AI performance.
Technical roadmaps like IRDS (IRDS, 2016) rely on this
data to make informed recommendations to policymakers
and funding agencies.

F ARTIFACT APPENDIX

F.1 Abstract

The MLPerf Mobile App artifact is an Android app which
provides latency and accuracy benchmarking capabilities
for four mobile-targeted neural network models, evaluated
on three computer vision tasks and one natural language
processing task. The app can be run standalone to evaluate
performance (“performance mode”) or optionally on full val-
idation datasets to evaluate both accuracy and performance
(“accuracy mode”). Additionally, smartphone vendors can
provide optimized back-end implementations to take advan-
tage of architecture-specific features to increase inference
speed. We provide instructions here for reproducing perfor-
mance mode evaluations without a custom back-end. The
app is open-source, and a pre-built APK is available to re-
viewers on request (Sec. F.3.1).

F.2 Artifact check-list (meta-information)
• Program: MLPerf Mobile App

• Compilation: Android Studio (version >= 4.0), TensorFlow
Lite

• Binary: mlperf app.apk

• Datasets: Depends on ImageNet ILSVRC2012,
COCO2017, ADE20K, and SQuAD 1.1, which are avail-
able for download online.

• Models: Depends on MobileNetEdgeTPU, SSD-MobileNet
v2, MobileDET SSD, Deeplabv3+ - MobileNetv2, Mobile-
BERT, which are available for download online.
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• Run-time environment: Android 10.0+ (API 29)

• Hardware: Android smartphones

• Run-time state: On battery power, with sufficient ven-
tilation and in a room temperature between 20-25C, with
cooldown periods of 5 minutes between tests.

• Metrics: Queries per second, and optionally, Top-1 accu-
racy, mAP, mIoU, F1 score

• Output: Displayed numerical results

• Experiments: On-device benchmark measurements should
be within the allowed quality targets (Table 1) and within 5%
of vendor-reported metrics (Sec. VI-B).

• How much disk space required (approximately)?: under
100MB

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours

• How much time is needed to complete experiments (ap-
proximately)?: Under 1 hour

• Publicly available?: The source code for the Android
APK is archived here: [https://doi.org/10.5281/
zenodo.6416132]. The source code is also available
on github at [https://github.com/mlcommons/
mobile_app_open/tree/android-v2]. Build arti-
fact is distributed only to reviewers.

• Code licenses (if publicly available)?: https:
//github.com/mlcommons/mobile_app_open/
blob/master/LICENSE.md

F.3 Description

F.3.1 How delivered

Instructions for building the MLPerf Mobile App
are provided at https://github.com/mlcommons/
mobile_app_open/tree/android-v2, and in the
archived version of this branch at https://doi.org/
10.5281/zenodo.6416132. For convenience, we also
have provided prebuilt Android APKs for Artifact Eval-
uation reviewers to use. Reviewers can email William
Chou (wchou@qti.qualcomm.com) and Wookie Hong
(jwookie.hong@mlcommons.org) to request access to the
pre-built APK.

F.3.2 Hardware dependencies

Smartphones equipped with the MediaTek Dimensity 820,
Samsung Exnyos 990, and Qualcomm Snapdragon 865+
were used in the evaluation. Some additional Android smart-
phone models are supported.

F.3.3 Data sets

For running benchmarks in “performance mode” no
additional datasets are required to be downloaded,
and all data needed is present within the APK. The
following four datasets are used in the “accuracy
mode” benchmark evaluation: ImageNet ILSVRC2012,
COCO2017, ADE20K, and SQuAD 1.1. Instructions

on obtaining and formatting the datasets are available
at https://github.com/mlcommons/mobile_
app_open/blob/android-v2/android/cpp/
datasets/README.md which is included as part of the
source APK repository, and includes scripts for reformatting
the datasets to the format expected by the MLPerf Mobile
App.

F.4 Installation

For reviewers, we provide a prebuilt APK (Sec. F.3.1)
which can be installed by transferring the APK to an An-
droid phone or SDCard and selecting the APK through
the file browser. To evaluate in “performance mode” only
the APK itself is needed. For non-reviewers, instructions
for building and installing the MLPerf Mobile App APK
are provided at https://github.com/mlcommons/
mobile_app_open/tree/android-v2. In particu-
lar there are multiple pathways documented for building the
app, including via Bazel, Docker, and Android Studio.

F.5 Evaluation and expected result

Open the MLPerf Mobile App and click the gear/settings
icon and ensure “Submission mode” is toggled off (this
ensures the app in “performance mode” where accuracy is
not evaluated on the full validation datasets). “Cooldown”
can be enabled to add to include a 5 minute pause betweeen
benchmarks to avoid thermal throttling. Click back to exit
the settings page, and scroll to the bottom to select the “Test”
or “Test Again” button to begin the evaluation.

Once the suite of benchmarks is completed, results (as
queries per second) will be displayed for Image Classifi-
cation, Object Detection, Image Segmentation, Language
Processing, and Image Classification (offline).

F.6 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/
submission-20190109.html

• http://cTuning.org/ae/
reviewing-20190109.html

• https://www.acm.org/publications/
policies/artifact-review-badging
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