
REX: REVISITING BUDGETED TRAINING WITH AN IMPROVED SCHEDULE

John Chen 1 Cameron Wolfe 1 Anastasios Kyrillidis 1

ABSTRACT
Deep learning practitioners often operate on a computational and monetary budget. Thus, it is critical to design
optimization algorithms that perform well under any budget. The linear learning rate schedule is considered the
best budget-aware schedule (Li et al., 2020), as it outperforms most other schedules in the low budget regime.
On the other hand, learning rate schedules –such as the 30-60-90 step schedule– are known to achieve high
performance when the model can be trained for many epochs. Yet, it is often not known a priori whether one’s
budget will be large or small; thus, the optimal choice of learning rate schedule is made on a case-by-case basis. In
this paper, we frame the learning rate schedule selection problem as a combination of i) selecting a profile (i.e., the
continuous function that models the learning rate schedule), and ii) choosing a sampling rate (i.e., how frequently
the learning rate is updated/sampled from this profile). We propose a novel profile and sampling rate combination
called the Reflected Exponential (REX) schedule, which we evaluate across seven different experimental settings
with both SGD and Adam optimizers. REX outperforms the linear schedule in the low budget regime, while
matching or exceeding the performance of several state-of-the-art learning rate schedules (linear, step, exponential,
cosine, step decay on plateau, and OneCycle) in both high and low budget regimes. Furthermore, REX requires
no added computation, storage, or hyperparameters.

1 INTRODUCTION

While hardware has consistently improved (Sze et al., 2017;
Shawahna et al., 2019), the cost of training deep neural
networks (DNNs) has continued to increase due to growth
in the size of models and datasets (Krizhevsky et al., 2012;
Devlin et al., 2019; et al., 2020a; Chen et al., 2020b). One
key component of the cost is the need to tune the hyperpa-
rameters of the model (Yang & Shami, 2020). Outside of
the largest companies in the field, most practitioners have to
trade-off the number of epochs with the number of experi-
mental trials. Whilst the community has generally agreed
that, for example, 90 epochs is a reasonable training length
for a ResNet-50 architecture on ImageNet (He et al., 2016;
Huang et al., 2017; Zagoruyko & Komodakis, 2016), there
simply may not be sufficient monetary budget to perform
such extensive training for certain projects. Further, it is
generally not easy to predict the number of epochs required
to maximize the performance of the model apriori, particu-
larly if the input data may be continually changing. Thus,
it is important to consider the optimization of DNNs for a
diverse range of budgets.

Stochastic Gradient Descent (SGD) with momentum and
*Equal contribution 1Rice University, Houston, USA. Corre-

spondence to: John Chen <johnchen@rice.edu>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

Adam are two of the most widely used optimizers for DNNs
(He et al., 2016; Huang et al., 2017; Zagoruyko & Ko-
modakis, 2016; Devlin et al., 2019; et al., 2020a; Redmon
& Farhadi, 2018). Whether the task is image classification,
object detection, or fine-tuning in natural language process-
ing, both optimizers must be combined with some form of
learning rate decay to achieve good performance (He et al.,
2016; Huang et al., 2017; Zagoruyko & Komodakis, 2016;
Devlin et al., 2019; et al., 2020a; Redmon & Farhadi, 2018)
(see Tables 4-11). The aforementioned tasks are arguably
the most widely used applications of deep learning.1

The learning rate schedule is particularly important in the
budgeted training setting. Moreover, of the widely used
schedules, the best learning rate schedule for a small number
of epochs is generally not the best for a large number of
epochs (see Tables 4-11). This is a significant challenge,
since it is difficult to know apriori if the current budget lies
in the high or low budget regime. This raises two questions:
Can we close the budget-induced gap in the performance of
existing learning rate schedules? And, if this is not possible,
is there a learning rate schedule that performs well in both
low and high budget regimes?

We answer both questions through a novel lens.

1There are some cases in which learning rate decay is not al-
ways useful, such as for Generative Adversarial Networks (Good-
fellow et al., 2014; Arjovsky et al., 2017), but this is generally a
small proportion of all deep learning activities.



REX: Revisiting Budgeted Training with an Improved Schedule

Table 1. Performance of different schedules, ranked according to the % of Top-1 or Top-3 finishes, out of a total of 28 experiments. Top-1
(Top-3) refers to the best (best-3) performance for a particular model/dataset/base optimizer/epoch setting. Low (high) budget includes
1%, 5%, and 10% (25%, 50%, and 100%) of the full epochs. The Decay on Plateau variant is aggregated into the Step Schedule method
where we take the max performance for each setting.

Low budget (<25%) High budget (≥25%) Overall

Method Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

None 0% 0% 2% 10% 1% 5%
Exp decay (Abadi et al., 2015) 5% 7% 5% 14% 5% 11%

OneCycle (Smith, 2018) 15% 49% 12% 40% 13% 45%
Linear Schedule (Abadi et al., 2015) 10% 78% 12% 62% 11% 70%

Step Schedule (He et al., 2016) 2% 12% 7% 38% 5% 25%
Cosine Schedule (Loshchilov & Hutter, 2017b) 2% 66% 10% 62% 6% 64%

REX 73% 95% 67% 88% 70% 92%

Figure 1. Popular schedules with various sampling rates. 50-75 refers to sampling once at 50% and 75% of total epochs. Similarly for
33-66 and 25-50-75. 10-10 refers to sampling once every 10% of total epochs. Similarly for 5-25 and 1-100. Every iteration is
the maximum sampling rate. Left: Step schedule. Left Middle: Linear Schedule. Right Middle: REX Schedule. Right: Schedules with
their usual sampling rate.

We decompose the problem of selecting a learning rate
schedule as a two-part process of i) selecting a profile and
ii) selecting a sampling rate. The profile is the function
that models the learning rate schedule, and the sampling
rate is how frequently the learning rate is updated, based on
this profile. In this view, we i) analyze existing schedules,
ii) propose a novel profile and sampling rate combination,
and iii) benchmark the performance of numerous schedules.
We also demonstrate it is possible to boost the performance
of existing learning rate schedules by introducing a hyperpa-
rameter that delays the commencement of the decay sched-
ule. However, because adding an extra hyperparameter is
prohibitive in the budgeted setting, we also propose a new
schedule, REX, which performs at a state-of-the-art level for
both low and high budgets across a large variety of settings
without the extra hyperparameter tuning.

Specifically, our contributions are as follows:
• We pose learning rate schedules as the combination of a

profile and a sampling rate and identify that there is no
optimal profile for all sampling rates. Namely, we show
that no existing, popular learning rate schedule achieves
state-of-the-art performance in both high and low budget
regimes.

• We propose a new profile and sampling rate combina-
tion. We find that carefully tuning the start of the learning
rate decay for existing schedules can result in significant
performance improvements in both high and low budget
regimes. However, this introduces an extra hyperparame-
ter, which is prohibitive for budget-limited practitioners.
Our proposed schedule can be understood as an interpola-
tion between the linear schedule and the delayed variants.

• Our proposed schedule, REX, is based on observations of
the above, and we validate its state-of-the-art performance
across seven settings, including image classification, ob-
ject detection, and natural language processing.

Our goal is to introduce an easy-to-use, state-of-the-art
learning rate schedule with no extra hyperparameters that
performs well in all budget regimes and can be easily imple-
mented and adopted.

2 RELATED WORKS

There have been many works related to tuning the learn-
ing rate. There is a connection between learning rate and
momentum (Yuan et al., 2016), and there are methods
which alter the momentum (Sutskever et al., 2013; Zhang



REX: Revisiting Budgeted Training with an Improved Schedule

Table 2. We demonstrate learning rate schedules and sampling rates on RN20-CIFAR10-SGDM (Top) and RN38-CIFAR10-SGDM
(Bottom) (He et al., 2016), holding the learning rate constant. There is no best profile for all sampling rates. Each profile excels at one end
of the spectrum. 50-75 (He et al., 2016) refers to sampling once at 50% and 75% of total epochs. Similarly for 33-66 and 25-50-75.
10-10 refers to sampling once every 10% of total epochs. Similarly for 5-25 and 1-100. Every iteration is the maximum sampling
rate.

RN20-CIFAR10-SGDM 15 Epochs 75 Epochs 300 Epochs

Sampling Rate Step Linear REX Step Linear REX Step Linear REX

50-75 14.48 16.96 20.79 9.44 12.42 18.05 7.32 10.15 12.41
33-66 17.89 25.80 24.45 9.72 13.38 15.98 7.93 11.90 11.43

25-50-75 16.52 18.77 26.13 9.73 12.31 12.59 8.46 8.26 12.31
10-10 17.98 16.35 16.48 10.41 9.40 11.17 8.67 8.26 8.24
5-25 18.87 13.83 15.17 9.79 8.94 9.22 8.85 8.24 8.50
1-100 18.53 13.91 13.34 10.61 8.72 8.60 9.20 7.97 7.74

Every Iteration 19.19 13.09 12.86 9.97 8.89 8.37 9.24 7.62 7.52

RN38-CIFAR10-SGDM 15 Epochs 75 Epochs 300 Epochs

Sampling Rate Step Linear REX Step Linear REX Step Linear REX

50-75 13.57 17.31 18.47 7.59 12.89 14.38 6.66 10.07 9.37
33-66 14.96 19.16 18.71 7.74 13.64 17.57 6.70 11.53 11.30

25-50-75 15.69 14.18 19.77 7.99 9.10 15.07 6.73 7.59 8.44
10-10 16.58 13.34 14.46 7.87 8.33 9.75 7.60 6.48 6.50
5-25 17.16 12.63 11.71 8.40 7.42 7.13 8.79 6.18 6.41
1-100 17.20 11.93 11.13 8.54 7.06 7.17 9.11 6.12 6.17

Every Iteration 17.97 12.11 10.95 8.72 7.10 6.86 9.31 5.89 6.09

& Mitliagkas, 2017; Odonoghue & Candes, 2015; Lucas
et al., 2018; Chen et al., 2020a). There is also a connection
between learning rate and batch sizes (Smith et al., 2017;
You et al., 2017; Goyal et al., 2018). The most popular
learning rate tuning mechanisms fall into two categories:
Automatically tuning the learning rate on a per-weight basis
and decaying the learning rate globally.

Many adaptive learning rate optimizers have been proposed.
Modern learning rate adaptive methods began with Ada-
Grad (Duchi et al., 2011), which was shown to have good
convergence properties, especially in the sparse gradient
setting. AdaDelta (Zeiler, 2012) was proposed to fix a units
issue with AdaGrad. RMSprop (Hinton et al., 2012) em-
ployed a running estimate of the second moment to resolve
the strictly decreasing learning rate of AdaGrad. The most
popular adaptive learning rate optimizer is Adam (Kingma
& Ba, 2014) and its variants (Loshchilov & Hutter, 2017a;
Liu et al., 2020). Yet, in practice, adaptive learning rate
algorithms perform the best when coupled with a learning
rate schedule (Devlin et al., 2019; Liu et al., 2020).

In deep learning, the step schedule was widely used in early
computer vision work (Krizhevsky et al., 2012; He et al.,
2016; Huang et al., 2017). This was often combined with
SGD with Momentum to achieve state-of-the-art results
(He et al., 2016; Zagoruyko & Komodakis, 2016; Huang

et al., 2017; Redmon et al., 2016). In Natural Language
Processing, AdamW (Loshchilov & Hutter, 2017a) is often
paired with a cosine or linear learning rate decay for training
and fine-tuning transformers (et al., 2020b).

The aforementioned schedules are widely available and im-
plemented in the most popular software (et al., 2020b; Abadi
et al., 2015; Paszke et al., 2017), in addition to the expo-
nential decay schedule, OneCycle (Smith, 2018), cosine
decay with restarts (Loshchilov & Hutter, 2017b) and others
(Smith, 2017).

While some schedules may be preferred for achieving state-
of-the-art results, it has been suggested that the linear sched-
ule is most suitable for the low budget scenario (Li et al.,
2020), which may be of more relevance to practitioners.

3 BUDGETED TRAINING: PROFILES AND
SAMPLING RATES

Challenges in adapting learning rate schedules to the
budgeted setting. The primary hyperparameter in DNN op-
timization is the initial learning rate. While good heuristics
often exist for tuning common hyperparameters, such as set-
ting momentum β = 0.9 or setting a 30-60-90 learning
rate schedule (Zagoruyko & Komodakis, 2016; Huang et al.,
2017; Hu et al., 2017), the initial learning rate remains to be



REX: Revisiting Budgeted Training with an Improved Schedule

Figure 2. REX, linear, and delayed linear schedules. Left: VGG16-CIFAR100-SGDM. Left Middle: VGG16-CIFAR100-ADAM. Right
Middle: RN38-CIFAR100-SGDM. Right: RN38-CIFAR100-ADAM. The red dashed line represents the error of the step schedule
for that setting trained with 100% of the epochs. Linear Delayed X% refers to delaying the linear decay till X% of the total epochs
have passed, before decaying linearly to 0. For example, in the left-middle plot, for small % of epochs, REX outperforms the linear
schedule, which outperforms the delayed variants. However, for large epochs, the linear schedule is unable to achieve the state-of-the-art
performance of the step schedule, while REX and the delayed linear schedules are able to surpass the step schedule.

Table 3. Summary of experimental settings.

Experiment short name Model Dataset Maximum Epochs

RN20-CIFAR10 ResNet20 CIFAR10 300 (He et al., 2016)
RN50-IMAGENET ResNet50 ImageNet 90 (Huang et al., 2017)
VGG16-CIFAR100 VGG-16 CIFAR100 300 (He et al., 2016)
WRN-STL10 Wide ResNet 16-8 STL10 200 (Chang et al., 2017)
VAE-MNIST VAE MNIST 200 (Yeung et al., 2017)
YOLO-VOC YOLOv3 Pascal VOC 50 (Tripathi et al., 2016)
BERTBASE-GLUE BERT (Pre-trained) GLUE (9 tasks) 3 (Devlin et al., 2019)

tuned. However, in the budgeted training setting, the learn-
ing rate schedule turns into a hyperparameter. Adapting, for
example, the 30-60-90 rule for Image Classification or
Object Detection is not straightforward, and naively follow-
ing the same rules for a smaller number of epochs results in
sub-optimal results (see Step Schedule in low epoch settings
in Tables 4-11). Additionally, following the 50-75 rule
(He et al., 2016) on RN20-CIFAR10 for a training budget
that is 1% of the usual total epochs can result a 5% absolute
error gap with the best-performing schedule. We assume
that, in the budgeted training setting, the number of epochs
is still pre-defined, but can be significantly less than the
usual total epochs.

Profiles and sampling rates. To formalize the process of
identifying a good learning rate schedule, we decompose
the learning rate schedule as a combination of a profile
curve and a sampling rate on that curve. The profile is the
function that models the learning rate schedule and dictates
the general curve of the learning rate schedule. In most –but
not all (Li & Arora, 2020)– applications, this function starts
at a high initial value and ends near zero. The sampling rate
is how frequently the learning rate is updated and dictates
the smoothness of the curve. At one extreme, the linear
learning rate schedule, and many others, samples from the
profile at each iteration, and at the other extreme the step
learning rate schedules samples only twice or thrice across

the entire training procedure. For example, the 50-75 step
schedule can be approximated as sampling twice from a
particular, exponentially-decaying profile. See Figure 1 for
some examples of schedules with their associated profile
and sampling rates.

Lack of an optimal profile. While there may be limited
motivation to pick a particular sampling rate, this intro-
duces an interesting question: Does there exist an optimal
profile for all reasonable sampling rates? In Table 2, we
benchmark three profiles: i) the 50-75 step schedule (He
et al., 2016) approximated as a tuned exponentially decay-
ing profile ; ii) the linear profile (Abadi et al., 2015; Paszke
et al., 2017); and, iii) the REX profile proposed in this
paper (to be defined in the next subsection). These three
profiles represent smoothly-decaying learning rate sched-
ules with varying curvatures. We find that different profiles
perform best for different sampling rates. The approximated
Step schedule profile performs best with low sampling rates,
while the linear and REX profiles perform best with high
sampling rates. Furthermore, the approximated Step sched-
ule profile performs worst for a small and medium number
of epochs and best for a high number of epochs. The REX
profile performs best for a small and medium number
of epochs. While the Step schedule is consistently used
to achieve state-of-the-art results in Computer Vision (He
et al., 2016; Zagoruyko & Komodakis, 2016; Huang et al.,



REX: Revisiting Budgeted Training with an Improved Schedule

Table 4. RN20-CIFAR10. The number of epochs was predefined before the execution of the algorithms. Bold red indicates Top-1
performance, black bold is Top-3.

SGDM 1% 5% 10% 25% 50% 100%

+ Step Schedule 32.14 ± .34 14.94 ± .27 11.80 ± .11 8.82 ± .25 8.43 ± .07 7.32 ± .14
+ Cosine Schedule 28.49 ± .25 13.05 ± .17 10.62 ± .29 8.80 ± .08 8.10 ± .13 7.78 ± .14

+ OneCycle 40.14 ± 2.62 18.93 ± 1.85 12.74 ± .36 10.83 ± .25 9.23 ± .19 8.42 ± .12
+ Linear Schedule 28.70 ± 1.13 13.09 ± .13 10.85 ± .15 9.03 ± .24 8.15 ± .12 7.62 ± .12
+ Decay on Plateau 41.98 ± 3.20 25.93 ± .45 11.29 ± .35 9.05 ± .07 8.26 ± .07 7.97 ± .14

+ Exp decay 31.31 ± 1.34 14.85 ± .38 11.56 ± .22 9.55 ± .09 9.20 ± .13 7.82 ± .05

+ REX 27.94 ± .46 12.86 ± .27 10.23 ± .13 8.37 ± .09 7.52 ± .24 7.52 ± .05

Adam 42.10 ± 2.71 23.01 ± 1.10 16.58 ± .18 13.63 ± .22 11.90 ± .06 11.94 ± .06
+ Step Schedule 30.72 ± .16 15.41 ± .26 12.20 ± .11 10.47 ± .10 8.75 ± .17 8.55 ± .05

+ Cosine Schedule 29.20 ± .24 14.31 ± .28 11.45 ± .27 9.56 ± .12 9.15 ± .12 8.93 ± .07
+ OneCycle 37.17 ± 2.49 16.16 ± .19 14.11 ± .57 10.33 ± .20 9.87 ± .12 9.03 ± .18

+ Linear Schedule 28.99 ± .37 14.08 ± .34 10.97 ± .19 9.25 ± .12 9.20 ± .22 8.89 ± .05
+ Decay on Plateau 43.40 ± 4.57 22.21 ± .96 13.46 ± .38 9.71 ± .39 8.92 ± .18 8.80 ± .11

+ Exp decay 31.87 ± .59 15.82 ± .06 12.91 ± .21 10.48 ± .15 9.24 ± .16 8.53 ± .07

+ REX 27.64 ± .02 13.96 ± .16 10.88 ± .05 9.44 ± .22 8.72 ± .24 8.18 ± .15

2017; Hu et al., 2017; Redmon et al., 2016; He et al., 2018),
it does not translate directly to lower epoch settings.

A new profile. Since there is no profile which performs
optimally across sampling rates, it remains to ask if there
is a profile and sampling rate combination that results in
strong performance in both low and high epoch settings.
Therefore, we propose the Reflected Exponential (REX)
profile; see Figure 1. REX is an alternative to the linear and
exponential profile, and we find that REX has stronger em-
pirical performance in the budgeted setting. REX performs
best with a per-iteration sampling rate, similar to the linear
schedule. We evaluate the performance of REX extensively
in following sections.

We also motivate REX with the empirical observation that
the linear schedule can be improved in some cases by delay-
ing the onset of the decay, i.e., holding the initial learning
rate constant until XX% of the budget, and then linearly
decaying the learning rate to 0; see Figure 2. In particular, it
appears that performance can be improved with such delay
in the high epoch regime, but this strategy is less effective
with fewer epochs. However, the exact onset of the delay
introduces an additional hyperparameter. REX can be un-
derstood as an interpolation between a linear schedule and
a delayed linear schedule without additional hyperparam-
eters. Furthermore, REX generally outperforms the linear
schedule, which has been previously suggested as the best
budgeted schedule (Li et al., 2020), for small and large
epochs.

It appears that certain schedules have reasonable perfor-
mance across sampling rates, while others have poor or

state-of-the-art performance depending on the sampling rate.
If the sampling rate is unknown or there is a particular rea-
son to select a low sampling rate, the approximated step
profile appears to be the best choice. However, in most ap-
plications, the sampling rate is a choice by the practitioner.
Since the REX profile with a per-iteration sampling rate gen-
erally performs the best, there may be limited motivation to
use alternative schedules.

4 RESULTS

In this section we present results in all seven experimental
settings given in Table 3, including image classification,
image generation, object detection and natural language
processing. For fair evaluation in the budgeted training
scenario, only the learning rate is tuned in multiples of 3 for
each schedule, setting, and number of epochs. All reported
metrics are averaged across three separate trials. We run all
settings at 1%, 5%, 10%, 25%, 50%, and 100% of maximum
epochs, representing both low and high budgets. In each
setting, the learning rate schedule is concerned only with
the total epochs for that run, e.g., the linear schedule will
decay linearly to 0 regardless if the budget is 1% or 100%
of the maximum epochs. For BERTBASE-GLUE, results
are given for 1 run and at 1

3 , 2
3 , and 3

3 of total epochs. The
maximum total epochs is determined from commonly used
epochs in the literature, and validated to achieve the reported
score in the literature. The maximum epochs is given in
Table 3. The goal is to demonstrate performance in both
the low and high budget regime across a range of common
applications to instill confidence that the proposed schedule



REX: Revisiting Budgeted Training with an Improved Schedule

Table 5. WRN-STL10. The number of epochs was predefined before the execution of the algorithms. Bold red indicates Top-1
performance, black bold is Top-3.

SGDM 1% 5% 10% 25% 50% 100%

+ Step Schedule 60.09 ± 1.15 38.12 ± .32 33.86 ± .10 22.42 ± .56 17.20 ± .35 14.51 ± .26
+ Cosine Schedule 57.81 ± 1.05 37.42 ± .29 27.51 ± .25 20.03 ± .26 17.02 ± .24 14.66 ± .25

+ OneCycle 58.75 ± .76 36.90 ± .37 26.97 ± .27 21.67 ± .27 19.69 ± .21 19.00 ± .42
+ Linear Schedule 58.74 ± 1.26 34.81 ± .40 28.17 ± .64 19.54 ± .20 17.39 ± .24 14.58 ± .18
+ Decay on Plateau 59.64 ± .92 37.64 ± 1.44 36.94 ± 1.96 21.05 ± .27 17.83 ± .39 15.16 ± .36

+ Exp decay 60.21 ± .77 38.94 ± 1.08 34.11 ± .77 22.65 ± .49 20.60 ± .21 15.85 ± .28

+ REX 55.93 ± .46 34.50 ± .16 25.52 ± .17 20.54 ± .32 16.97 ± .46 14.60 ± .31

Adam 58.65 ± 1.79 42.66 ± .68 33.17 ± 1.94 23.35 ± .20 19.63 ± .26 18.65 ± .07
+ Step Schedule 59.35 ± .98 47.14 ± .42 35.10 ± 1.10 23.85 ± .07 19.63 ± .33 18.29 ± .10

+ Cosine Schedule 58.95 ± .95 40.69 ± 1.09 31.00 ± .74 22.85 ± .47 21.47 ± .31 19.08 ± .36
+ OneCycle 57.88 ± .88 36.41 ± .29 27.90 ± .63 20.02 ± .19 19.21 ± .28 19.03 ± .43

+ Linear Schedule 56.72 ± .22 40.25 ± 1.00 31.15 ± .29 21.70 ± .11 21.53 ± .44 17.85 ± .15
+ Decay on Plateau 58.72 ± .60 42.30 ± .68 33.00 ± .80 22.77 ± .33 19.91 ± .45 19.61 ± .56

+ Exp decay 58.92 ± .52 44.76 ± .90 33.52 ± 1.18 23.30 ± .39 20.70 ± .50 19.63 ± .24

+ REX 56.47 ± .31 35.52 ± .44 27.24 ± .20 21.65 ± .21 19.12 ± .31 17.75 ± .22

will work “in the wild”. We use a model-dataset-optimizer
notation, e.g. RN20-CIFAR10-SGDM means a ResNet20
model trained on CIFAR10 with momentum SGD.

4.1 Learning Rate Schedules

There are many popular learning rate schedules imple-
mented in widely-used frameworks and packages. In gen-
eral, the schedules are aware of the current time step t and
the maximum time step T . Let η denote the learning rate and
β the momentum. We comprehensively detail the schedules
considered in this paper below, covering almost all widely-
implemented schedules; see Figure 1 for a visualization.

• Step schedule (He et al., 2016): ηt = γt · η0 where γt is
piece-wise and depends on t

T . A typical schedule (He
et al., 2016) would be to decay the learning rate by 0.1 at
1
2 epochs and again by 0.1 at 3

4 epochs. We employ such
a step schedule for all our experiments.

• Decay on Plateau (Abadi et al., 2015; Paszke et al., 2017):
A practical version of the step schedule, where the learn-
ing rate is decayed when the validation loss does not
improve for certain number of tuneable epochs, which
we tune in multiples of 5.

• Linear schedule (Abadi et al., 2015; Paszke et al., 2017):
ηt =

(
1− t

T

)
· η0.

• Cosine schedule (Loshchilov & Hutter, 2017b): ηt =
η0
2 ·
(
1 + cos(π·tT )

)
.

• Exponential schedule (Abadi et al., 2015; Paszke et al.,

2017): ηt = η0 · e
γt
T . We find that setting γ = −3 yields

the best performance.

• OneCycle schedule (Smith, 2018):

ηt =

ηmin + (ηmax − ηmin)
(
t
T
2

)
η0, if t

T < 1
2

ηmin + (ηmax − ηmin)
(
2− t

T
2

)
η0, else

βt =

βmin + (βmax − βmin)
(
1− t

T
2

)
β0, if t

T < 1
2

βmin + (βmax − βmin)
(
t
T
2

− 1
)
β0, else

ηmin, ηmax, βmin, and βmax are hyperparameters. For
fair computational comparison, we follow the recom-
mended settings (Smith, 2018) and set ηmin = ηmax · 0.1,
βmax = 0.95, βmin = 0.85, so that ηmax is the only
hyperparameter.

• REX schedule:

ηt = η0 ·
(

1− t
T

1
2 + 1

2 · (1−
t
T )

)
.

We re-emphasize the motivation for REX: it is a new
profile and sampling rate combination, which is motivated
by the improved performance of a delayed linear schedule
in certain circumstances. REX aggressively decreases
the learning rate towards the end of the training process,
which is the “reflection” of the exponential decay.

There are simply too many schedules to compare compre-
hensively, so we select the widely-used schedules above
for comparison. We apply the schedules to the two most
popular optimizers: SGD with momentum and Adam.



REX: Revisiting Budgeted Training with an Improved Schedule

Table 6. VGG16-CIFAR100 generalization error. The number of epochs was predefined before the execution of the algorithms. Bold
red indicates Top-1 performance, black bold is Top-3.

SGDM 1% 5% 10% 25% 50% 100%

+ Step Schedule 95.03 ± .42 69.87 ± .28 46.97 ± .13 35.04 ± .24 30.09 ± .32 27.83 ± .30
+ Cosine Schedule 95.03 ± .42 61.82 ± .13 41.26 ± .26 31.93 ± .09 28.63 ± .11 27.84 ± .12

+ OneCycle 91.96 ± 1.01 58.35 ± .40 45.39 ± .73 32.62 ± .21 30.10 ± .34 29.09 ± .12
+ Linear Schedule 96.11 ± 1.64 58.14 ± 1.19 39.66 ± .61 31.95 ± .29 29.10 ± .34 28.26 ± .08
+ Decay on Plateau 94.70 ± 1.20 65.25 ± 1.72 50.81 ± .58 35.29 ± .59 30.65 ± .31 29.74 ± .43

+ Exp decay 96.54 ± .39 65.65 ± 1.24 49.04 ± 1.98 33.15 ± .19 29.51 ± .22 28.47 ± .18

+ REX 94.92 ± .91 56.62 ± .65 40.72 ± .29 31.16 ± .11 28.54 ± .02 27.27 ± .30

Adam 92.70 ± .50 64.05 ± .41 57.56 ± 1.30 37.98 ± .20 33.62 ± .11 31.09 ± .09
+ Step Schedule 92.65 ± .38 62.90 ± .08 44.94 ± .49 34.16 ± .11 29.40 ± .22 27.75 ± .15

+ Cosine Schedule 91.48 ± .42 55.90 ± 2.46 40.31 ± .07 32.32 ± .14 29.68 ± .17 28.08 ± .10
+ OneCycle 92.18 ± .69 58.29 ± .53 43.47 ± .28 34.59 ± .31 29.83 ± .29 29.58 ± .18

+ Linear Schedule 92.94 ± .49 54.32 ± 1.17 39.49 ± .11 32.01 ± .49 29.30 ± .18 28.65 ± .10
+ Decay on Plateau 92.76 ± .48 64.10 ± .22 57.05 ± .84 32.60 ± .31 29.03 ± .10 28.67 ± .19

+ Exp decay 92.43 ± .67 55.26 ± 1.24 42.62 ± .12 32.37 ± .18 29.53 ± .12 28.83 ± .08

+ REX 91.93 ± .01 52.20 ± .47 39.51 ± .21 31.68 ± .57 28.58 ± .16 26.99 ± .09

Table 7. VAE-MNIST generalization loss. The number of epochs was predefined before the execution of the algorithms. Bold red
indicates Top-1 performance, black bold is Top-3, ignoring non SGDM and Adam optimizers.

SGDM 1% 5% 10% 25% 50% 100%

+ Step Schedule 180.30 ± 6.98 152.97 ± .55 146.24 ± 2.50 140.28 ± .51 137.70 ± .93 136.34 ± .31
+ Cosine Schedule 174.52 ± 1.09 145.99 ± .15 141.23 ± .36 139.15 ± .26 136.69 ± .27 135.05 ± .09

+ OneCycle 161.95 ± .67 146.25 ± .35 143.01 ± 1.08 139.79 ± .66 137.20 ± .06 135.65 ± .44
+ Linear Schedule 174.64 ± .15 146.15 ± .26 143.64 ± .80 148.00 ± .48 141.72 ± .48 137.84 ± .32
+ Decay on Plateau 167.16 ± .30 151.15 ± .11 146.82 ± .58 140.51 ± .73 139.54 ± .34 137.33 ± .49

+ Exp decay 179.60 ± 3.47 160.52 ± .64 146.24 ± .73 154.31 ± .43 145.83 ± .48 139.67 ± .57

+ REX 149.85 ± 1.62 139.56 ± .78 137.15 ± .05 134.41 ± .78 135.69 ± .24 135.03 ± .37

Adam 152.10 ± .55 142.54 ± .50 140.10 ± .82 136.28 ± .18 134.64 ± .14 134.66 ± .17
+ Step Schedule 153.45 ± 1.47 142.19 ± .98 138.32 ± .20 136.62 ± .30 134.14 ± .56 133.34 ± .41

+ Cosine Schedule 149.82 ± .32 140.78 ± .72 137.66 ± .79 134.73 ± .04 133.25 ± .26 133.23 ± .30
+ OneCycle 149.07 ± .99 139.75 ± .27 138.12 ± .99 134.67 ± .55 133.27 ± .07 132.83 ± .33

+ Linear Schedule 148.93 ± .20 139.82 ± .20 137.00 ± .70 134.71 ± .25 134.00 ± .49 132.95 ± .24
+ Decay on Plateau 152.08 ± .45 141.54 ± .31 139.76 ± .52 135.68 ± .59 134.10 ± .21 134.06 ± .45

+ Exp decay 149.28 ± .46 142.94 ± 1.28 138.82 ± .36 135.19 ± .43 134.05 ± .16 133.88 ± .85

+ REX 148.59 ± .33 139.05 ± .20 136.62 ± .21 134.24 ± .02 133.16 ± .05 132.52 ± .05

4.2 Empirical Results

Image Classification. We choose four diverse settings for
this task. For datasets, we use the standard CIFAR10 and
CIFAR100 datasets, in addition to the low count, high-res
STL10 dataset, as well as the standard ImageNet dataset.
Since ResNets remain the most commonly-deployed model
in industry, we perform experiments with three variations
of the ResNet (He et al., 2016). The ResNet20 comes from

the line of lower cost, lower performance ResNets, and is
a close cousin of the more expensive and better perform-
ing ResNet18. ResNet50 belongs to the latter series, and
is a standard model for ImageNet. We also include the
Wide ResNet variation which further increases the model
width for better performance (Zagoruyko & Komodakis,
2016). The other model we employ is the VGG-16 model
(Simonyan & Zisserman, 2014). While VGG models are far
outdated in attaining state-of-the-art performance, the archi-



REX: Revisiting Budgeted Training with an Improved Schedule

Table 8. YOLO-VOC mAP. The number of epochs was predefined before the execution of the algorithms. Bold red indicates Top-1
performance, black bold is Top-3.

1% 5% 10% 25% 50% 100%

Adam 45.0 ± 3.4 48.1 ± 7.6 61.9 ± 1.8 70.2 ± 3.5 72.1 ± 6.4 79.1 ± 1.6
+ Step Schedule 62.2 ± 1.7 67.0 ± 3.4 71.8 ± 1.0 78.5 ± 0.2 81.1 ± 1.0 83.2 ± 0.2

+ OneCycle 60.4 ± 7.2 63.8 ± 7.6 74.9 ± 1.0 79.9 ± 1.3 81.1 ± 2.8 83.3 ± 0.4
+ Cosine Schedule 63.6 ± 5.2 66.8 ± 6.1 75.9 ± 0.2 81.1 ± 0.7 82.5 ± 1.0 84.0 ± 0.2
+ Linear Schedule 63.7 ± 5.5 67.2 ± 5.9 76.2 ± 0.7 81.1 ± 0.9 82.4 ± 1.2 83.4 ± 0.2

+ Exp decay 49.6 ± 24 68.1 ± 4.6 75.6 ± 0.1 80.1 ± 0.7 81.2 ± 2.2 83.2 ± 0.2

+ REX 64.0 ± 5.0 67.0 ± 6.5 76.7 ± 0.3 81.2 ± 0.7 82.2 ± 1.8 83.4 ± 0.4

tecture is still relevant for custom applications with smaller
CNNs, where residual connections have limited application.
We provide thorough evaluation in the RN20-CIFAR10,
WRN-STL10, VGG16-CIFAR100 settings, and, due to
computational constraints, provide lower epochs results for
RN50-ImageNet, given in Tables 4, 5, 6, and 9.

As observed in (Li et al., 2020), the linear schedule performs
well for both SGD and Adam, particularly for a low number
of epochs. While the Step schedule performs well for the
maximum number of epochs, it scales very poorly to lower
epoch settings. On the other hand, REX performs well
in both high and low epoch regimes. Results also follow
general Computer Vision observations for these settings,
where SGD tends to outperform Adam.

Table 9. RN50-ImageNet generalization error. The number of
epochs was predefined before the execution of the algorithms.
Bold red indicates Top-1 performance, black bold is Top-3.

SGDM 1% 5%

+ Step Schedule 87.28 46.58
+ Cosine Schedule 82.88 43.90

+ OneCycle 90.94 55.00
+ Linear Schedule 82.00 43.27

+ Exp decay 90.19 48.28

+ REX 80.98 40.78

Adam 1% 5%

+ Step Schedule 77.97 45.91
+ Cosine Schedule 73.51 43.66

+ OneCycle 82.58 62.57
+ Linear Schedule 71.42 42.01

+ Exp decay 75.54 45.43

+ REX 69.91 40.65

Image Generation. The two most popular types of net-
works for image generation are Variational Encoders (VAE)
(Kingma & Welling, 2015) and Generative Adversarial Net-

Table 10. Results of BERTBASE-GLUE. AdamW + Linear Sched-
ule follows the huggingface (et al., 2020b) implementation, and
achieves the results in well-known studies (Devlin et al., 2019;
Sanh et al., 2020). Results given by 1 epoch/2 epochs/3 epochs.
Excluding the problematic WNLI dataset (Devlin et al., 2019).

Score

AdamW 79.9/81.2/81.8
+ Step Schedule 80.2/81.9/82.3

+ Cosine Schedule 80.9/82.2/82.7
+ OneCycle 81.0/82.0/82.7

+ Linear Schedule 81.2/82.3/82.6
+ Exp decay 80.6/81.8/82.5

+ REX 81.7/82.6/82.8

works (GAN) (Goodfellow et al., 2014). However, out of
the two, only VAEs consistently benefit from learning rate
decay (Goodfellow et al., 2014; Chen et al., 2016; Arjovsky
et al., 2017; Brock et al., 2019; Hou et al., 2016; Sonderby
et al., 2016; Vahdat & Kautz, 2021). Therefore, we select
VAEs as the network of choice for image generation. We
train VAEs on the MNIST dataset for 200 epochs, after
which performance no longer improves. Results are given
in Table 7.

The linear schedule performs well for Adam, but not for
SGDM. Similarly, the cosine schedule performs well for
SGDM, but not for Adam. The OneCycle schedule per-
forms well across all settings, but REX outperforms all
other schedules in the low budget and high budget setting.

Object Detection. We train a YOLOv3 (Redmon &
Farhadi, 2018) model on the Pascal VOC dataset. The
training set is the combined 2007 and 2012 training set, and
the test set is the 2007 test set. We were able to achieve the
mAP score reported in the literature by training the network
for 50 epochs. Thus, we set this as the maximum number of
epochs. We find that the network does not train well without
a warm-up period, so all networks are trained for 2 epochs



REX: Revisiting Budgeted Training with an Improved Schedule

Table 11. Results of BERTBASE-GLUE. AdamW + Linear Schedule follows the huggingface (et al., 2020b) implementation, and achieves
the results in well-known studies (Devlin et al., 2019; Sanh et al., 2020). Results given by 1 epoch/2 epochs/3 epochs. Excluding the
problematic WNLI dataset (Devlin et al., 2019).

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

AdamW 54.8/54.7/55.2 82.9/83.3/83.7 84.8/87.2/87.6 88.7/90.4/90.7 89.4/90.2/90.5 59.2/64.6/66.8 91.2/91.3/91.2 87.8/87.8/88.3
+ Step Schedule 53.5/56.9/56.6 82.6/83.4/83.9 85.6/87.9/88.3 88.2/90.1/90.4 89.0/90.5/90.6 63.5/65.7/67.5 92.8/92.8/93.0 86.7/88.0/88.4

+ Cosine Schedule 55.7/58.6/58.2 83.5/84.0/84.2 84.5/87.6/87.9 89.4/89.8/90.4 89.8/90.6/91.0 64.2/65.3/67.5 92.7/93.1/93.7 87.4/88.4/88.7
+ OneCycle 57.7/58.1/56.5 83.6/83.8/84.2 87.3/87.5/89.9 89.5/91.0/90.7 89.8/90.6/90.8 60.3/63.9/67.5 92.1/92.2/93.0 88.1/88.5/89.0

+ Linear Schedule 58.0/57.6/58.8 83.5/84.1/84.3 85.4/88.1/88.0 88.8/90.4/89.6 89.7/90.6/91.0 63.5/65.7/67.1 92.8/93.0/92.9 87.9/88.5/88.8
+ Exp decay 57.5/57.3/59.1 83.6/83.9/84.1 86.2/88.7/89.1 88.2/89.2/89.6 88.8/90.3/90.6 61.0/63.9/66.0 92.1/93.1/93.0 87.2/88.2/88.5

+ REX 57.8/58.8/59.1 83.4/84.0/84.3 87.3/88.9/89.1 88.9/90.5/90.3 90.0/90.7/91.0 65.3/66.8/67.1 92.7/92.7/92.7 87.6/88.6/88.6

Figure 3. Error against initial learning for RN20-CIFAR10-SGD and RN38-CIFAR100-SGD for 5% and 25% of total epochs. As
expected all, schedules suffer as the learning rate grows too large or too small.

from a learning rate of 1e-5 linearly increased to 1e-4. This
warm-up phase is not counted as part of the allocated train-
ing budget. We also round up the number of epochs to the
closest integer: for example, the 1% setting trains for 2
warmup epochs and then d50 · 0.01e = 1 epoch, for a total
of 3 epochs. The 100% setting trains for 2 warmup epochs
and then 50 epochs for a total of 52 epochs. Results are
given in Table 8. Similar to other settings, the step schedule
performs reasonably well for a large number of epochs, but
is outperformed by the cosine schedule. REX performs well
in the low epoch setting.

Natural Language Processing. Fine-tuning pre-trained
transformer models is one of the most common training
procedures in NLP (Devlin et al., 2019; et al., 2020a), thus
making it a setting of interest. This is because i) it is of-
ten cost-prohibitive for practitioners to pre-train their own
models and ii) fine-tuning pre-trained transformers often
results in significantly better performance in comparison to
training a smaller model from scratch. The linear schedule
is the default schedule implemented in HuggingFace (et al.,
2020b), the most popular package for transformer models,
and is considered the gold standard in this domain. We
fine-tune BERTBASE on the GLUE benchmark, an NLP
benchmark with nine datasets. We leave out the problematic
WNLI dataset (Devlin et al., 2019). Since we are able to
attain the scores reported in the literature with 3 epochs of
fine-tuning, we set that as the maximum number of epochs.
Due to computational constraints, we can only perform one
run per setting, which causes some variability within the
results. Although REX achieves the best mean score for

small and large budgets, we see that the best optimizer can
vary depending on the dataset. For example, OneCycle at-
tains the best scores on QNLI and MRPC, and the Cosine
schedule performs the best on SST-2.

Sensitivity to learning rate tuning. While it is reasonable
to suggest that the practitioner simply pick a per-iteration
sampling rate for the REX, linear, and other profiles, a
relevant issue in budgeted training is performance given a
limited number of experimental trials. Namely, in extreme
cases, the practitioner may not even have the budget to finely
tune the learning rate. Therefore, we plot the considered
schedules in two settings against learning rate, presented
in Figure 3. Clearly, there is no schedule that can recover
from a poor initial learning rate. However, schedules tend
to retain their relative ordering across initial learning rates.
This means that even with poor hyperparameter settings, the
choice of learning rate schedule remains important. REX,
represented by the pink line below all other lines, outper-
forms other schedules for most learning rates in the budgeted
settings presented in the plots.

5 CONCLUSION

In this paper, we identified issues with existing learning rate
schedules in the budgeted setting. We proposed a profile
and sampling rate framework for understanding existing
schedules. While there is no optimal profile, we found that
the proposed REX schedule performs well with a sampling
rate of every iteration in both small and large epoch regimes.
With thorough empirical evaluation, we confirm that the



REX: Revisiting Budgeted Training with an Improved Schedule

proposed REX learning rate schedule performs favorably
across a large number of settings including image classifi-
cation, generation, object detection, and natural language
processing.

A EXPERIMENTS

We describe the nine test problems in this paper.

• CIFAR10 - ResNet20. CIFAR10 contains 60,000
32x32x3 images with a 50,000 training set, 10,000 test set
split. There are 10 classes. ResNet20 (He et al., 2016) is
an 20 layers deep CNN with skip connections for image
classification. Trained with a batch size of 128.

• TINY IMAGENET - ResNet56. Tiny ImageNet con-
tains 110,000 64x64x3 images with a 100,000 training
set, 10,000 test set split. There are 200 classes. ResNet56
(He et al., 2016) is a 56 layer deep CNN with skip con-
nections for image classification. Trained with a batch
size of 128.

• CIFAR100 - VGG16. CIFAR100 is a fine-grained ver-
sion of CIFAR-10 and contains 60,000 32x32x3 images
with a 50,000 training set, 10,000 test set split. There are
100 classes. VGG16 (Simonyan & Zisserman, 2014) is a
16 layers deep CNN with extensive use of 3x3 convolu-
tional filters. Trained with a batch size of 128.

• STL10 - Wide ResNet 16-8. STL10 contains 1300
96x96x3 images with a 500 training set, 800 test set split.
There are 10 classes. Wide ResNet 16-8 (Zagoruyko &
Komodakis, 2016) is a 16 layers deep ResNet which is 8
times wider. Trained with a batch size of 64.

• PTB - LSTM. PTB is an English text corpus containing
929,000 training words, 73,000 validation words, and
82,000 test words. There are 10,000 words in the vo-
cabulary. The model is stacked LSTMs (Hochreiter &
Schmidhuber, 1997) with 2 layers, 650 units per layer,
and dropout of 0.5. Trained with a batch size of 20. We
use the official TensorFlow v1 implementation for PTB -
LSTM.

• FMNIST - CAPS. FMNIST contains 60,000 32x32x1
grayscale images with a 50,000 training set, 10,000 test
set split. There are 10 classes of 10 clothing items. Cap-
sule Networks (Sabour et al., 2017) represent Neural Net-
works as a set of capsules, where each capsule encodes
a specific entity or meaning. The activations of capsules
depend on comparing incoming pose predictions, as op-
posed to standard neural networks. The Capsule Network
uses 3 iterations in the routing algorithm. Trained with a
batch size of 128.

• MNIST - VAE. MNIST contains 60,000 32x32x1
grayscale images with a 50,000 training set, 10,000 test

set split. There are 10 classes of 10 digits. VAE (Kingma
& Welling, 2015) with three dense encoding layers and
three dense decoding layers with a latent space of size 2.
Trained with a batch size of 100.

• CIFAR10 - NCSN. CIFAR10 contains 60,000 32x32x3
images with a 50,000 training set, 10,000 test set split.
There are 10 classes. NCSN (Song & Ermon, 2019) is a
recent state-of-the-art generative model which achieves
the best reported inception score. We compute inception
scores based on a total of 50000 samples. Since DEMON
depends on a predefined number of epochs, we evaluate
inception score at the end of training; otherwise, we fol-
low the exact implementation in and defer details to the
original paper.

• GLUE - BERT. The GLUE benchmark (Wang et al.,
2019) consists of 9 different language tasks (Warstadt
et al., 2018; Socher et al., 2013; Dolan & Brockett, 2005;
Agirre et al., 2007; Williams et al., 2018; Rajpurkar et al.,
2016; Dagan et al., 2006; Bar Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009; Levesque et al.,
2011), grouped together to form a benchmark. BERT
(Devlin et al., 2019) is a relatively recently proposed lan-
guage model which has become the standard for many
tasks in NLP. In particular, BERT can be fine-tuned to
an array of tasks, and here we evaluate the fine-tuning
procedure of BERT to the GLUE benchmark.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. URL http://tensorflow.org/. Software
available from tensorflow.org.

Agirre, E., M‘arquez, L., and Wicentowski, R. (eds.). Pro-
ceedings of the Fourth International Workshop on Seman-
tic Evaluations (SemEval-2007). Association for Compu-
tational Linguistics, Prague, Czech Republic, June 2007.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan,
2017.

Bar Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo,
D., Magnini, B., and Szpektor, I. The second PASCAL
recognising textual entailment challenge. 2006.

http://tensorflow.org/


REX: Revisiting Budgeted Training with an Improved Schedule

Bentivogli, L., Dagan, I., Dang, H. T., Giampiccolo, D.,
and Magnini, B. The fifth PASCAL recognizing textual
entailment challenge. 2009.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis, 2019.

Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D.,
and Holtham, E. Reversible architectures for arbitrarily
deep residual neural networks, 2017.

Chen, J., Wolfe, C., Li, Z., and Kyrillidis, A. Demon:
Momentum decay for improved neural network training,
2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. Big self-supervised models are strong semi-
supervised learners, 2020b.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adversar-
ial nets, 2016.

Dagan, I., Glickman, O., and Magnini, B. The PASCAL
recognising textual entailment challenge. In Machine
learning challenges. evaluating predictive uncertainty,
visual object classification, and recognising tectual en-
tailment, pp. 177–190. Springer, 2006.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019.

Dolan, W. B. and Brockett, C. Automatically constructing a
corpus of sentential paraphrases. In Proceedings of the
International Workshop on Paraphrasing, 2005.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

et al., T. B. B. Language models are few-shot learners,
2020a.

et al., T. W. Huggingface’s transformers: State-of-the-art
natural language processing, 2020b.

Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. The
third PASCAL recognizing textual entailment challenge.
In Proceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pp. 1–9. Association for
Computational Linguistics, 2007.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks, 2014.

Goyal, P., Dollr, P., Girshick, R., Noordhuis, P., Wesolowski,
L., Kyrola, A., Tulloch, A., Jia, Y., and He, K. Accurate,
large minibatch sgd: Training imagenet in 1 hour, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of the
IEEE conference on CVPR, pp. 770–778, 2016.

He, K., Gkioxari, G., Dollr, P., and Girshick, R. Mask r-cnn,
2018.

Hinton, G., Srivastava, N., and Swersky, K. Neural networks
for machine learning lecture 6a overview of mini-batch
gradient descent. Cited on, 14:8, 2012.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Hou, X., Shen, L., Sun, K., and Qiu, G. Deep feature
consistent variational autoencoder, 2016.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu,
E. Squeeze-and-excitation networks. arxiv preprint
arXiv:1709.01507, 2017.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2015.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in NeurIPS, pp. 1097–1105, 2012.

Levesque, H. J., Davis, E., and Morgenstern, L. The Wino-
grad schema challenge. In AAAI Spring Symposium:
Logical Formalizations of Commonsense Reasoning, vol-
ume 46, pp. 47, 2011.

Li, M., Yumer, E., and Ramanan, D. Budgeted training:
Rethinking deep neural network training under resource
constraints, 2020.

Li, Z. and Arora, S. An exponential learning rate sched-
ule for deep learning. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=rJg8TeSFDH.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the variance of the adaptive learning rate and
beyond, 2020.

Loshchilov, I. and Hutter, F. Fixing weight decay regulariza-
tion in adam. arXiv preprint arXiv:1711.05101, 2017a.

https://openreview.net/forum?id=rJg8TeSFDH
https://openreview.net/forum?id=rJg8TeSFDH


REX: Revisiting Budgeted Training with an Improved Schedule

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradient
descent with warm restarts, 2017b.

Lucas, J., Sun, S., Zemel, R., and Grosse, R. Aggregated
momentum: Stability through passive damping. arXiv
preprint arXiv:1804.00325, 2018.

Odonoghue, B. and Candes, E. Adaptive restart for accel-
erated gradient schemes. Foundations of computational
mathematics, 15(3):715–732, 2015.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
In Proceedings of EMNLP, pp. 2383–2392. Association
for Computational Linguistics, 2016.

Redmon, J. and Farhadi, A. Yolov3: An incremental im-
provement, 2018.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You
only look once: Unified, real-time object detection, 2016.

Sabour, S., Fross, N., and Hinton, G. Dynamic routing
between capsules. In Advances in neural information
processing systems, 2017.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter, 2020.

Shawahna, A., Sait, S. M., and El-Maleh, A. Fpga-based ac-
celerators of deep learning networks for learning and
classification: A review. IEEE Access, 7:78237859,
2019. ISSN 2169-3536. doi: 10.1109/access.2018.
2890150. URL http://dx.doi.org/10.1109/
ACCESS.2018.2890150.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Smith, L. A disciplined approach to neural network hyper-
parameters: Part 1 – learning rate, batch size, momen-
tum, and weight decay. arXiv preprint arXiv:1803.09820,
2018.

Smith, L. N. Cyclical learning rates for training neural
networks, 2017.

Smith, S., Kindermans, P.-J., Ying, C., and Le, Q. Don’t
decay the learning rate, increase the batch size. arXiv
preprint arXiv:1711.00489, 2017.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of EMNLP, pp. 1631–1642, 2013.

Sonderby, C. K., Raiko, T., Maaloe, L., Sonderby, S. K.,
and Winther, O. Ladder variational autoencoders, 2016.

Song, Y. and Ermon, S. Generative modeling by estimat-
ing gradients of the data distribution. arXiv preprint
arXiv:1907.05600, 2019.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pp.
1139–1147, 2013.

Sze, V., Chen, Y.-H., Emer, J., Suleiman, A., and Zhang,
Z. Hardware for machine learning: Challenges and
opportunities. 2017 IEEE Custom Integrated Circuits
Conference (CICC), Apr 2017. doi: 10.1109/cicc.2017.
7993626. URL http://dx.doi.org/10.1109/
CICC.2017.7993626.

Tripathi, S., Lipton, Z. C., Belongie, S., and Nguyen, T.
Context matters: Refining object detection in video with
recurrent neural networks, 2016.

Vahdat, A. and Kautz, J. Nvae: A deep hierarchical varia-
tional autoencoder, 2021.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Warstadt, A., Singh, A., and Bowman, S. R. Neural net-
work acceptability judgments. arXiv preprint 1805.12471,
2018.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of NAACL-HLT, 2018.

Yang, L. and Shami, A. On hyperparameter optimization of
machine learning algorithms: Theory and practice. Neu-
rocomputing, 415:295316, Nov 2020. ISSN 0925-2312.
doi: 10.1016/j.neucom.2020.07.061. URL http://dx.
doi.org/10.1016/j.neucom.2020.07.061.

Yeung, S., Kannan, A., Dauphin, Y., and Fei-Fei, L. Tack-
ling over-pruning in variational autoencoders, 2017.

You, Y., Gitman, I., and Ginsburg, B. Large batch training
of convolutional networks, 2017.

Yuan, K., Ying, B., and Sayed, A. On the influence of
momentum acceleration on online learning. Journal of
Machine Learning Research, 17(192):1–66, 2016.

http://dx.doi.org/10.1109/ACCESS.2018.2890150
http://dx.doi.org/10.1109/ACCESS.2018.2890150
http://dx.doi.org/10.1109/CICC.2017.7993626
http://dx.doi.org/10.1109/CICC.2017.7993626
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1016/j.neucom.2020.07.061


REX: Revisiting Budgeted Training with an Improved Schedule

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zeiler, M. D. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

Zhang, J. and Mitliagkas, I. Yellowfin and the art of mo-
mentum tuning. arXiv preprint arXiv:1706.03471, 2017.


