GYRO DROPOUT: MAXIMIZING ENSEMBLE EFFECT
IN NEURAL NETWORK TRAINING

Junyeol Lee! Hyeongju Kim '

Hyungjun Oh' Jaemin Kim

! Hongseok Jeung' Yung-Kyun Noh'! Jiwon Seo !

ABSTRACT

This paper proposes gyro dropout, a variant of dropout that improves the efficiency of training neural networks.
Instead of randomly dropping out neurons in every training iteration, gyro dropout pre-selects and trains a fixed
number of subnetworks. Because each subnetwork is more stably trained, they are more diversified and thus
their ensemble achieves good generalization. We further propose block-wise gyro dropout, or simply block-wise
dropout, which is a GPU-friendly variant of gyro dropout. Block-wise dropout partitions hidden neurons into a
number of groups that should be dropped out together throughout learning; this makes it efficient to prune the
corresponding warp executions on GPUs. We evaluate the two dropout methods with seven neural networks and
ten public datasets. In our evaluation, gyro dropout improves the accuracy of trained models by up to 1.93%;
gyro dropout consistently achieves higher accuracy than conventional dropout in all experiments. Moreover,
block-wise dropout speeds up the training of neural networks by up to 29.8% with little to no accuracy loss. Our
implementation of gyro dropout is publicly available at https://github.com/mlsys-seo/gyro-dropout.

1 INTRODUCTION

Dropout is a regularization technique for training deep
neural network models (Srivastava et al., 2014). It reduces
the overfitting of neural networks by preventing the co-
adaptation of hidden neurons. As the technique is simple
and effective, dropout is widely used for training many dif-
ferent neural network structures including multi-layer per-
ceptrons, convolutional neural networks, and transformer-
based neural networks.

Training with dropout can be understood as an approxima-
tion of training with an ensemble of many smaller neural
networks (Baldi & Sadowski, 2013; Veit et al., 2016; Olson
et al., 2018). In each training iteration, dropout randomly
selects subnetworks of the whole network and train them
collectively. Therefore, a large number of subnetworks are
trained and their ensemble achieves good generalization.

In ensemble learning, the performance and diversity of the
base models are important factors for the ensemble perfor-
mance (Kuncheva & Whitaker, 2003; Rokach, 2010). If the
base models are similar to each other or they have poor per-
formance, their ensemble does not generalize well. The en-
semble size, i.e. the number of base models, also affects the
performance. Although large ensemble size generally gives

"Hanyang University, Korea. Correspondence to: Jiwon Seo
<seojiwon@hanyang.ac.kr>.

Proceedings of the 5" MLSys Conference, Santa Clara, CA,
USA, 2022. Copyright 2022 by the author(s).

better performance, it is shown that beyond a certain point
adding more base models does not improve the ensemble
performance (Margineantu & Dietterich, 1997).

Inspired by these studies in ensemble learning, this pa-
per aims to improve the dropout technique for more ef-
ficient neural network training. Specifically, we propose
gyro dropout that pre-selects a fixed number of subnet-
works and train with them throughout learning. In contrast
to conventional dropout, the pre-selected subnetworks in
gyro dropout are trained for multiple iterations; in our anal-
ysis the trained subnetworks are more diverse and thus their
ensemble results in better generalization and performance.
Moreover, we propose block-wise gyro dropout, or sim-
ply block-wise dropout, which is a GPU-friendly variant
of gyro dropout. Block-wise dropout groups adjacent neu-
rons and drops them altogether, making it cheap to prune
the corresponding computations in GPU.

Gyro dropout is simple to understand and implement. It
does not have any trainable parameters, nor does it require
extra computation or monitoring. Still, it is highly effective,
consistently outperforming conventional dropout in all our
experiments. The contribution of this paper is gyro dropout
and block-wise dropout. The specific contribution is sum-
marized as follows.

Concept of Gyro Dropout. We design and propose gyro
dropout as a fundamental technique for training neural net-
works. It is as simple as conventional dropout yet con-
sistently achieves higher accuracy. Moreover, block-wise

https://github.com/mlsys-seo/gyro-dropout

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

dropout is a variant of gyro dropout, which can effectively
prune the dropped computations on GPU. Without any ac-
curacy loss compared to conventional dropout, block-wise
dropout largely improves the training throughput.

Implementation in TensorFlow and CUTLASS. We im-
plemented the two dropout methods in TensorFlow, a well-
known deep learning system and CUTLASS, the state-
of-the-art GEMM kernel. Because of its simplicity, gyro
dropout is compactly implemented in TensorFlow. For
block-wise dropout, however, we need to consider the tiling
optimization in CUTLASS to determine the dropout block
shape. We analyze the effect of the block shapes on the
pruning efficiency and model accuracy to find the optimal
shape, with which we largely speed up the training through-
put without any accuracy loss over conventional dropout.

Extensive Evaluation and Analysis. We evaluate gyro
dropout and block-wise dropout with seven neural network
models and ten public datasets in computer vision, network
packet detection, and natural language processing. In our
evaluation, gyro dropout consistently outperforms conven-
tional dropout for all the neural networks and datasets by
up to 1.93% of accuracy. We studied the accuracy gain
of gyro dropout by investigating the diversity and accu-
racy of the subnetworks; also, we examined the amount
of overfitting by conventional dropout and gyro dropout.
Moreover, block-wise dropout substantially improves the
training throughput (by up to 29.8%) without any accu-
racy loss compared to conventional dropout. Our analy-
sis shows that block-wise dropout effectively reduces the
memory loads and floating-point computations. We made
our implementation of gyro dropout publicly available at
https://github.com/mlsys-seo/gyro-dropout.

The rest of the paper is organized as follows. Section 2
describes the preliminary experiments that motivate our
study. Section 3 presents gyro dropout and Section 4 de-
scribes its variant block-wise dropout. Section 5 evaluates
the two dropout methods. Section 6 discusses the related
work and Section 7 concludes.

2 EFFECT OF SUBNETWORK
PRE-SELECTION

Dropout is known to reduce the overfitting of neural net-
works by preventing the co-adaptation of hidden neurons.
In another view, dropout induces the training of a large
number of subnetworks that consist of the neurons that are
not dropped out in each training iteration. The ensemble of
these subnetworks, i.e. the whole neural network, collec-
tively achieves high performance with good generalization.

In the ensemble view, a subnetwork, which is the base
learner of the ensemble model, is trained with a random
subset of training data. Because of the random nature of

86.20 i . i i I . .
— : 4 € I
z 85.80 {
O
5
8
< 8540 '[Gyro Dropout
Conventional Dropout
4 No Dropout
85.00 I P
N o° > © b Cel M
AU GV A R & °
MLP with SVHN
58.00 -
g 56.00 = —~—3 I
3 t
< I
54.00 Gyro Dropout
J_ Conventional Dropout
52,00 4 No Dropout
N B 0 & P O o W G
SRR R @Q;b" ¢
LeNet with CIFAR100
59.80 R -
I - - 1 & x i ~
> 5820 T S Y
8 i
5
8
< 56.60 I Gyro Dropout
} L Conventional Dropout
55.00 4 No Dropout

Nk DB B P >R
AR O & ‘b'\&-\éﬁ‘%b(¢

AlexNet with CIFAR100

Figure 1. Accuracy of MLP, LeNet, and AlexNet that are trained
with 1-16384 pre-selected subnetworks. MLP is trained with
SVHN; LeNet and AlexNet are trained with CIFAR100.

dropout, each subnetwork is trained for only once with a
single data point. If we pre-select a fixed number of sub-
networks and train with them for longer iterations instead,
would it improve their ensemble performance? In this sec-
tion we observe the effect of the subnetwork pre-selection
on the performance of the neural network. Note that this
is only preliminary experiments to motivate our study; we
present more extensive evaluation in Section 5.

Scheduling of Pre-Selected Subnetworks. We considered
the following two scheduling methods: 1) randomly se-
lecting the subnetworks in each training iteration, or 2)
applying the (randomly) selected subnetworks for a num-
ber of consecutive iterations and discarding those subnet-
works (consecutive scheduling in short). The first schedul-
ing method requires the materialization of the pre-selected
subnetworks in main memory at the beginning or some
point of the training.This may incur non-trivial memory
overhead for large neural networks such as BERT. More-
over, when we compare the two scheduling methods in Sec-
tion 5.3, the consecutive scheduling gives higher accuracy
for all the evaluated models. Thus we experiment only with
the consecutive scheduling in this section.

https://github.com/mlsys-seo/gyro-dropout

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

Number of Subnetworks. To understand the effect of the
number of subnetworks on their ensemble performance, we
trained two neural network models with an increasing num-
ber of pre-selected subnetworks. We trained a three-layer
multi-layer perceptron (MLP) with SVHN,LeNet with CI-
FAR100, and AlexNet with CIFAR100. For the three mod-
els, we pre-select 1-16384 subnetworks and train with
those selected subnetworks; each subnetwork is trained for
% consecutive iterations, where N is the number of to-
tal training iterations for the given batch size B and S is
the set of the selected subnetworks. The batch size is 256,
and we simultaneously train 256 subnetworks in each itera-
tion, if the number of all the selected subnetworks is larger
than 256; otherwise, we train all the subnetworks in each
iteration. We performed the training for a hundred epochs,
which is sufficient for the training to converge for all three
models. We repeated the training ten times for each config-
uration and report the average accuracy of the ten runs.

Figure 1 shows the experimental results. We can see that
as we increase the number of subnetworks, the accuracy
of the trained models initially increases but then it de-
creases beyond a certain point. For the SVHN dataset,
the training with 2048 subnetworks reaches 86.14% accu-
racy, which is 0.1% higher than conventional dropout or
0.42% higher than training without dropout (no-dropout).
For CIFAR100, the training with 64 subnetworks achieves
57.49% accuracy for LeNet; for the AlexNet model, the
training with 256 subnetworks achieves 59.47% accuracy,
while no-dropout is 55.7% and conventional dropout is
58.3%. We can see that increasing the number of subnet-
works does not improve the performance beyond a certain
point and may even negatively affect the performance.

Number of Co-Scheduled Subnetworks. In the previous
experiments, we trained 256 subnetworks in each itera-
tion, which is equivalent to the mini batch size. Because
these subnetworks share a large portion of their structures,
their training may interfere with each other. Training with
a smaller number of subnetworks in each iteration may re-
duce the interference and improve the performance. With
this intuition, we run another set of experiments and trained
the models with varying number of concurrently sched-
uled subnetworks. That is, we trained with 1-16384 sub-
networks as before, but in each iteration we co-scheduled
the training of 1-128 subnetworks instead of 256.

Table 1 shows the results of MLP and AlexNet that are
trained with SVHN and CIFAR100 respectively; we do not
present the results of LeNet as they show similar trends to
the AlexNet case. From the table we first notice once again
that as the number of total subnetworks increases, the ac-
curacy of the neural network initially increases but then it
decreases beyond a certain point; this is valid for any num-
ber of co-scheduled subnetworks, that is, for any column

Table 1. Accuracy of MLP and AlexNet models that are trained
with varying numbers of total subnetworks and co-scheduled sub-
networks. The first and second highest values in each row are in
bold and underlined font respectively.

]gg?iﬂt sggilts Co-scheduled Subnetworks (7)
(03)) 4 8 16 | 32 | 64 | 128 | 256
16 [84.89(85.09(85.21| N/A | N/A | N/A | N/A
MLP 256 (86.08(86.06|86.04/86.05(86.03(85.92|86.00
SVHN 1024 (86.16/86.20(86.17/86.15|86.09|86.13(86.11
2048 |86.12(86.14(86.19(86.17|86.16(86.15(86.14
8192 [86.03|86.13(86.15(86.11(86.16/86.12(86.10
16 |58.53|58.80(59.19| N/A | N/A | N/A | N/A
AlexNet 256 [59.42(59.69|59.98|59.90(59.75|59.36|59.56
CIFAR100 1024 |59.46|59.49(59.52(59.31|59.41|59.30|58.95
2048 |58.79(59.19|58.99(59.23(59.13|58.92|59.01
8192 |58.31|58.42(58.53|58.30(58.66|58.52|58.42

in the table, except for one case (AlexNet with 256 co-
scheduled subnetworks). We also observed that the num-
ber of co-scheduled subnetworks (7) affects the accuracy
of the neural network. As we increase 7, the accuracy ini-
tially increases but then drops off after 8—16 co-scheduled
subnetworks. The highest accuracy is achieved for MLP
when training with 1024 pre-selected subnetworks and co-
scheduling 8 subnetworks in each iteration. The accuracy is
86.2%, which is 0.16% higher than conventional dropout.
For the AlexNet model, it achieved the highest accuracy of
59.98% with 256 subnetworks and co-scheduling 16 sub-
networks in each iteration; this is 1.68% higher than con-
ventional dropout. Again this is a limited study to motivate
our work and we present more extensive analysis of gyro
dropout in our evaluation.

3 GYRO DROPOUT

Based on our preliminary study in the previous section, we
propose gyro dropout, a variant of dropout that improves
the accuracy of deep neural networks. While conventional
dropout randomly selects different subnetworks in each
training iteration, gyro dropout pre-selects a fixed num-
ber of subnetworks and train with them throughout learn-
ing. Because the selected subnetworks are trained more
robustly, their diversity increases and thus their ensemble
achieves higher accuracy.

Gyro dropout has two hyperparameters, that is, the num-
ber of pre-selected subnetworks (denoted by) and the
number of concurrently scheduled subnetworks in an itera-
tion (denoted by 7). As our study shows, the training with
gyro dropout is not too sensitive to these two hyperparame-
ters. When the number of pre-selected subnetworks is 128—
2048 and the number of co-scheduled subnetworks is 4—16,
the trained models in the study generally achieve good per-

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

[Number of neurons

[: Dropped Neuron

Batch Size

(a) Conventional
dropout

(b) Gyro
dropout

(c) Block-wise
dropout

Figure 2. Example layer output with (a) conventional dropout, (b)
gyro dropout, and (c) block-wise dropout. The gray filled boxes
denote dropped out neurons and the white filled boxes in each row
denote a selected subnetwork; (a) uses 6 different subnetworks,
and (b) and (c) uses 2 subnetworks.

formance. We set their default values be 1024 (>2) and 8 (7),
that is, pre-selecting 1024 subnetworks with co-scheduling
8 subnetworks.

Figure 2 illustrates three dropout methods applied to an
output of a layer with eight neurons and the batch size of
six; (a) is conventional dropout, (b) is gyro dropout, and
(c) is block-wise dropout (described later in Section 4).
We can see that for the six data in a mini batch, conven-
tional dropout trains six different subnetworks; that is, each
row has a dropout pattern that is different from those of
all other rows. Gyro dropout in the figure, however, trains
with only two subnetworks because the top three rows and
bottom three rows have the same dropout patterns. Hence
the number of co-scheduled subnetworks (7) is two in this
case. Figure 3 (a) shows an example timeline of training
with gyro dropout. In each iteration, four subnetworks are
trained; these subnetworks are trained for ten consecutive
iterations and then switched to a next set of subnetworks.
During the entire training iteration, sixteen subnetworks are
trained in total.

The strength of gyro dropout is its simplicity. Unlike other
dropout variants (Ba & Frey, 2013; Kingma et al., 2015;
Keshari et al., 2019; Pham & Le, 2021; Liang et al., 2021),
gyro dropout does not add any trainable parameters; it does
not require extra computation or monitoring. It can be ap-
plied in the same way as conventional dropout without any
extra complexity. Despite its simplicity, gyro dropout per-
forms consistently better than conventional dropout in all
our experiments in Section 5.

4 BLOCK-WISE GYRO DROPOUT

Gyro dropout pre-selects a fixed number of subnetworks
and train with them. For the subnetwork pre-selection, if
it is possible to select those that are cheap to prune the
computations for those dropped out neurons, we can speed
up the training by reducing the amount of computations.
To that end we propose block-wise gyro dropout, or sim-

ply block-wise dropout, that pre-selects the subnetworks in
the way that makes the pruning of the dropped out compu-
tations more GPU-friendly. Instead of dropping individual
neurons, block-wise dropout selects a block of neurons and
sets all their outputs to be zero. Because GPUs are ineffi-
cient with randomly sparse matrices, we make dropouts to
have block structures and make their pruning more efficient
on GPUs. Figure 2 (b) and (c) illustrate layer outputs with
gyro dropout and block-wise dropout; compared to the gyro
dropout example in (b), block-wise dropout groups adja-
cent neurons (two neurons in this example) and drops them
altogether in (c). To understand the efficacy of block-wise
dropout, we first describe the GPU execution model and
how matrix multiplication is computed on GPUs.

4.1 Matrix Multiplication on GPU

GPU execution model. A GPU has a number of streaming
multiprocessors, or SMs, each of which simultaneously ex-
ecutes multiple hardware threads (Lindholm et al., 2008).
GPU adopts SIMT (single instruction multiple thread)
model, where a group of threads concurrently execute a
same instruction sequence. The execution model is sup-
ported by its programming abstraction, which provides the
concept of thread blocks (Sanders & Kandrot, 2010). A
thread block is a group of threads that are assigned to a
same SM, running in parallel. A thread block consists of
hundreds to thousands of threads and is organized as 1D,
2D, or 3D structure to represent multi-dimensional data in
application domains. GPU internally divides each thread
block into a scheduled unit, called warp, which consists of
32 threads executing a same instruction sequence.

SIMT is inefficient for randomly sparse matrix operations,
because all threads in a warp must execute a same instruc-
tion sequence (Saule et al., 2013). For example, consider
the multiplication of randomly sparse matrices on GPU;
when a warp executes the multiply-and-add computation
it cannot skip the multiplication with zeros and spare GPU
cycles because all threads in a warp execute same instruc-
tions. In the SIMT execution model, we may skip the mul-
tiplication and speedup the execution only if all threads in
a warp multiply exclusively with zeroes.

GEMM GPU Kernel. To hide DRAM latency, GEMM
(General Matrix Multiplication) kernels commonly apply
tiling and pipelining. Instead of computing each element
in an output matrix, the tiling optimization computes the
multiplication of a group of elements, called a ftile, at the
same time. The pipelining optimization, then overlaps the
computation of the tiles with their loading from DRAM.

CUTLASS (Kerr et al., 2017), the state-of-the-art open-
source GEMM kernel, also applies the two optimizations.
In CUTLASS, a tile in an output matrix is computed by a

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

1
1 | Input
(a) Gyro Dropout |:| : Dropped Neuron : P
: w,
> > > »| 1
! ra
I o |
0 10 20 30 40
. Training Iterations ! W,
(b) Block-wise Dropout '
O ——————— ~ O —————— N o e o ——————— 1
[bl b { | (162
: i i | —| |
1 1 1 1
s CEECECEH FEER) \CEEREED EROE) \ CCECEEEE EEreerT \ SECCEERE PR Al W
I >
0 10 20 30 401 0
Training Iterations : 3

Figure 3. Timeline of training with (a) gyro dropout and (b) block-wise dropout. The output matrix of a first layer is shown. The height
of the matrix denotes the batch size; the width is the number of neurons. Both (a) and (b) co-schedule four subnetworks at a time; in (a)
the four subnetworks are within a single batch and in (b) the four subnetworks span across two batches. The figure on right illustrates
the forward computation of a three-layer neural network with block-wise dropout.

8x 128 |
— — Width: 16
Input B Width: 128 ~ A
e o~
AVAUAUALAUA L UARS
¢ i i S0\w, #0| \W, #1
- = B 3 4 4
oo R{W | W | Ws| W | Wy | W3[5t |l
X kY Tl e N
2 I3
N B
~] H S{ |1 W | | Wy | (W 1
T W, #2| |W, #3]
Lo W, \welw, [w, T, |t
Input A Output matrix 1 . Wi \Ws |Ws | W7 W W5 s i, ey
Input / output . .
PUE 7 OWP Thread block tile Warp tiles
matrices

Figure 4. Thread block tile in CUTLASS. Each thread block is as-
signed a 128 x 128 tile by default; each of eight warps in a thread
block is assigned four 32x 16 tiles. W; denotes warp with id 4.

single thread block, and thus the tile is called thread block
tile. Figure 4 shows a thread block tile in CUTLASS; The
default size of a thread block tile is 128 x 128. The shapes of
thread block tile and other tiles (later described) are deter-
mined to achieve coalesced memory access and maximize
the memory bandwidth efficiency. To compute the multi-
plication for a tile, input matrices are loaded in an input tile
of 128x8 (or 8x128) shape to level-1 cache (i.e., shared
memory), as shown at the top and left of the thread block
tile (the green and red boxes). Thread block tile is pro-
cessed by a single thread block consisting of 256 threads, or
eight warps (denoted by Wy—W7), each of which computes
four warp tiles of 32x 16 shape shown on the right of Fig-
ure 4. While input tiles are being loaded, the computation
with previously loaded tiles are executed, thus pipelining
and overlapping the memory load and the computation.

4.2 Tiling and Dropout Block Shape

Block-wise dropout makes it cheap to prune the dropped
out computations and thus improves the training through-
put. The shape of dropout blocks, however, affects the
model accuracy and also the training throughput. Gener-
ally, large block shapes make the pruning cheaper but they
incur accuracy loss because they limit the number of total
subnetworks and co-scheduled subnetworks; conversely,
small block shapes make it more expensive to prune the
computations on GPU. To decide the optimal dropout block
shapes, we need to consider following two factors: 1) coa-
lesced memory access in GEMM kernels, and 2) effect of
subnetwork pre-selection.

GEMM kernels commonly exploit the architecture of
GPU’s memory subsystem and fetch data from DRAM to
shared memory at a cache line granularity, which is 128
bytes. Pruning at a smaller granularity cannot fully utilize
the memory subsystem and wastes the memory bandwidth.
Hence the dropout block size needs to be larger than or
equal to 32 elements, i.e., 128 bytes, for efficient memory
transactions. At the same time, we need to prune the com-
putation of an entire row or column of a thread block tile so
that we can skip the loading of the corresponding input data
(from shared memory to registers). This requires that one
dimension of the dropout block be 128 (elements). Thus we
consider 128 x32 and 32x 128 dropout block shapes as the
candidates. The former assigns the larger value to the di-
mension for batch size (i.e., height of thread block tile) and
the latter sets the dimension for output neurons to be larger.
Now recall the results of our preliminary experiments that
the number of co-scheduled subnetworks to maximize the
accuracy is fairly small; also, using the larger value for the
output neuron dimension and dropout with 32x 128 block
significantly reduces the possible number of total subnet-

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

Table 2. Accuracy of an MLP model that is trained with the
SVHN dataset and with block-wise dropout. Block shapes of
128 x{128,64,32,16} are used with co-scheduling 2, 4, and 8 sub-
networks (7). The first and second highest values in each column
are in bold and underlined font respectively.

Block size Total Subnetworks (X)
256 1024 | 2048 | 8192
T=2 | 85.89 | 8571 | 85.62 | 84.70
128 | 7=4 | 85.81 | 85.78 | 85.75 | 85.49
T=8 | 85.76 | 85.71 | 85.64 | 85.56
=2 | 86.03 | 85.89 | 85.73 | 85.01
64 | 7=4 | 8590 | 8592 | 8590 | 85.67
7=8 | 85.86 | 85.87 | 85.80 | 85.73
T=2 | 8595 | 8595 | 85.87 | 85.28
32 | 7=4 | 8593 | 85.99 | 85.98 | 85.86
7=8 | 85.94 | 8595 | 8593 | 85.81
7=2 | 8595 | 86.10 | 8591 | 85.51
16 | 7=4 | 8598 | 86.00 | 86.00 | 85.99
7=8 | 8590 | 8596 | 86.06 | 85.95

works. Taking these factors into account, we decide our
candidate dropout block shape be 128 x32.

We now test if the dropout block of 12832 incurs ac-
curacy loss. We trained three MLP models with SVHN
and CIFAR{10,100}, applying block-wise dropout with the
block shape of 128x{128,64,32,16}; i.e., each group of
128, 64, 32, and 16 adjacent neurons are dropped together
respectively. We set the total subnetworks be 256-8192
and the co-scheduled subnetworks (7) be 2—8. Because the
batch size is 256 and the dropout blocks are 128 x*, two
subnetworks may be trained in a single iteration; if 7 is 4
or 8, the co-scheduled subnetworks may span across 2—4
iterations; for example, Figure 3 (b) shows 4 subnetworks
across 2 batches.

Table 2 shows the experimental results for the SVHN
dataset. We do not report the results for the CI-
FAR{10,100} dataset as they have similar trends; we also
report more extensive evaluation of block-wise dropout in
Section 5. We can see from the table that smaller dropout
blocks give better accuracy in general. The trained model
achieved as high as 86.10% accuracy with 12816 blocks,
which is higher than that of conventional dropout (86.04%).
With 12832 dropout blocks, it achieves 85.99% accu-
racy that is only 0.05% lower than that of conventional
dropout. For CIFAR{10,100}, block-wise dropout achieves
0.02% and 0.17% higher accuracy than that of conven-
tional dropout (see CIFAR{10,100}/MLP row of Table 4
in Section 5). In general, applying block-wise dropout with
12832 blocks achieves higher accuracy than conventional
dropout as shown in our evaluation. Without any accu-
racy loss, block-wise dropout largely improves the training
throughput, which is shown in Section 5.

Table 3. Evaluated models, datasets, and subnetwork settings.

Total |Co-schedule
Model Dataset Structure Subnets(X)| Subnets(r)
MLP; SVHN 3xFC 1024 8
CIFARI10
MLP: | Clpar100 | 4XFC
CIFAR10 2xConv
LeNet | CIEARI00 | “3xFC 256 16
CIFARI10 3xConv
AlexNet | GIEAR100 | “3xFC
KDDCup99
MLP;3 NSL-KDD 4xFC
UNSW-NB15
SVHN
SIFAngO 17%C 1024 8
TFAR1 x Conv
ResNet-18|__ I%FC
TinyImageNet
ImageNet
MRPC
BERT SQUAD vI.I BERT-Base

4.3 Input- and Output-Based Pruning

With block-wise dropout, we support two types of prun-
ing, namely, input-based pruning and output-based prun-
ing. As the name suggests, the former prunes with the
dropped out neurons in the input matrix and the latter with
those in the output matrix. Between the two types of prun-
ing, input-based pruning is slightly more efficient because
it makes the pruning of loading input data more efficient
than output-based pruning. Thus we prioritize input prun-
ing over output pruning. In Figure 3 right, we show the
forward computation of a three-layer neural network with
block-wise dropout. For the first layer we apply output
pruning and for the last two layers we apply input pruning.

5 EVALUATION

We implemented gyro dropout and block-wise dropout in
TensorFlow version 1.12 (Abadi et al., 2016) and CUT-
LASS version 1.3. For the block-wise dropout evaluation,
we modified TensorFlow’s matmul operator to use CUT-
LASS GEMM instead of the default cuBLAS GEMM. In
CUTLASS, we implemented the bypassing of loading and
computation for the dropped blocks; we pass the bitmap of
dropped out neurons as an extra argument of GEMM and
skip the loading and computation for those neurons.

We evaluate the two dropout techniques with seven neu-
ral network models and ten public datasets. Out of seven
neural networks, three are convolutional neural networks
(CNNs), three are multi-layer perceptrons (MLPs), and
one is a transformer-based network (BERT) (Devlin et al.,
2018). The ten datasets are from three different domains;
i.e., computer vision (SVHN, CIFAR10, CIFAR100, and
Tiny ImageNet, ImageNet), network packet detection (KD-

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

Table 4. Accuracy of the neural network models trained with no dropout, conventional dropout, gyro dropout, and block-wise dropout.
The average and SD of ten runs are shown. The first and second highest accuracy scores in each row are in bold and underlined font
respectively. For BERT, in addition to the accuracy scores, F1 scores are shown in parenthesis. We do not evaluate block-wise dropout
for a subset of the models for which the performance gain by block-wise dropout is negligible (denoted by N/A).

Dataset Model No Dropout Conventional Dropout Gyro Dropout Block-wise Dropout
SVHN MLP, 85.72+0.12 86.04+0.07 86.20+0.05 85.99+0.07
ResNet-18 94.40+0.11 94.40+0.09 94.42+0.05 N/A
MLP, 56.97+0.25 57.55+0.23 57.72+0.23 57.57+0.28
CIFAR10 LeNet 84.25+0.18 84.27+0.22 84.43+0.10 84.50+0.11
AlexNet 85.75+0.25 86.34+0.23 86.58+0.13 86.32+0.17
ResNet-18 90.03+0.12 92.09+0.12 92.12+0.09 N/A
MLP, 28.34+0.32 29.04+0.29 29.24+(0.22 29.21+0.26
CIFAR100 LeNet 55.07+0.33 55.57+0.27 57.50+0.24 57.28+0.33
AlexNet 55.73£0.38 58.30+0.21 59.98+0.20 59.47+0.28
ResNet-18 70.65+0.42 70.84+0.30 71.07+0.32 N/A
Tiny ImageNet | ResNet-18 56.98+0.21 57.16+0.15 57.19+0.20 N/A
ImageNet ResNet-18 68.70+0.0012 69.40+0.0015 69.54+0.0012 N/A
KDDCup99 MLP3 92.57+0.02 92.64+0.02 92.76+0.002 92.77+0.03
NSL-KDD MLP3 80.35+0.12 81.50+0.28 81.81+0.18 81.79+0.13
UNSW-NB15 MLP; 84.36+0.43 85.27+0.38 86.40+0.30 85.90+0.36
MRPC BERT 87.99+1.13 86.91+0.60 87.67+£0.48 N/A
SQuAD vl1.1 BERT | 79.1+0.43(87.53+0.27) | 80.74+0.41(88.18+0.29) | 80.97+0.34(88.41+0.22) N/A

DCup99, NSL-KDD, and UNSW-NB15) (Bay et al., 2000;
Tavallaee et al., 2009; Moustafa & Slay, 2015), and natu-
ral language processing (MRPC and SQuAD) (Wang et al.,
2018; Rajpurkar et al., 2016). The models and datasets are
summarized in Table 3. Unless otherwise stated, we run
all experiments ten times and report the average of the ten
runs. We used RMSProp optimizer (Tieleman & Hinton,
2012) for the computer vision and network packet detection
models. For BERT we use Adam optimizer (Loshchilov &
Hutter, 2017). Dropout rate is set to 50% for all the exper-
iments except for the fine-tuning of BERT, for which we
applied 10% drop rate.

All the experiments are performed on NVIDIA Titan XP
and V100 GPU. Titan XP has 12GB DRAM and 30 SMs.
The host machine has Intel Xeon E5-2620 running at 2.1
GHz with 64GB DRAM. V100 is used for the BERT exper-
iments; it has 32GB DRAM and 80 SMs. Its host machine
has Intel Xeon E5-2698 running at 2.2 GHz with 256GB
DRAM. Linux with kernel 4.4.0 is used for all experiments.

5.1 Evaluation of Model Accuracy

We evaluate the accuracy of the trained models with
four different dropout settings: no dropout, conventional
dropout, gyro, and block-wise dropout. For the evaluation,
we trained the models in Table 3 for ten times and report
the average accuracy and the standard deviation.

Table 4 shows the results. Multiple observations can be
made from these results. First, for all the models and
datasets, gyro dropout yields higher accuracy than conven-
tional dropout. The maximum accuracy gain is 1.93% (CI-

FAR100/LeNet) followed by 1.68% (CIFAR100/AlexNet);
the minimum gain is 0.02% (SVHN/ResNet). Second,
block-wise dropout achieves higher accuracy than conven-
tional dropout for most cases (eight out of ten); the accu-
racy of block-wise dropout is close to that of gyro dropout
(only 0.24% lower on average). Third, for BERT and the
natural language processing datasets, the accuracy gain of
gyro dropout is relatively small (0.76% and 0.23%). This is
because the dropout rate of BERT is 10%, which is much
smaller than 50% of other models.

Discussion. We compare the accuracy gain of gyro dropout
with that of guided dropout, the state-of-the-art dropout
technique proposed by Keshari et al. (2019). Guided
dropout finds relatively less-trained neurons to train the
subnetworks mainly consisting of those neurons. To iden-
tify such neurons, they introduce a trainable parameter
representing the strength of each neuron. Guided dropout
changes its dropout rate multiple times throughout learn-
ing. However, the authors do not clearly describe the pol-
icy for when and how the dropout rate changes; hence
we are not able to run experiments with their technique.
Instead, we compare with their reported experimental re-
sults. Guided dropout has 0.03-2.08% accuracy gain over
conventional dropout for the computer vision datasets and
models we used. In comparison, gyro dropout has 0.02—
1.93% accuracy gain for the same datasets and mod-
els. More or less, the two methods achieve similar accu-
racy gain. We conjecture that the accuracy gain of guided
dropout partly comes from reducing the number of sub-
networks for the training; applying dropout to only high
strength neurons largely limits the possible subnetworks.

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

= : Conventional dropout : Gyro dropout

N
(2]

o N - -
=] o N S

g
o

Diversity (Norm’ed L1 Distance)

I
IS

MLP ResNet| MLP LeNet AlexNet ResNet ResNet
SVHN CIFAR100 Tryimgl

BERT | BERT
MRPCSQUAD

Figure 5. Comparing subnetwork diversity of the models trained
with conventional dropout and gyro dropout. Subnetwork diver-
sity is measured as normalized L1 distances of last hidden fea-
tures among the subnetworks.

Also, gyro dropout may adopt the strategy of guided
dropout and train weak subnetworks for longer iterations.
We leave this as a future work.

5.2 Analysis of Accuracy Improvements

We studied the accuracy improvements from gyro dropout
by evaluating: 1) diversity of trained subnetworks, 2) inter-
action of dropout and subnetwork training, and 3) overfit-
ting of the neural networks. We excluded ImageNet/ResNet
from the experiments in this section because its analysis is
too expensive. We report our analysis results in the follow-
ing starting with the diversity analysis.

Subnetwork Diversity. We evaluated the diversity of the
subnetworks that are selected for the training with gyro
dropout and conventional dropout. For the two dropout
methods we randomly selected ten subnetworks that are
trained in the last epoch and examined the diversity of their
inference computations. We measured the diversity of the
subnetworks with the last hidden layer’s feature values; that
is, we feed the subnetworks with the test data and mea-
sured the pairwise L1 distance of the features between the
subnetworks. We presume that if the subnetworks are more
diverse then the pairwise feature distance is larger.

Figure 5 is the average pairwise feature distances of the
subnetworks for the evaluated models and datasets. The
blue bars are the distances of conventional dropout and the
green bars are those of gyro dropout; the distances are nor-
malized by those of conventional dropout. We can see that
for all the models, gyro dropout yields higher feature di-
versity; on average the feature distances for gyro dropout is
21.9% higher than those for conventional dropout. In other
words, the subnetworks of gyro dropout are more diverse
than those of conventional dropout, which explains why it
achieves better generalization.

Table 5. The generalization gap of the evaluated models. The best
(i.e., lowest) values for each row are in bold font. For SQuAD we
show two generalization gaps for the accuracy and F1 scores.

Dataset Model |No Dropout|Conventional | Gyro
MLP, 0.132 0.053 0.052

SVAN ResNet-18 0.055 0.056 0.055
MLP, 0.433 0.175 0.195

LeNet 0.107 0.009 0.006

CIFARIO AlexNet 0.102 0.067 0.065
ResNet-18 0.073 0.069 0.068

MLP, 0.715 0.097 0.108

LeNet 0.372 -0.010 -0.013

CIFARIO0 AlexNet 0.396 0.055 0.066
ResNet-18 0.253 0.191 0.184

Tiny ImageNet | ResNet-18 0.252 0.169 0.175
KDDCup99 MLP; 0.074 0.073 0.072
NSL-KDD MLP; 0.196 0.187 0.182
UNSW-NB15| MLP3 0.115 0.098 0.082
MRPC BERT 0.127 0.125 0.123
BERT 0.101 0.011 0.006

SQUAD VL g e D 0.081 0037 |0.026

Dropout and Subnetwork Training. We examined the in-
teraction of dropout and subnetwork training in a similar
manner to that done by Frankle & Carbin (2018), who ap-
plied dropout and their iterative pruning altogether to ex-
amine the performance of the winning tickets, i.e., the sub-
networks derived from the pruning. We run similar exper-
iments and applied their iterative pruning with gyro and
conventional dropout to investigate the accuracy of the de-
rived subnetworks when they are completely trained.

Figure 6 shows the accuracy of the pruned subnetworks
of MLP, LeNet, AlexNet, and ResNet-18 that are trained
with CIFAR100. We can see that the winning tickets with
gyro dropout generally achieve higher accuracy. For all
the evaluated networks with the vision and network packet
datasets, when we examine their subnetworks that are 20,
10, and 5% of the original size, the subnetworks derived
with gyro dropout achieve higher accuracy in 26 cases out
of 42, or 62% of total. Similar to the experiments con-
ducted by Frankle & Carbin, who reported that dropout im-
proves the accuracy of winning subnetworks, we observed
that gyro dropout further improves their accuracy.

Dropout and Overfitting. To find out if gyro dropout re-
duces overfitting better than conventional dropout, we mea-
sured the generalization gap, i.e., test error subtracted by
training error, of the trained neural networks (Bousquet &
Elisseeff, 2001). Although not absolute, a larger value of
the generalization gap may indicate larger amount of over-
fitting. Table 5 compares the generalization gap of the mod-
els that are trained with no dropout, conventional dropout,
and gyro dropout. We first observed that in all cases ex-
cept one (ResNet for SVHN) training with the two dropout

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

1000 64.0 410 262 16.8 107

1000 64.0 410 262 168 107

1000 640 410 262 168 107

88.0 - i 31 62
—_ - 1
Sors 5 5 T/‘Y)\g/r’\ S g o : ?
R 2 %30 5 60
g 11) g 59
S I ® o
gsero - 3 58
< ¥ 1 829 8
7 86.5 o< < 57
3 —o— AlexNet, Gyro Lo —o—MLP, Gyro 5 % 56 —o— LeNet, Gyro
= 86.0 AlexNet, Conventional ' 2 28 MLP, Conventional = 55 LeNet, Conventional
100.0 64.0 410 262 16.8 10.7 i 100.0 64.0 410 262 16.8 10.7 100.0 64.0 41.0 26.2 16.8 10.7
! o A T +
’\0\93.5 : ?63 A g 1 74 TS -
3 R == < 7 I
< ! < 62 1 R 73
$93.0 Ay = /
g ;o 8 /
g ! 860 3 " f
925 S < </
@ / 1 —o— ResNet, Gyro ! 859 —o— AlexNet, Gyro > m —o— ResNet, Gyro
92.0 ResNet, Conventional E 58 AlexNet, Conventional | = 70 ResNet, Conventional
1
1
i

Percent of Weights Remaining

Percent of Weights Remaining

Percent of Weight Remaining

Figure 6. Dropout and subnetwork accuracy for AlexNet and ResNet trained with CIFAR10 (left) and for MLP, LeNet, AlexNet, and

ResNet trained with CIFAR100 (right).

Table 6. The accuracies of the models that are trained with two
subnetwork scheduling methods.

Random Mask Scheduling c q
onsecutive
Model Total Co-scheduled Mask Scheduling
Dataset |Subnets Subnets (7) (Ours)
&) 4781632 ‘
256 [85.87(85.96|85.99(86.04
MLP 7512 [85.91[86.01[85.97[86.07] 8620
1024 [85.82(85.99|85.98|86.01
LeNet 64 |56.81/56.97|57.15(56.97
eNe
CIEAR100 128 |56.59|56.50|56.75(56.66 57.50
256 [56.35(56.53(56.17|56.23
AlexNet 64 159.27|59.35(59.45|59.39
exNe
CIFAR100 128 [58.96|58.77|58.86(58.97 59.98
256 [58.71(58.67|58.62|58.64
ResNet-18 256 (70.48(70.73(70.60(70.67
esNet-
CIFAR100 512 {70.41(70.58(70.41|70.67 71.07
1024 {70.73(70.97|70.85|70.60

methods achieves better (i.e., lower) generalization gap
than training without dropout. Comparing the two dropout
methods, training with gyro dropout achieves better gener-
alization gap in 12 out of 16 cases, or 75% of total. This
shows that gyro dropout reduces overfitting and achieves
better generalization.

5.3 Comparing Subnetwork Scheduling Methods

In gyro dropout, we schedule subnetworks for consecu-
tive training iterations, discard them, and switch to dif-
ferent subnetworks. An alternative scheduling method is
to schedule random subnetworks in each iteration among
the pre-selected ones. We compared the two scheduling
methods with four neural network models (MLP, LeNet,
AlexNet, and ResNet-18) and two datasets (SVHN and CI-

FAR100). That is, we trained the models with the datasets
using the two subnetwork scheduling methods and com-
pared the accuracy of the trained models. Table 6 shows
the results. Random mask scheduling denotes scheduling
different subnetworks in each iteration and consecutive
mask scheduling denotes our scheduling method used in
gyro dropout. For the random mask scheduling, we evalu-
ated with multiple configurations of total subnetworks and
co-scheduled subnetworks; the highest accuracy for each
model/dataset is in bold font. The table shows that the
consecutive mask scheduling in gyro dropout consistently
achieves higher accuracy for all the evaluated models.

5.4 Evaluation of Training Throughput

We now evaluate the training throughput of block-wise
dropout and compare to that of conventional dropout. Be-
cause the throughput of gyro dropout is identical to that
of conventional dropout, we do not evaluate gyro dropout
here. We trained the models in Table 3 and measure their
training throughput. BERT is excluded from this evalua-
tion, as the model is typically trained with low dropout
rate of 10%; the performance gain of pruning does not ex-
ceed its overhead. We also excluded ResNet as the model
mainly consists of convolution layers where we do not ap-
ply dropout.

Figure 7 shows the evaluation results. Let us first exam-
ine the convolutional neural networks. The throughput gain
for LeNet and AlexNet is 2-7.9%. For these models, the
majority of the execution time is spent on the convolu-
tion computations. Because block-wise dropout is applied
to fully-connected layers, the performance gain is limited
for these CNN models. When we examine the execution
times of their FC layers, the performance gain is 14-19%
for the two models as shown in the figure. We next ex-

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

= : Conventional, Forward %% : Block-wise, Forward
: Conventional, Backward : Block-wise, Backward

12
[0}
E PR 20 i
=
o
3
3
N}
pel
Q
N
g 3 320
s ms
b4
Allayers FClayers

CIFAR10 CIFAR10

CIFAR100 CIFAR100

(a) LeNet (b) AlexNet (c) MLP

Figure 7. Execution times of single training iterations with con-
ventional and block-wise dropout. For the convolutional neural
networks, we also show the execution times of fully-connected
layers excluding those of convolutional layers. The throughput of
gyro dropout is not shown because it is identical to that of con-
ventional dropout.

amine the speedups of the MLP models for SVHN and
CIFAR{10,100}. For these models their training through-
put is significantly improved by 13-19.3% with block-wise
dropout. Moreover, the MLP models for the network packet
detection achieve even better performance gain of 29.8%.
Because the MLP models consist of only fully-connected
layers where most of the execution time is spent on matrix
multiplication, the performance gain is large for these mod-
els. When we examine the speedup of forward and back-
ward computation separately, forward computation is im-
proved by 40.0-54.7% and backpropagation is improved
by 7.2—14.4%. For the two gradient computations in back-
propagation, i.e., neuron and weight gradient computa-
tions, we apply pruning only to neuron gradient compu-
tation; weight gradient computation requires pruning with
32x32 granularity, which cannot be efficiently executed on
GPUs. Also, the amount of weight gradient computation is
larger than that of neuron gradient computation in the MLP
models. Thus the performance gain of block-wise dropout
is smaller in backpropagation.

Analysis of Speedup. We now look closer into the through-
put gain of block-wise dropout. For the analysis, we used
a 1024x1024 fully-connected layer with 256 batch size.
We evaluated its forward computation with varying dropout
rate and examined the reduction of the computation and
memory load (from DRAM and shared memory). Table 7
shows the experimental results for input-based pruning;
the results for output-based pruning are similar but with
smaller speedup and reduction in memory loads (not shown
due to space). As we increase the drop ratio, the amount of
memory load and floating-point computation decreases ac-
cordingly. The speedup, however, is lower than the reduc-

Table 7. Profiling of CUTLASS with block-wise dropout and
varying dropout ratio for computing a single 1024 x1024 fully-
connected layer with 256 batch size.

Drop Ratio | Speedup | Global Load | Shared Load | FLOPs
0% 1.00x 100% 100% 100%
10% 1.09 % 87.50% 88.25% 87.51%
25% 1.24x 75.39% 76.50% 75.02%
50% 1.58x 50.79% 53.00% 50.05%
75% 2.80x 26.18% 28.79% 25.07%

tion of memory load or computation. The reason is because
the reduction is not uniform across the pipeline stages. That
is, even if the memory load is reduced by half at one execu-
tion point, the overlapping computation (at that point) may
not be reduced as much; thus the reduction of the execution
time in that case is bounded by a less reduced operation.

6 RELATED WORK

Dropout Variants. A number of dropout variants have
been proposed to improve the performance and general-
ization of neural networks (Srivastava et al., 2014; Kingma
et al., 2015; Ba & Frey, 2013; Keshari et al., 2019; Gal
etal., 2017; Tompson et al., 2015; Huang et al., 2016; Lars-
son et al., 2016; Ghiasi et al., 2018; Zoph et al., 2018;
Pham & Le, 2021). Particularly, the technique of learn-
ing and adjusting dropout rate has been extensively stud-
ied (Kingma et al., 2015; Gal et al., 2017; Ba & Frey, 2013).
Guided dropout, for example, uses trainable parameters
representing the strength of each neuron to primarily train
the neurons that have low strength values (Keshari et al.,
2019). More recently, AutoDropout proposed to train a
transformer-based model that generates the dropout masks
for a given neural network (Pham & Le, 2021). However,
the overhead of training the model is large and the accu-
racy gain brought by the technique is relatively modest.

The technique of dropping channels and residual connec-
tions rather than individual neurons has been also widely
studied for CNNs (Tompson et al., 2015; Huang et al.,
2016; Larsson et al., 2016; Ghiasi et al., 2018; Zoph et al.,
2018). DropBlock supports dropping a sub-area (i.e., a
block) of a channel to improve the robustness of the fea-
tures in convolution layers (Ghiasi et al., 2018). Although
block-wise dropout also applies dropout at a block level,
it improves the training performance by efficiently pruning
the corresponding computations on GPUs.

Imposing and Exploiting Structural Sparsity. Because
training and running deep neural networks is computation-
ally expensive, pruning the sub-structures of neural net-
works has been studied (Wen et al., 2016; He et al., 2017;
Liuetal.,2017). Wen et al. (2016) proposed Structure Spar-

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

sity Learning to impose user-defined sparsity structures
to speedup the inference computations. Pruning the chan-
nels of convolutional neural networks (He et al., 2017; Liu
et al., 2017) has been also studied to accelerate the infer-
ence computation. More recently, Oh et al. (2020) proposed
to improve the training throughput by taking advantage
of converged parameters during the training and pruning
the corresponding computations. In block-wise dropout, we
take advantage of dropout, i.e., a regularization technique,
to improve the performance of training neural networks.

Ensemble Learning and Neural Networks. Training a
number of base models and constructing the ensemble
model has been widely studied especially in the context
of random forest and tree boosting algorithm (Chen &
Guestrin, 2016; Ke et al., 2017). In ensemble learning, the
number of base models is an important factor of the ensem-
ble performance. However, it is reported that beyond a cer-
tain point, adding base models does not improve the perfor-
mance of the ensemble model (Oshiro et al., 2012; Bonab
& Can, 2019), which is one of the motivations of our study.
In deep learning, training a neural network is viewed as
training a number of subnetworks that are embedded in the
whole network (Baldi & Sadowski, 2013; Veit et al., 2016;
Olson et al., 2018) . This view is exploited in recent work
that studied efficient ensemble structures (Wen et al., 2020;
Havasi et al., 2020; Dusenberry et al., 2020; Wenzel et al.,
2020). That is, in these methods, most of the model param-
eters are shared among the base models that make use of
different subnetworks of the shared neural network. While
we do not explicitly train ensemble models, our study is
motivated by the principles of ensemble learning.

7 CONCLUSION

We proposed gyro dropout, a variant of dropout that pre-
selects a fixed number of subnetworks and train with them
throughout learning. Compared to conventional dropout, a
smaller number of subnetworks are trained in gyro dropout.
Our analysis shows that these subnetworks are more diver-
sified and thus their ensemble performs better. Moreover,
we proposed a variant of gyro dropout, namely block-wise
dropout, for efficient pruning of dropped out computations
on GPU. Instead of dropping individual neurons, block-
wise dropout selects a block of neurons and drops them
altogether, thereby making it cheap to prune the warp ex-
ecutions on GPU. We evaluate the two dropout techniques
with seven neural networks and ten public datasets. Gyro
dropout outperforms conventional dropout in all experi-
ments with achieving up to 1.93% higher accuracy. More-
over, block-wise dropout improves the training throughput
by up to 29.8% with little to no accuracy loss compared to
gyro dropout.

ACKNOWLEDGEMENTS

This work is supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2013-
0-00109, WiseKB: Big data based self-evolving knowl-
edge base and reasoning platform, No.2018-0-00503, Re-
searches on next generation memory-centric computing
system architecture, No.2020-0-01373, Artificial Intelli-
gence Graduate School Program (Hanyang University),
and No.2021-0-01817, Development of Next-Generation
Computing Techniques for Hyper-Composable Datacen-
ters). The corresponding author is Jiwon Seo.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX symposium on operating systems design
and implementation (OSDI 16), pp. 265-283, 2016.

Ba, J. and Frey, B. Adaptive dropout for training deep neu-
ral networks. Advances in neural information processing
systems, 26:3084-3092, 2013.

Baldi, P. and Sadowski, P. J. Understanding dropout. Ad-
vances in neural information processing systems, 26:
2814-2822, 2013.

Bay, S. D., Kibler, D., Pazzani, M. J., and Smyth, P. The
uci kdd archive of large data sets for data mining re-
search and experimentation. ACM SIGKDD explorations
newsletter, 2(2):81-85, 2000.

Bonab, H. and Can, F. Less is more: A comprehensive
framework for the number of components of ensemble
classifiers. IEEE Transactions on neural networks and
learning systems, 30(9):2735-2745, 2019.

Bousquet, O. and Elisseeff, A. Algorithmic stability and
generalization performance. Advances in Neural Infor-
mation Processing Systems, pp. 196-202, 2001.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boost-
ing system. In Proceedings of the 22nd acm sigkdd in-
ternational conference on knowledge discovery and data
mining, pp. 785-794, 2016.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dusenberry, M., Jerfel, G., Wen, Y., Ma, Y., Snoek, J.,
Heller, K., Lakshminarayanan, B., and Tran, D. Effi-
cient and scalable bayesian neural nets with rank-1 fac-

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

tors. In International conference on machine learning,
pp. 2782-2792. PMLR, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Gal, Y., Hron, J., and Kendall, A. Concrete dropout. Ad-
vances in Neural Information Processing Systems, 30,
2017.

Ghiasi, G., Lin, T.-Y., and Le, Q. V. Dropblock: A reg-
ularization method for convolutional networks. arXiv
preprint arXiv:1810.12890, 2018.

Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J., Lak-
shminarayanan, B., Dai, A. M., and Tran, D. Training
independent subnetworks for robust prediction. arXiv
preprint arXiv:2010.06610, 2020.

He, Y., Zhang, X., and Sun, J. Channel pruning for accel-
erating very deep neural networks. In Proceedings of the
IEEE international conference on computer vision, pp.

1389-1397, 2017.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,
K. Q. Deep networks with stochastic depth. In European
conference on computer vision, pp. 646—661. Springer,
2016.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient gra-
dient boosting decision tree. Advances in neural infor-
mation processing systems, 30:3146-3154, 2017.

Kerr, J. A., Merrill, D., and Tran, J. Cutlass: Fast linear
algebra in cuda c++. NVIDIA Developer Blog, 2017.

Keshari, R., Singh, R., and Vatsa, M. Guided dropout. In
Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pp. 4065-4072, 2019.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. Ad-
vances in neural information processing systems, 28:

2575-2583, 2015.

Kuncheva, L. I. and Whitaker, C. J. Measures of diver-
sity in classifier ensembles and their relationship with
the ensemble accuracy. Machine learning, 51(2):181—
207, 2003.

Larsson, G., Maire, M., and Shakhnarovich, G. Fractal-
net: Ultra-deep neural networks without residuals. arXiv
preprint arXiv:1605.07648, 2016.

Liang, X., Wu, L., Li, J.,, Wang, Y., Meng, Q., Qin, T.,
Chen, W., Zhang, M., and Liu, T.-Y. R-drop: Reg-
ularized dropout for neural networks. arXiv preprint
arXiv:2106.14448, 2021.

Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J.
Nvidia tesla: A unified graphics and computing architec-
ture. IEEE micro, 28(2):39-55, 2008.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang,
C. Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE inter-

national conference on computer vision, pp. 27362744,
2017.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. arXiv preprint arXiv:1711.05101, 2017.

Margineantu, D. D. and Dietterich, T. G. Pruning adaptive
boosting. In ICML, volume 97, pp. 211-218. Citeseer,
1997.

Moustafa, N. and Slay, J. Unsw-nbl5: a comprehensive
data set for network intrusion detection systems (unsw-
nbl5 network data set). In 2015 military communica-
tions and information systems conference (MilCIS), pp.

1-6. IEEE, 2015.

Oh, H,, Yu, Y., Ryu, G., Ahn, G., Jeong, Y., Park, Y., and
Seo, J. Convergence-aware neural network training. In
2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1-6. IEEE, 2020.

Olson, M., Wyner, A., and Berk, R. Modern neural net-
works generalize on small data sets. In Advances in
Neural Information Processing Systems, pp. 3619-3628,
2018.

Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. How
many trees in a random forest? In International work-
shop on machine learning and data mining in pattern
recognition, pp. 154—168. Springer, 2012.

Pham, H. and Le, Q. V. Autodropout: Learning dropout
patterns to regularize deep networks. arXiv preprint
arXiv:2101.01761, 1(2):3, 2021.

Rajpurkar, P, Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Rokach, L. Ensemble-based classifiers. Artificial intelli-
gence review, 33(1-2):1-39, 2010.

Sanders, J. and Kandrot, E. CUDA by example: an
introduction to general-purpose GPU programming.
Addison-Wesley Professional, 2010.

Saule, E., Kaya, K., and Catalyiirek, U. V. Performance
evaluation of sparse matrix multiplication kernels on in-
tel xeon phi. In International Conference on Paral-
lel Processing and Applied Mathematics, pp. 559-570.
Springer, 2013.

Gyro Dropout: Maximizing Ensemble Effect in Neural Network Training

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Tavallaece, M., Bagheri, E., Lu, W., and Ghorbani, A. A.
A detailed analysis of the kdd cup 99 data set. In 2009
IEEE symposium on computational intelligence for se-
curity and defense applications, pp. 1-6. IEEE, 2009.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magni-
tude. COURSERA: Neural networks for machine learn-
ing, 4(2):26-31, 2012.

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bre-
gler, C. Efficient object localization using convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 648—656,
2015.

Veit, A., Wilber, M. J., and Belongie, S. Residual networks
behave like ensembles of relatively shallow networks.
Advances in neural information processing systems, 29:
550-558, 2016.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. Advances in
neural information processing systems, 29:2074-2082,
2016.

Wen, Y., Tran, D., and Ba, J. Batchensemble: an alterna-
tive approach to efficient ensemble and lifelong learning.
arXiv preprint arXiv:2002.06715, 2020.

Wenzel, E., Snoek, J., Tran, D., and Jenatton, R. Hyperpa-
rameter ensembles for robustness and uncertainty quan-
tification. arXiv preprint arXiv:2006.13570, 2020.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 8697-8710, 2018.

