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ABSTRACT
The quest for determinism in machine learning has disproportionately focused on characterizing the impact of
noise introduced by algorithmic design choices. In this work, we address a less well understood and studied
question: how does our choice of tooling introduce randomness to deep neural network training. We conduct large
scale experiments across different types of hardware, accelerators, state-of-the-art networks, and open-source
datasets, to characterize how tooling choices contribute to the level of non-determinism in a system, the impact of
said non-determinism, and the cost of eliminating different sources of noise. Our findings suggest that the impact
of non-determinism is nuanced. While top-line metrics such as top-1 accuracy are not noticeably impacted, model
performance on certain parts of the data distribution is far more sensitive to the introduction of randomness. Our
results suggest that deterministic tooling is critical for AI safety. However, we also find that the cost of ensuring
determinism varies dramatically between neural network architectures and hardware types, e.g., with overhead up
to 746% on a spectrum of widely used GPU accelerator architectures, relative to non-deterministic training.

1 INTRODUCTION

In the pursuit of scientific progress, a key desideratum is
to eliminate noise from a system. As scientists, we typi-
cally regard noise as all the random variations independent
of the signal we are trying to measure. In the field of ma-
chine learning, the urgency to remove noise from training is
often motivated by 1) concerns around replicability of ex-
periment results, 2) having full experimental control and/or
3) the need to precisely audit AI behavior in safety-critical
domains where human welfare may be harmed.

Recent work has disproportionately focused on the impact
of algorithm design choices on model replicability (Nagara-
jan et al., 2018; Madhyastha & Jain, 2019; Summers &
Dinneen, 2021; Snapp & Shamir, 2021; Shamir et al., 2020;
Lucic et al., 2018; Henderson et al., 2017). Less well ex-
plored or understood is how our choice of tooling impacts
the level of noise in a machine learning system. While some
recent work has evaluated the role of software dependen-
cies (Pham et al., 2020; Hong et al., 2013), this has been
evaluated in the context of a single machine. In parallel, the
quest for determinism has spurred the design of hardware
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that is inherently deterministic (Jooybar et al., 2013; Chou
et al., 2020; Jouppi et al., 2017) and software patches that
ensure determinism in popular deep learning libraries such
as Tensorflow (Abadi et al., 2016), Jax (Bradbury et al.,
2018), Pytorch (Paszke et al., 2019), and cuDNN (Chetlur
et al., 2014).

In our rush to eliminate noise from ML systems, we seem
to have skipped a crucial step – characterizing the origins of
the problem and the cost of controlling noise in the system.
Understanding the sources of noise in ML systems and the
downstream impact is critical in order to weigh the benefits
of controlling noise at different levels of the technology
stack. How does the choice of hardware, software and al-
gorithm individually contribute to the overall system-level
noise? Here, we propse a rigorous benchmark to measure
individual sources of randomness at different levels of the
technology stack. We separately isolate and evaluate the
contribution of both algorithmic choices (i.e., random ini-
tialization, data shuffling, random layers and stochastic data
augmentation), and implementation choices which is the
noise introduced by tooling, consist of the combination of
hardware and software used to train the model (e.g., non-
deterministic GPU computation, non-deterministic opera-
tors in framework). Our work is the first to our knowledge
to evaluate the impact of different widely used hardware
types, and also quantify differences in the cost of controlling
noise across hardware.

Our results suggest that a more nuanced understanding of
noise can also inform our understanding of how our tooling
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(a) Small CNN CIFAR-10
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(b) ResNet-18 CIFAR-10
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(c) ResNet-18 CIFAR-100
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(d) ResNet-50 ImageNet

Figure 1. Comparison of different source of noise on standard deviation of accuracy, predictive churn and L2 distance between trained
weights (on V100 GPU). Implementation noise (IMPL) introduces less uncertainty than algorithmic noise (ALGO) in terms of Churn and
L2 distance, but each is a significant source of uncertainty.

impacts generalization. We find that both algorithmic and
hardware factors exert minimal difference in top-line met-
rics. However, we observe a far more pronounced impact on
the level of predictive divergence between different model
runs, the standard deviation of per-class metrics and sub-
group performance. Here, we find that the presence of noise
can amplify uncertainty disproportionately on certain sub-
sets of the dataset. While models maintain similar top-line
metrics, randomness present during training often causes
unacceptable differences in performance on subsets of the
population. Notably, we find that non-determinism at all
levels of the technology stack can amplify model bias by
disproportionately increasing variance in performance on
underrepresented sensitive sub-groups.

Our work is the first to our knowledge to propose an am-
bitious benchmark for characterizing sources of noise in a
machine learning system. Our results suggest that determin-
istic tooling is critical for ensuring AI safety in sensitive
domains such as credit scoring, health care diagnostics (Xie
et al., 2019; Gruetzemacher et al., 2018; Badgeley et al.,
2019; Oakden-Rayner et al., 2019) and autonomous driving
(NHTSA, 2017). However, our work also establishes that
the cost of fully ensuring determinism is large and highly
variably due to the sensitivity to model design and under-
lying hardware. Controlling implementation noise comes
with non-negligible training speed overhead for which re-
searchers should weigh the price and benefit based on their
tolerance of uncertainty and the sensitivity of the task.

Our core contributions can be enumerated as follows:

1. We establish a rigorous benchmark for evaluating the
impact of tooling on different measures of model stabil-
ity. We consolidate metrics of interest for the purpose
of evaluating noise in a system, and establish results on
the impact of widely used tooling across an extensive
experimental set-up. We conduct large-scale experi-
ments across different hardware, accelerators, widely
used training architectures and datasets (Section 3.1).
The results of our large scale benchmarking of deep
neural network training provide valuable insights in
the nature of stochasticity in ML systems and the cost
of controlling this noise.

2. Non-determinism must be controlled at all levels of the
technical stack or is not worth controlling at all. Even
if algorithmic factors are controlled, the noise from
tooling alone is substantial. This suggests that remov-
ing partial sources of noise cannot effectively reduce
the level of uncertainty of trained models (Section 3.2).
The overall level of system noise is highly dependent
on model design, with choices such as the presence of
batch-normalization (Ioffe & Szegedy, 2015) driving
differences in model stability.

3. Non-determinism has a pronounced impact on sub-
aggregate measures of model stability. While we ob-
serve minimal impact on top-line metrics, we find that
model performance on certain sub-sets of the distri-
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Table 1. Test-set accuracy with standard deviation under each type of noise. We report the average of 10 models trained independently
from scratch.

HARDWARE TASK TEST ACCURACY
ALGO+IMPL ALGO IMPL

SMALLCNN CIFAR-10 62.28%± 0.83 61.44%± 0.41 61.61%± 0.31
P100 RESNET18 CIFAR-10 93.33%± 0.14 93.32%± 0.13 93.12%± 0.11

RESNET18 CIFAR-100 73.37%± 0.23 73.42%± 0.26 73.36%± 0.17

SMALLCNN CIFAR-10 62.24%± 0.64 62.13%± 0.85 62.36%± 0.16
RTX5000 RESNET18 CIFAR-10 93.34%± 0.11 93.44%± 0.19 93.13%± 0.09

RESNET18 CIFAR-100 73.30%± 0.16 73.52%± 0.15 73.34%± 0.24

SMALLCNN CIFAR-10 62.03%± 0.91 62.35%± 0.61 61.69%± 0.31
V100 RESNET18 CIFAR-10 93.32%± 0.17 93.44%± 0.05 93.41%± 0.13

RESNET18 CIFAR-100 73.42%± 0.25 73.35%± 0.14 73.41%± 0.28
RESNET50 IMAGENET 76.58%± 0.10 76.61%± 0.10 76.60%± 0.05

bution is far more sensitive, with underrepresented
attributes disproportionately impacted by the introduc-
tion of stochasticity (Section 3.2).

4. Large variance in overhead introduced by determin-
istic training. Controlling for implementation noise
poses significant overhead to model training proce-
dures – with overhead up to 746% on a spectrum of
widely used GPU accelerator architectures, relative to
non-deterministic training (Section 4).

2 METHODOLOGY

We consider a supervised learning setting,

D
{
(x1, y1), . . . , (xN , yN )

}
⊂ X × Y (1)

where X is the data space and Y is the set of outcomes that
can be associated with an instance.

A neural network is a function fw : X 7→ Y with trainable
weights w ∈W . Given training data, our model learns a set
of weights w∗ that minimize a loss function L. Stochastic
factors that impact the distribution of the learned weights
w∗ at the end of training include both algorithm design
choices (ALGO) that introduce noise to the training process
and implementation choices (IMPL).

Algorithmic Factors (ALGO) includes model design
choices which are stochastic by design. Often, there are
widely used implementation choices as introducing stochas-
ticity to deep neural network training has been found to
improve top-line metrics:

• Random Initialization - the weights of a deep neural
network are randomly initialized, typically with the
goal is maintaining variance of activations within a nar-
row range at the beginning of training to avoid gradient
saturation (Glorot & Bengio, 2010; He et al., 2016).

• Data augmentation - the quality of a trained model
depends upon the training data. Often, when faced
with limited data an effective strategy is to generate
new samples by applying stochastic transformations
to the input data (Kukačka et al., 2017; Hernández-
Garcı́a & König, 2018). Examples of stochastic data
augmentation include random crops, noise injection,
and random distortions to color channels (Dwibedi
et al., 2017; Zhong et al., 2017).

• Data shuffling and ordering - for mini-batch stochas-
tic gradient optimization, datasets are typically shuffled
randomly during training and batched into a subset of
observations. Thus, each training process will observe
a different ordering of inputs. Batching examples in-
troduces noise through stochastic mini-batch gradient
descent (Smith et al., 2018). Even when batching is not
used (all data is processed in a single batch), a differ-
ence in ordering can introduce stochasticity that may
introduce security vulnerabilities (Shumailov et al.,
2021).

• Stochastic Layers - techniques such as dropout which
entails randomly dropping a subset of weights each iter-
ation (Srivastava et al., 2014; Hinton et al., 2012; Wan
et al., 2013), noisy activation functions (Nair & Hin-
ton, 2010) or variable length backpropagration through
time (Merity et al., 2017).

Implementation Factors (IMPL) - noise that ultimately
comes from floating-point number accumulation ordering
error1. This includes noise introduced by software choices
(e.g. Tensorflow (Abadi et al., 2016), PyTorch (Paszke et al.,
2019), cuDNN (Chetlur et al., 2014)) as well as hardware
accelerators’ architectures (e.g., modern GPU hardware de-
signs (NVIDIA, 2016; 2017; 2018)). The following de-

1Non-associativity of floating-point arithmetic, e.g., (a+b)+c
!= a+(b+c).
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Figure 2. Comparison of standard deviation of accuracy, prediction churn and l2 norm of 3-layer small CNN both with and without
batchnorm on CIFAR-10 dataset.

scribes two common scenarios which are known to cause
implementation noises.

• Parallel Execution - Popular general-purpose DNN
accelerators (e.g., GPUs) leverage highly parallel exe-
cution for speed-up in execution. However, these so-
phisticated software-hardware designs for massive par-
allelism typically aims to maximize resource utilization
for execution speed and throughput rather than output
accuracy/precision. Thus, GPUs introduce stochastic-
ity due to random floating-point accumulation ordering
from parallel threads, which often cause inconsistent
outputs between multiple runs due to the truncation of
fraction part in floating point number in the accumula-
tion procedure (Chou et al., 2020).

• Input Data Shuffling and Ordering - While input
data shuffling induces algorithmic noise, it also is the
source implementation noise due to the different input
ordering. Differences in input data ordering can result
in different floating point accumulation orders for the
reduction operations across data points which are often
a overlooked source of implementation noise.

2.1 Measures of Model Stability

In this work, we focus on measuring the impact of ran-
domness on model stability, defined as ensuring that given
the same experimental framework and tooling, the varia-
tion of the training outcome for given input dataset. To
this end, we evaluate the impact on both top-line metrics,
but also more granular measures of model stability such as
predictive churn, l2 norm and sub-group performance, as
different measures of model stability. We briefly introduce
each below.

Churn (churn) - Predictive churn is a measure of predic-
tive divergence between two models. In sensitive domains
such as medicine, consistent individualized predictions are

of paramount importance, as there can be severe costs for in-
consistent model behavior with a risk to human life (Council,
2011). Thus, understanding the factors that amplify churn
is of considerable research interest with several different
proposed definitions of predictive churn (Chen et al., 2020;
Shamir & Coviello, 2020; Snapp & Shamir, 2021). We
define churn between two models f1 and f2 as done by (Mi-
lani Fard et al., 2016) as the fraction of test examples where
the predictions of two models disagree.:

C(f1, f2) = EX
[
1{Ŷx;f1

6=Ŷx;f2
}
]

(2)

where 1 is an indicator function for whether the predictions
by each model match. Given the sampling size in this paper
is always larger than two, we report churn as the average
churn of each pairwise combination of models for a given
architecture and dataset.

L2 norm (l2) - L2 norm of the trained weights ‖w∗1 −w∗2‖
between f1 and f2 at the end of training indicates the di-
vergence of each run in function space. We normalize the
weight vector to a unit vector before computing l2 norm, for
a consistent visualization scale across a variety of experi-
ments.

We do note that an exceptionally rare possibility is that two
initializations lead to two permuted but otherwise identical
final models (hence high L2 distance but otherwise identical
behavior). In such a case then L2 would not be a sensitive
enough measure to be informative. However, in practice we
do believe this would be a extremely unlikely occurrence, as
indicated by the acceptance of L2 in the machine learning
community as a metric to understand divergence in trained
functions (Zhang et al., 2019; Neyshabur et al., 2021).

Standard Deviation of top-line and sub-group met-
rics (stdev) - In addition to the standard deviation of top-1
test-set accuracy over independent runs, we measure devia-
tion in sub-group performance as measured by sub-group
error rate, false positive rate (FPR) and false negative rate
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Figure 3. Per-class accuracy standard deviation vs. overall accuracy standard deviation of SmallCNN and ResNet18 trained on V100
under different factors of noise. Per-class accuracy standard deviation is significant higher than standard deviation of accuracy across
datasets and nerual networks.

(FNR). We compute all measures over 10 independent runs
unless indicated otherwise.

2.2 Experimental Setup

We conduct extensive experiments across large-scale
datasets (CIFAR-10 and CIFAR-100 (Krizhevsky, 2012),
ImageNet (Russakovsky et al., 2015) and CelebA (Liu et al.,
2015)) and widely-used networks including ResNet-18 and
ResNet-50 (He et al., 2016), DenseNet-121 and DenseNet-
201 (Huang et al., 2017), Inception-v3 (Szegedy et al.,
2015), MobileNet (Sandler et al., 2018), EfficientNet (Tan
& Le, 2020), three-layer small CNN and six-layer medium
CNN (Appendix B). For all the experiment variants with the
exception of ImageNet, we report the average performance
metric over 10 models independently trained from scratupch.
For ImageNet, given the higher training cost, we report av-
erage performance across 5 independent trains. Table 1
includes the baseline accuracy given each dataset/model
combination we train. A detailed description of training
methodology for each dataset and model architecture com-
bination is included in Appendix A. We preserve the same
hyperparameter choices across hardware types and use Ten-
sorflow (Abadi et al., 2016) 2.4.1, CUDA 11, and cuDNN
8 (Chetlur et al., 2014) for all the experiments. For CUDA
cores experiments we consistently use the same precision
for all accumulators. We release the source code used in
experiments 2.

GPU - we evaluate NVIDIA P100 with an older Pascal
architecture (NVIDIA, 2016) and later generations V100
(NVIDIA, 2017), RTX5000 and T4 (NVIDIA, 2018) with
Volta and Turing architecture respectively. Our choice of
GPUs allows us to evaluate the impact of different levels of
parallelism, as P100, V100, RTX5000, and T4 GPU are each

2https://url-will-be-revealed-upon-acceptance

equipped with 3584, 5120, 3072, and 2560 CUDA Cores
for floating point computation, respectively. In addition,
we compare GPUs with and without Tensor Cores accel-
erators by evaluating both Pascal and Turing architectures.
GPU generations with Turing architectures have multiple
dedicated matrix multiplication units called Tensor Cores to
accelerate matrix multiplication.

TPU - A TPU (Jouppi et al., 2017) is a custom ASIC lever-
age systolic arrays (Kung, 1982) in matrix unit (MXU)
to provide massive computation throughput with a single-
threaded, deterministic computation model. Thus, TPUs are
designed to be deterministic, which differs from the time-
varying optimizations of CPUs and GPUs such as caches,
out-of-order-execution, multithreading, MIMD/SIMD and
prefetching, etc.

We benchmark four key experimental variants which allows
us to independently measure the impact of both algorithm
(ALGO) and implementation (IMPL) factors on downstream
model performance:

Both Algorithm + Implementation noise - (ALGO +
IMPL). Here, we do not control for either algorithmic or
implementation factors that introduce randomness. This is
the default setting of the model training procedure.

Only Algorithm noise - (ALGO). We measure the impact of
stochastic algorithmic factors by fully controlling all noise
introduced by tooling. Appendix C elaborates technical
details to achieve this. Note that controlling implementation
noise is far from free (Section 4).

Only Implementation noise - (IMPL). We measure the
impact of implementation noise by using a fixed random
seed for all stochastic algorithm factors. This results in
deterministic weights initialization, data augmentation and
batch shuffling.
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Figure 4. STDDEV(Accuracy) of each sub-group of ResNet18 trained on CelebA dataset using V100. Vertical axes is normalized against
corresponding metric of overall dataset. Noise is disproportionately impacting Old and Male sub-group as these sub-groups have fewer
data points for the positive class.

Table 2. Data points distribution in CelebA dataset

MALE FEMALE YOUNG OLD

POSITIVE DATA POINTS 1387 (0.8%) 22880 (14.1%) 20230 (12.4%) 4037 (2.5%)
NEGATIVE DATA POINTS 66874 (41.1%) 71629 (44.0%) 106558 (65.5%) 31945 (19.6%)

Control - This Control variant both sets a fixed random
seed to control algorithmic noise and uses software patches
to eliminate implementation noise.

Our protocol is able to rigorously separate each high level
grouping of noise (implementation and algorithmic). We
hold all experimental details constant, and vary one aspect
at a time. This allows us to rigorously say something about
how all algorithmic stochastic processes compare to tooling
stochastic processes.

3 RESULTS: CHARACTERIZING THE
IMPACT OF RANDOMNESS

In this section we address the following questions: 1) How
do implementation and algorithmic noise contribute to sys-
tem level noise? 2) How do both impact model stability? 3)
How does varying choices of hardware, low-level vendor
libraries and architecture impact the level of noise in the
system, and (4) Why are certain model design choices far
more sensitive to noise?

3.1 Impact of Randomness on Top-Line Metrics

Top-1 Accuracy Across all experiments, we observe small
variance in Top-1 accuracy. In Table 1, the maximum stan-
dard deviation in accuracy is 0.91% for the small cnn trained
on CIFAR-10, and the minimum standard deviation is 0.05%
for ResNet-10 trained on ImageNet. Top-line metrics do not
differ substantially between algorithmic and implementation
factors.

Model Stability Metrics A closer inspect of l2, churn

and stdev measures in Figure 1 shows that both ALGO and
IMPL factors create significant levels of model instability
across each of these measures. While for most networks
and measures, ALGO contributes higher levels of instability
relative to IMPL factors, this is not always a pronounced
gap. For example, on ResNet-50 ImageNet, the impact of
predictive churn of IMPL factors is 14.68% versus ALGO
factors is 14.89%. Our results show that IMPL can be a
significant source of non-determinism that will keep perturb
the training procedure. Due to the non-linearities in deep
neural network training, simply removing a single source
of noise cannot effectively reduce the level of uncertainty
of trained models. Furthermore, combined sources of noise
(ALGO + IMPL) are a non-additive combination of individ-
ual factors. For example, the impact of (ALGO + IMPL)
factors on churn for ResNet-18 and ResNet-50 is on par or
only slightly higher than the impact of only IMPL or ALGO
noise. The lack of an additive relationship between different
sources of noise suggests there is an upper bound in what
level of overall system noise is possible.

The role of model design choices In Figure 1, we observe
pronounced amplification of noise in the small CNN relative
to ResNet-18 for CIFAR-10 with far higher stdev, churn
and l2 for all sources of noise. The small CNN is the only
architecture we benchmark without batch normalization
(BN) (Ioffe & Szegedy, 2015), a standard technique for
stabilizing training (Tessera et al., 2021). To understand the
role of model design choices at curbing or amplifying noise
in the system, we compare the small CNN trained without
BN to the same architecture trained with BN. In Figure 2 (a),
we show that BN has a pronounced impact with a decline in
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Figure 5. Comparison of standard deviation of accuracy, prediction churn and l2 norm of ResNet18 on CIFAR-100 dataset between
different training accelerators. Note standard deviation of accuracy is zero under IMPL noise on TPUv2.

the stddev of the accuracy from 0.86% without BN to a
much small 0.30% with BN.

We note that architecture appears to play a larger role than
dataset in the amplification or curbing of system noise. For
example, in Figure 1 the difference in standard deviation
between small CNN (0.91%) and ResNet-18 (0.17%) is
far larger than the difference between ResNet-18 trained
on CIFAR-10 (0.17%) vs the same architecture trained on
CIFAR-100 (0.25%).

3.2 Impact of Randomness on Sub-Group
Performance

How does noise impact sub-group performance? We de-
compose top-line metrics along class label dimension on
CIFAR-10/100 dataset (Krizhevsky, 2012) and CelebFaces
Attributes (CelebA) dataset (Liu et al., 2015). In Figure 3,
we train models on CIFAR-10/100 under ALGO+IMPL,
ALGO, and IMPL respectively. We observe high variance
of per-class accuracy of ALGO and IMPL group similar to
models trained under ALGO+IMPL. It is clear that removing
partial source of noise does not effectively improve model
stability. The maximum per-class standard deviation of ac-
curacy is 4X and 23X on CIFAR-10 and CIFAR-100 dataset
on ResNet18 compared to standard deviation of top-1 accu-
racy, we also observe similar effect for small CNN model,
with 3X and 23X larger per-class standard deviation of ac-
curacy on CIFAR-10/100 dataset respectively. Interestingly,
even for uniformly distributed dataset, per-class accuracy
variance still have a large range of divergence.

CelebA (Liu et al., 2015) is a dataset of celebrity images
where each image is associated with 40 binary labels iden-
tifying attributes such as hair color, gender, and age. To
understand the implications of noise on model bias and

fairness considerations. Thus, we focus attention on two
protected unitary attributes Male, Female and Young
and Old. In Figure 4, we can see that (ALGO+IMPL) noise
is resulting unstable metrics on underrepresented Male and
Old subgroups leading to disproportionate high-variance up
to 3.3X on standard deviation on accuracy of Old group and
4.6X standard deviation on FNR of Male group. Thus, We
conclude that even if the top-line metric variation is small
enough, noise still imposes disproportionate high variance
on dis-aggregated metrics.

Why certain parts of the data distribution more sensi-
tive to noise? We observe a correlation between underrep-
resented sub-groups sufferring the most pronounced impact
in variance. In Figure 4, the classes disproportionately im-
pacted Male and Old as they are heavily underrepresented
in the training dataset with 0.8% and 2.5% positive labels
as a fraction of the entire dataset (see Table 2). This sug-
gests stochasticity disproportionately impact features in the
long-tail of the dataset.

3.3 How does noise level vary across hardware types?

Number of CUDA Cores In Figure 5, we compare all hard-
ware types we evaluate on CIFAR-100. In the appendix D,
we include additional breakdowns for each dataset/mod-
el/hardware evaluated (Figure 9 and Figure 10). For all
GPUs we evaluate, V100 results in larger divergence under
implementation noise in terms of both churn and l2. One
possible reason for this difference between hardware perfor-
mance are the relatively larger number of CUDA cores in
V100 GPUs than either P100 and RTX5000. This may sug-
gest increased parallelism is a key driver of implementation
noise.

Accelerator comparison We find that IMPL impact on
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Figure 6. Comparison of GPU overhead of deterministic setting relative to non-deterministic training setting on Left: Ten widely used
neural networks, Right: A six-layers medium CNN (Appendix B) plugged with different size convolution kernels.

churn and l2 is still high for RTX5000 Tensor Cores
which employ systolic arrays similar to TPUs to accelerate
computation. The high IMPL noise despite the systolic de-
sign appears to be due to the reliance of Tensor Cores on
non-deterministic CUDA cores on GPU for computations
that not supported. Thus, model training leveraging Tensor
Cores computation is introducing a similar level of noise
compared to CUDA Cores.

In Figure 5, for ALGO+IMPL TPUs incurs a lower level of
churn and l2 in weights compared to GPUs. This differ-
ence is due to the inherently deterministic design of TPUs,
such that any stochasticity is only introduced algorithmic
factors even under ALGO+IMPL setting. We oberve that
while TPU lower churn and l2 relative to GPUs, there is
not a pronounced impact on stdev. This is consistently
with our wider observation across experiments, we note
that removing individual sources of noise tends to slightly
reduce churn and l2, but does not have an observable
relationship with stddev which appears far more sensitive
to the presence of any source of noise.

Non-determinism based upon differences in ordering
Both GPUs and TPUs can introduce implementation noise
since intra-batch shuffling will introduce differences in gra-
dient accumulation order, even for deterministic accelerator
like TPUs. In Figure 7, we train ten small CNNs on CIFAR-
10 dataset for each batch size, with all source of noise fixed
except data shuffling order. When the batch is 50000, the
full dataset is packed into a signal training batch, mathe-
matically in this case all models should produce identical
result, but, we still observe divergence of predictions be-
tween end runs for all batch size we evaluate. TPUs are
designed for single-threaded, deterministic execution mode
but are not ensured to be deterministic to ordering in data.
This is because the difference in input data order will re-
sult in different float-point accumulation order in gradients
accumulation stage.

500 5000 50000
Batch Size

5%

10%

15%

20%

Ch
ur

n

Figure 7. Data input order introduces additional non-determinism
on TPU.

4 RESULTS: THE COST OF ENSURING
DETERMINISM

Profiling Experiments We profile the overhead of deter-
ministic settings relative to normal training (ALGO + IMPL)
by measuring GPU time spend on CUDA kernel computa-
tion using nvprof profiler (NVIDIA). We select networks
that are widely used such as MobileNet (Howard et al.,
2017), EfficientNets (Tan & Le, 2020) , DenseNet-121/201
(Huang et al., 2017), VGG-16/19 (Simonyan & Zisserman,
2015) and ResNet-50/152 (He et al., 2016). We profile
all models on ImageNet dataset with input shape 224*224
and batch size of 64 on 100 training steps unless specified
elsewhere.

How does model architecture impact overhead? Fig-
ure 6 (a) shows the relative deterministic overhead of a
variety of CNN models. VGG-19 has the most significant
overhead among the models we profiled on all GPUs, with
a 185% relative GPU time compared to non-deterministic
counterpart on V100 whereas MobileNet has only 101%
relative GPU time compared to to non-deterministic counter-
part. P100 and T4 also present a large variation of determin-
istic overhead associate with different model architectures
with range 101% ∼ 211% and 101% ∼ 196% respectively.

The role of model hyperparameter To understand the rela-
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Table 3. Model hyperparameter impact deterministic tooling over-
head

VARY CHANNEL NUMBER

1X 2X 4X
RELATIVE OVERHEAD 132% 139% 154%

VARY BATCH SIZE

1X 2X 4X
RELATIVE OVERHEAD 132% 132% 134%

VARY INPUT IMAGE SIZE

0.5X 1X 2X
RELATIVE OVERHEAD 127% 132% 134%

VARY LAYER NUMBER

0.5X 1X 1.5X
RELATIVE OVERHEAD 127% 130% 130%

tive overhead of variation in size of model hyperparameters.
we first evaluate across different kernel sizes using a six
layer medium CNN (Appendix B). Assembled with con-
volution kernel size ranging from 1 ∗ 1 to 7 ∗ 7. As show
in Figure 6 (b), the GPU overhead time is remarkably sen-
sitive to the size of kernel, with 284% ∼ 746% on P100,
129% ∼ 241% on V100, and 117% ∼ 196% on T4 respec-
tively. For all kernel size we evaluate on each GPU, larger
kernel size is always comes with larger overhead.

Furthermore, we report the relative overhead compared to
corresponding non-deterministic settings on V100 when
varying channel number, batch size, input image size, and
layer number in medium CNN. When alternate one hy-
perparameter, the others remain unchanged 3. We report
detailed result in Table 3, similar to filter size, channel num-
ber can improve deterministic tooling overhead drastically
when increased. Increase overhead from 132% to 154%
on V100 when enlarge channel number in each layer four
times. While other hyperparameter such as batch size, input
image size, and layer number to not present obvious impact
in deterministic tooling overhead. We believe tooling over-
head is valuable for algorithm designers who are designing
deterministic-tooling friendly neural net as well as hard-
ware/framework designers who are working on minimizing
deterministic tooling overhead.

How does hardware impact overhead? GPU architecture
deterministic overhead varies considerably. In Figure 6 (b),
we observe overhead for a 7*7 kernel relative to default
mode is up to 746%, 241%, and 196% on P100, V100, and
T4 respectively. Consistently, across all models we bench-
mark, GPUs with older Pascal architecture (P100) evidence
higher overhead than GPUs with later Volta and Turing ar-
chitecture. This suggests deterministic training comes with

3When vary layer number, we keep channel number constantly
equal to 32 in each CNN layer to prevent channel number change
with layer number.
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Figure 8. Top-20 GPU kernels runtime comparison (Top-1 is on the
left side). X-axis indicates the different type of kernels scheduled
on GPU. Y-axis indicates the time spend on each type of GPU
kernel.

non-negligible overhead on which researchers should weigh
the price and benefit based on their tolerance to uncertainty.
However, even the minimum observed overhead poses sig-
nificant hurdles to efficient training. In Figure 8, we plot
the time spent on Top-20 kernels used across 100 steps of
training. The more skewed time allocation of deterministic
mode shows the heavy dependency on a narrower set of
kernels instead tuning the best one heuristically. This cost
can be attributed to the narrow range of kernels the compiler
is forced to use when deterministic training is selected.

5 RELATED WORK

Reproducibility in machine learning As numerous works
have pointed out (Goodman et al., 2016; Gundersen &
Kjensmo, 2018; Barba, 2018; Drummond, 2009), the word
reproducibility can correspond to very different standards,
ranging from the ability to reproduce statistically similar
values (Raff, 2019; McDermott et al., 2019; Thavasimani
& Missier, 2016), to successfully executing code (Collberg
& Proebsting, 2016), to the ability to reproduce a relative
relationship (a model remains state of art even when the
experimental set-up is changed) (Bouthillier et al., 2019). In
this work, we are concerned with replicability, a subset of
reproducibility where the standard is reproducing the exact
results given the same experimental framework. Advances
in tooling have aimed to simplify replication, ranging from
shareable notebooks (Kluyver et al., 2016), dockerization
(Merkel, 2014), machine learning platforms where code
and data is easily shareable (Isdahl & Gundersen, 2019)
and software patches to ensure determinism for a subset of
operations. Less mature ideas include research around auto-
matic generation of code from research papers (Sethi et al.,
2017). In the computer architecture research community,



Randomness in Neural Network Training: Characterizing the Impact of Tooling

researchers have proposed several deterministic GPU archi-
tectures (Jooybar et al., 2013; Chou et al., 2020) to boost
the reproducibility and debuggability of GPU workloads.

Impact of Algorithmic Factors A substantial amount of
work has considered the impact of different sources of ran-
domness introduced by algorithm design choices. Several
works have evaluated the impact of a random seed, with
(Nagarajan et al., 2018) evaluating the role of random ini-
tialization in reinforcement learning, and (Madhyastha &
Jain, 2019) measuring how random seeds impact explana-
tions for NLP tasks provided by interpretability methods.
(Summers & Dinneen, 2021) benchmark the separate impact
of choices of initialization, data shuffling and augmentation.
Work mentioned thus far is focused on how design choices
that introduce randomness impact training. However, there
is a wider body of scholarship that has focused on sensitivity
to non-stochastic factors including choice of activation func-
tion and depth of model (Snapp & Shamir, 2021; Shamir
et al., 2020), hyper-parameter choices (Lucic et al., 2018;
Henderson et al., 2017; Kadlec et al., 2017; Bouthillier et al.,
2021), the use of data parallelism (Shallue et al., 2019) and
test set construction (Søgaard et al., 2021; Lazaridou et al.,
2021; Melis et al., 2018).

Impact of Software Dependencies (Hong et al., 2013)
evaluate the role of different compilers for the specialized
task of weather simulation. Recent work by (Pham et al.,
2020) and (Alahmari et al., 2020) in the machine learn-
ing domain evaluates the impact of randomness introduced
by popular deep neural network libraries (Pytorch, CNTK,
Theano and Tensorflow). (Alahmari et al., 2020) evaluates
a segmentation task for mouse neo-cortex data and MNIST
on LeNet (Lecun et al., 1998). (Pham et al., 2020) finds
the biggest variance across all deep learning libraries on
LeNet5. These works and others only evaluate the role of
software dependencies on a single type of hardware. Our
contribution is the first to our knowledge to vary the hard-
ware, and measure the cost of ensuring determinism across
different types of hardware.

Trade-off with fairness objectives Recent work (Hooker,
2021; Yona et al., 2021; D’Amour et al., 2020; Hooker
et al., 2019) has identified that models with similar top-line
metrics can evidence unacceptable performance on subsets
of the distribution. Design choices such as compression
(Hooker et al., 2020) and privacy (Cummings et al., 2019)
can impact disparate impact on sensitive attributes. How-
ever, ours is the first to our knowledge that evaluates the
impact of tooling and sources of randomness on disparate
harm.

We also note that our evaluation protocols for understanding
the impact of tooling on stochasticity is complementary to
benchmarking efforts that evaluate the impact of hardware
on other measures of performance such as energy,latency

(Banbury et al., 2021; Mattson et al., 2020).

6 CONCLUSION

In this work, we characterize the impact and cost of control-
ling noise at all levels of the technical stack. We empirically
demonstrate that both algorithmic and implementation noise
are significant sources of noise. Thus, simply removing
noise from one part of the technical stack is not a robust
way to improve training stability. Secondly, we show that
even with minimal changes to top-line metrics, there is a
disproportionately impact on sub-group performance which
can incur fairness trade-offs when protected attributes are
underrepresented. Finally, we evaluate the cost of ensuring
determinism and find it is highly variable and dependent on
hardware type and model design choices.

Limitations In this work, our focus is evaluating the impact
of tooling in a non-distributed setting. However, increas-
ingly training deep neural networks involves data and model
parallelism (Shazeer et al., 2018; Langer et al., 2020), par-
tition over optimizer state (Rajbhandari et al., 2020), and
asynchronous gradients update (Li et al., 2014). An impor-
tant area of future work involves understanding how dis-
tributed training impacts model stability. In this work, we
did some preliminary exploration on the role of dataset and
architecture choice such as training stabilization techniques
like batch normalization can impact on variation. However,
we prudently regard a more thorough investigation as valu-
able but beyond the scope of this paper. We believe this an
important future area of scholarship, as designing architec-
tures to limit stochasticity is likely far more efficient than
imposing end-to-end determinism.
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7 APPENDIX

A Training Methodology

We employ random crop and flip for data augmentation on
all experiments except experiments on CelebA dataset.

CIFAR-10 and CIFAR-100 (Krizhevsky, 2012) We train a
small CNN on CIFAR-10 which consists of three convolu-
tional layers, followed by a dense layer and a output layer.
Additionally, we evaluate both CIFAR-10 and CIFAR-100
on ResNet-18. For all networks, we train for 200 epochs
with a batch size of 128 and 4e − 4 learning rate which
decays by a factor of ten every 50 epochs.

CelebA (Liu et al., 2015) CelebA dataset consist of ∼200K
celebrity’s facial images, each image associated with labels
with forty binary attributes such as identifying hair color,
gender, age. Our goal is to understand the implications of
noise on model bias and fairness considerations. Thus, we
focus attention on two protected unitary attributes Male,
Female and Young and Old. Our goal is to understand
the implications of noise on model bias and fairness con-
siderations. we measure standard deviation of sub-group
accuracy, false positive rate (FPR) and false negative rate
(FNR). We train ResNet18 on CelebA dataset for 20 epochs
with batch size of 128 and learning rate of 1e− 3 decays by
a factor of ten every 5 epochs.

ImageNet (Russakovsky et al., 2015) On ImageNet dataset,
we train ResNet-50 for 90 epochs with batch size of 256
with learning rate 0.1 using SGD optimizer with momentum
of 0.9, the learning rate is warming up in the first epoch and
using cosine decay in the following epochs. We conduct
out experiment on Imagenet dataset based on ResNet50
implementation from Tensorflow Model Garden 4.

B CNN Architecture

Architecture of three-layer small CNN and six-layer
medium CNN. Downsampling is performed in pooling lay-
ers, all convolutional layers are using stride=1. For six-layer
medium CNN, kernel size X can be 1, 3, 5, and 7.

C Tensorflow Deterministic Mode

As described in Section 2.2, when models are trained only
algorithmic factors noise (ALGO), implementation noise
introduced by perturbation of floating-point accumulation
ordering should be eliminated wherever possible. Tensor-
flow (Abadi et al., 2016) can achieve this (with compro-
mised speed) by setting TF DETERMINISTIC OPS and
TF CUDNN DETERMINISTIC environment variables to
true. In this way, non deterministic operations will be dis-
abled. Furthermore, cuDNN benchmarking will be disabled

4https://github.com/tensorflow/models

as well where will try to benchmark available algorithms and
find the fastest one. Pytorch (Paszke et al., 2019) also have
equivalent functionalities to control implementation factors
of noise by employ deterministic computation operators and
disable cuDNN benchmarking. A detailed discussion of
deep leaning framework support on controlling implemen-
tation factors of noise is beyond the research scope of this
paper. We are here to point this out for the ease of reproduce
of this paper.

THREE-LAYER SMALL CNN SIX-LAYER MEDIUM CNN
LAYER OUTPUT SHAPE LAYER OUTPUT SHAPE

INPUT 32 ∗ 32 ∗ 3 INPUT 224 ∗ 224 ∗ 3

Conv 3 ∗ 3
Relu

MaxPool

 16 ∗ 16 ∗ 16

Conv X ∗X
BN
Relu

MaxPool

 112 ∗ 112 ∗ 16

Conv 3 ∗ 3
Relu

MaxPool

 8 ∗ 8 ∗ 32

Conv X ∗X
BN
Relu

MaxPool

 56 ∗ 56 ∗ 32

Conv 3 ∗ 3
Relu

MaxPool

 4 ∗ 4 ∗ 32

Conv X ∗X
BN
Relu

MaxPool

 28 ∗ 28 ∗ 64

Conv X ∗X
BN
Relu

MaxPool

 14 ∗ 14 ∗ 128

Conv X ∗X
BN
Relu

MaxPool

 7 ∗ 7 ∗ 256

Conv X ∗X
BN
Relu

MaxPool

 3 ∗ 3 ∗ 512

GLOBALAVERAGEPOOLING
DENSE 32
DENSE 10 DENSE 1000

D Comparison of Impact of Different Source of Noise
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Table 4. Standard deviation of mean accuracy, false positive rate (FPR), and false negative rate (FNR) across 10 models trained under
baseline setting on the CelebA dataset (trained on V100 (using cuda cores)). Metrics are dis-aggregated across two binary dimensions
Male/Female and Young/Old. In parentheses, we report relative scale of standard deviation metrics relative to overall dataset.

SUBGROUP ALGO+IMPL ALGO IMPL

STDDEV(ACCURACY)

ALL 0.045 (1X) 0.051 (1X) 0.090 (1X)
MALE 0.049 (1.07X) 0.048 (0.94X) 0.058 (0.64X)

FEMALE 0.062 (1.36X) 0.083 (1.62X) 0.126 (1.39X)
YOUNG 0.050 (1.10X) 0.047 (0.93X) 0.091 (1.00X)

OLD 0.151 (3.31X) 0.094 (1.83X) 0.214 (2.36X)

STDDEV(FPR)

ALL 0.077 (1X) 0.051 (1X) 0.070 (1X)
MALE 0.039 (0.50X) 0.052 (1.01X) 0.043 (0.61X)

FEMALE 0.133 (1.71X) 0.094 (1.81X) 0.103 (1.48X)
YOUNG 0.077 (1.00X) 0.051 (0.99X) 0.065 (0.93X)

OLD 0.122 (1.57X) 0.093 (1.81X) 0.155 (2.21X)

STDDEV(FNR)

ALL 0.537 (1X) 0.389 (1X) 0.445 (1X)
MALE 2.475 (4.60X) 1.816 (4.66X) 1.610 (3.61X)

FEMALE 0.527 (0.98X) 0.349 (0.89X) 0.399 (0.89X)
YOUNG 0.585 (1.08X) 0.430 (1.10X) 0.566 (1.27X)

OLD 0.815 (1.51X) 0.335 (0.86X) 0.939 (2.10X)

Dataset Training/Test Split Number Classes
Cifar-10 50000/10000 10

Cifar-100 50000/10000 100
ImageNet 1281167/50000 1000
CelebA 162770/19962 40 (Multi-label)

Table 5. Overview of each dataset benchmarked.

Algorithmic Sources of Randomness
Source Method
Random Initialization weights initialized by sampling random distribution (Glorot & Bengio, 2010; He et al., 2016)

Data augmentation stochastic transformations to the input data (Kukačka et al., 2017; Hernández-Garcı́a & König,
2018; Dwibedi et al., 2017; Zhong et al., 2017)

Data shuffling inputs shuffled randomly and batched during training (Smith et al., 2018)

Stochastic Layers e.g. dropout (Srivastava et al., 2014; Hinton et al., 2012; Wan et al., 2013), noisy activations
(Nair & Hinton, 2010)

Table 6. Overview of different sources of algorithm (ALGO) noise.
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(c) ResNet18 CIFAR-100

Figure 9. Comparison of impact of different source of noise across on four tasks trained on P100
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Figure 10. Comparison of impact of different source of noise across on four tasks trained on RTX5000
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8 ARTIFACT APPENDIX

A Abstract

The artifact appendix helps readers to reproduce key
experiments in this paper. Specifically, this appendix
including all instructions needed to be reproduce Fig-
ure1, Figure2, Figure5, Figure6. For other experi-
ments, fully automated scripts are not available yet but
one can reproduce them manually using training script
released on GitHub: https : //github.com/usyd −
fsalab/NeuralNetworkRandomness.

B Artifact check-list (meta-information)
• Model: ResNet18, ResNet50, SmallCNN, MediumCNN. All

models are included in the artifact source code.

• Data set: CIFAR-10, CIFAR-100, CelebA, and ImageNet.
All dataset takes approximately 350GB storage.

• Run-time environment: Ubuntu 20.04.3 LTS

• Hardware: Google Cloud VM with 2*NVIDIA Tesla V100
(16GB), 16 core CPU. This artifact appendix focus on vali-

date artifact functionality instead of correctness due to com-
putation resource constrain. All models are trained on a small
sample of data. For full experiments, the recommended com-
putation resource are listed in Section G. And remove –fast
option in the script for full experiment (Section E).

• Metrics: Standard deviation on test accuracy, prediction
churn, l2 distance between trained parameters, standard devi-
ation of false positive rate, standard deviation of false nega-
tive rate, and execution time.

• Output: File

• Experiments: See below sections.

• How much disk space required (approximately)?:
500GB for all datasets, source code, and intermediate data
during the experiments.

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours

• How much time is needed to complete experiments (ap-
proximately)?: 2 hours for functionality test. For full
experiments, one week is needed with at least recommended
computation resource (Section G)

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT License

• Workflow framework used?: Tensorflow 2.4.1,
tensorflow-datasets, tensorflow-addons

• Archived (provide DOI)?:
https://zenodo.org/record/6078161

C Description

C.1 How delivered

The artifact can be accessed via either Github:
https : //github.com/usyd −
fsalab/NeuralNetworkRandomness
or Zenodo:
https : //zenodo.org/record/6078161.

C.2 Hardware dependencies

This experiment depends on two NVIDIA V100 GPUs,
500GB free disk space for functionality evaluation in artifact
evaluation process. For full experiments, the recomended
computation resource are listed in Section G.

C.3 Software dependencies

Tensorflow 2.4.1 and tensorflow datasets. All software de-
pendencies can be installed with single line of command:

p i p i n s t a l l −r r e q u i r e m e n t s . t x t
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C.4 Data sets

CIFAR-10, CIFAR-100, CelebA, and ImageNet datasets are
used in experiments.

C.5 Prepare CIFAR-10 dataset

Let tensorflow datasets manage data cache. Execute below
command to download and preprocess CIFAR-10 dataset

py thon −c ” i m p o r t t e n s o r f l o w d a t a s e t s a s t f d s ;
t f d s . l o a d ( ’ c i f a r 1 0 ’ ) ”

C.6 Prepare CIFAR-100 dataset

py thon −c ” i m p o r t t e n s o r f l o w d a t a s e t s a s t f d s ;
t f d s . l o a d ( ’ c i f a r 1 0 0 ’ ) ”

C.7 Prepare CelebA dataset

py thon −c ” i m p o r t t e n s o r f l o w d a t a s e t s a s t f d s ;
t f d s . l o a d ( ’ c e l e b a ’ ) ”

C.8 Prepare ImageNet dataset

Prepared ImageNet data following instructions in tensorflow
datasets offcial website 5.

D Installation

Download artifact from either GitHub or Zenodo. When
cloning from github with git, remember use −− recursive
option:

g i t c l o n e −− r e c u r s i v e
h t t p s : / / g i t h u b . com / usyd−f s a l a b / NeuralNetworkRandomness . g i t

Then, install package dependencies with:

cd NeuralNetworkRandomness &&
p i p i n s t a l l −r r e q u i r e m e n t s . t x t

E Experiment workflow

All experimental can be launched in a single python file
execution, suppose two gpu (0, 1) are used in this expermeits
and imagenet data located in /mnt/data/:

py thon r u n a e . py −−gpus 0 1
−−e x p e r i m e n t s F i g u r e 1 F i g u r e 2 F i g u r e 5 F i g u r e 6
−− i m a g e n e t d a t a d i r / mnt / d a t a / −− f a s t

The − − fast option here is indicating run experiments
on small sample of data to expedite experiment process.
To run experiment on full dataset, remove fast option and
consider use computation resource not less than specified in
Section G, to get experiments results with in a reasonable
time (approximate one week).

5https://www.tensorflow.org/datasets/catalog/imagenet2012

F Evaluation and expected result

The result can be found in ./results folder. Whereas file
name of each csv file indicate which figure it corresponding
to.

G Computation Resource for Full Experiments

At least below computation resources are recommended if
you need to reproduce both functionality and correctness of
experiments in this paper.

• NVIDIA Tesla P100 * 4

• NVIDIA RTX5000 * 4

• NVIDIA Tesla V100 * 20

• NVIDIA Tesla T4 * 1

• Google TPUv2 * 4


