TYXE: PYRO-BASED BAYESIAN NEURAL NETS FOR PYTORCH

Hippolyt Ritter ' 2T Theofanis Karaletsos > f

ABSTRACT
We introduce TyXe, a Bayesian neural network library built on top of PyTorch and Pyro. Our leading design
principle is to cleanly separate architecture, prior, inference and likelihood specification, allowing for a flexible
workflow where users can quickly iterate over combinations of these components. In contrast to existing packages
TyXe does not implement any layer classes, and instead relies on architectures defined in generic PyTorch code.
TyXe then provides modular choices for canonical priors, variational guides, inference techniques, and layer
selections for a Bayesian treatment of the specified architecture. Sampling tricks for variance reduction, such
as local reparameterization or flipout, are implemented as effect handlers, which can be applied independently
of other specifications. We showcase the ease of use of TyXe to explore Bayesian versions of popular models
from various libraries: toy regression with a pure PyTorch neural network; large-scale image classification with
torchvision ResNets; graph neural networks based on DGL; and Neural Radiance Fields built on top of PyTorch3D.
Finally, we provide convenient abstractions for variational continual learning. In all cases the change from a
deterministic to a Bayesian neural network comes with minimal modifications to existing code, offering a broad
range of researchers and practitioners alike practical access to uncertainty estimation techniques. The library is

available at

1 INTRODUCTION

The surge of interest in deep learning has been fuelled
by the availability of agile software packages that enable
researchers and practitioners alike to quickly experiment
with different architectures for their problem setting (Paszke
et al., 2019; Abadi et al., 2016) by providing modular ab-
stractions for automatic differentiation and gradient-based
learning. While there has been similarly growing interest
in uncertainty estimation for deep neural networks, in par-
ticular following the Bayesian paradigm (MacKay, 1992;
Neal, 2012), a comparable toolbox of software packages has
mostly been missing.

A major barrier of entry for the use of Bayesian Neural Net-
works (BNNs) is the large overhead in required code and
additional mathematical abstractions compared to stochastic
maximum likelihood estimation as commonly performed in
deep learning. Moreover, BNNSs typically have intractable
posteriors, necessitating the use of various approximations
when performing inference, which depending on the prob-
lem may perform better or worse and frequently require
complex bespoke implementations. This oftentimes leads
to the development of inflexible small libraries or repet-

"Meta AI *University College London >Insitro t work partly
done at Uber Al labs and Meta Al.. Correspondence to: Hippolyt
Ritter <j.ritter@cs.ucl.ac.uk>.

Proceedings of the 5™ MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

itive code creation that can lack essential “tricks of the
trade” for performant BNNs, such as appropriate initializa-
tion schemes, gradient variance reduction (Kingma et al.,
2015; Tran et al., 2018), or may only provide limited infer-
ence strategies to compare outcomes. Besides stand-alone
libraries such as STAN (Carpenter et al., 2017), various gen-
eral purpose probabilistic programming packages have been
built on top of those deep learning libraries (Pyro (Bing-
ham et al., 2019) for PyTorch, Edward2 (Tran et al., 2018)
for Tensorflow), however software linking those to BNNs
has only been released recently (Tran et al., 2019) and pro-
vides substitutes for Keras’ layers (Chollet et al., 2015) to
construct BNNs from scratch.

In this work we describe TyXe (Greek: chance), a package
linking the expressive computational capabilities of PyTorch
with the flexible model and inference design of Pyro (Bing-
ham et al., 2019) in service of providing a simple, agile, and
useful abstraction for BNNs targeted at PyTorch practition-
ers. Specifically, we highlight the following contributions
we make through TyXe:

* We provide an intuitive, object-oriented interface that
abstracts away Pyro to facilitate turning PyTorch-based
neural networks into BNNs with minimal changes to
existing code.

¢ Crucially, our design deviates from prior approaches,
e.g. (Tran et al., 2019), to avoid bespoke layer im-
plementations, making TyXe applicable to arbitrary

https://github.com/TyXe-BDL/TyXe

TyXe: Pyro-based Bayesian neural nets for PyTorch

1 net = nn.Sequential (nn.Linear (1, 50),

nn.Tanh (),
2 likelihood = tyxe.likelihoods.HomoskedasticGaussian (dataset_size,

nn.Linear (50, 1))
scale=0.1)

3 prior = tyxe.priors.IIDPrior (dist.Normal (0, 1))

4 guide_factory = tyxe.guides.AutoNormal

5 bnn = tyxe.VariationalBNN (net, prior,

likelihood, guide_factory)

Listing 1: Bayesian nonlinear regression setup code example in 5 lines. Line 1 is a standard PyTorch neural network
definition, line 2 is the likelihood of the data, corresponding to a data loss object. Line 3 sets the prior and line 4 constructs
the approximate posterior distribution on the weights. Line 5 finally brings all components together to set up the BNN. For
MCMC, the guide_factory would be HMC or NUTS from pyro.infer.mcmc and the BNN a t yxe . MCMC_ BNN.

PyTorch architectures.

* We make essential techniques for well-performing
BNNs that are missing from Pyro, such as local repa-
rameterization, available as flexible program transfor-
mations.

» TyXe is compatible with architectures from libraries
both native and non-native to the PyTorch ecosystem,
such as torchvision ResNets and DGL graph neural
networks, and thus runs on GPU hardware.

* Leveraging TyXe, we show that a Bayesian treatment
of PyTorch3d-based Neural Radiance Fields improves
their out-of-distribution robustness at a minimal coding
overhead.

* Our modular design handily supports variational con-
tinual learning through updating the prior to the poste-
rior. Such abstractions are also currently not available
in Pyro.

In the following we give an overview of our library, with
an initial focus on the API design followed by a range of
research settings where TyXe greatly simplifies ‘Bayesian-
izing’ an existing deep learning workflow. We provide an
in-depth overview of the codebase in Appendix A and dis-
cuss specific advancements upon Pyro in Appendix B with
a direct comparison to our ResNet example.

2 TYXE BY EXAMPLE: NON-LINEAR
REGRESSION

The core components that users interact with in TyXe
are our BNN classes. These wrap deterministic PyTorch
nn.Module neural networks. We then leverage Pyro to
formulate a probabilistic model over the neural network
parameters, in which we perform approximate inference.
There are two primary BNN classes with identical interfaces:
tyxe.VariationalBNN and tyxe.MCMC_BNN. Both
offer a unified workflow of constructing a BNN, fitting it
to data and then making predictions. A more low-level
class, tyxe.PytorchBNN, which can act as a drop-in
BNN replacement for a nn . Module but lacks some of the

high-level functionality of the other two classes, will be
introduced in Section 4.2. We stress that the former two
classes only require using a Pyro optimizer in place of a
PyTorch one, while the latter hides Pyro entirely, making
its functionality accessible to PyTorch users without prior
experience of using Pyro.

In this section we provide more details on each of the
modelling steps along the example of a synthetic one-
dimensional non-linear regression dataset. We use the
setup from (Foong et al., 2019) with two clusters of inputs
1 ~ U[-1,-0.7], x5 ~ U[0.5,1] and y ~ N (cos(4x +
0.8),0.12).

2.1 Defining a BNN

A TyXe BNN has four components: a PyTorch neural net-
work, a data likelihood, a weight prior and a guide' factory
for the posterior. We describe their signature and our in-
stantiations below. As seen in Listing 1, turning a PyTorch
network into a TyXe BNN requires as little as five lines of
code.

2.1.1 Network architecture

PyTorch provides a range of classes that facilitate the con-
struction of neural networks, ranging from simple linear or
convolutional layers and nonlinearities as building blocks
to higher-level classes that compose these, e.g. by chaining
them together in the nn. Sequential module. A simple
regression network on 1d data with one layer of 50 hid-
den units and a tanh nonlinearity, as commonly used for
illustration in works on Bayesian neural networks, can be
defined in a single line of code (first line of Listing 1). More
generally, any neural network in PyTorch is described by
the nn .Module class, which provides functionalities such
as easy composition, parameter and gradient handling, and
many more conveniences for neural network researchers
and practitioners that have contributed to the wide adoption
of this framework. Further, the torchvision package
implements various modern architectures, such as ResNets
(He et al., 2016). TyXe can also work on top of architectures

"Following Pyro’s terminology we refer to programs drawing
approximate posterior samples “guides”.

TyXe: Pyro-based Bayesian neural nets for PyTorch

2.0 20

1.5 A 1.5 A
1.0 A 1.0 A
0.5 1 0.5 1
0.0 1 0.0 4
—0.5 1 —0.5 A

-1.0 1 -1.0

-154 . -154

-2.0

—2.0

b T T T T T T 1
-20 -15 -10 -05 00 05 10 15 20

(a) Local reparameterization

T T T T
-20 -15 -1.0 -05 0.0

(b) Shared weight samples

T T T 1 X —T T T T T T 1
05 10 15 20 -20 -15 -10 -05 00 05 10 15 20

(c) HMC

Figure 1: Bayesian nonlinear regression using the setup from Listing | and fit using Listing 2. Fig. 1(a) wraps the call to
bnn.predict in the local reparameterization context with the call to £it, Fig. 1(b) does not. Switching between the two
is as simple as adapting the indentation of the call to predict to be in- or outside the Local_reparameterization
context. Both use the same bnn object with the same approximate posterior. Fig. 1(c) uses pyro.infer .mcmc.HMC as
guide factory. The shaded area indicates up to three standard deviations from the predictive mean.

from 3rd party libraries, such as DGL (Wang et al., 2019),
that derive from nn.Module.

Pyro inherits the elegant abstractions for neural networks
from PyTorch through its PyroModule class, which ex-
tends nn.Module to allow for instance attributes to be
modified by Pyro effect handlers, making it easy to replace
nn.Parameters with Pyro sample sites. We adopt the
PyroModule class under the hood to provide a seamless
interface between TyXe and PyTorch networks.

2.1.2 Prior

At this time, we restrict the probabilistic model definition to
weight space priors. Our classes take care of constructing
distribution objects that replace the network parameters as
PyroSamples. One such prior class is an IIDPrior
which takes a Pyro distribution as argument, such as a
pyro.distributions.Normal (0., 1.), apply-
ing a standard normal prior over all network parameters.
We further implement LayerwiseNormalPrior,
a per-layer Gaussian prior that sets the variance
to the inverse of the number of input units as rec-
ommended in (Neal, 1996), or analogous to the
variance used for weight initialization in (Glorot
& Bengio, 2010; He et al., 2015) when using the flag
method={"radford", "xavier", "kaiming"},
respectively. Crucially, we do not require users to set priors
for each layer by hand, this is dealt with automatically by
our framework.

Our prior classes accept arguments that allow for certain
layers or parameters to be excluded from a Bayesian treat-
ment. The prior in our ResNet example in Section 3 receives
hide_module_types=[nn.BatchNorm2d] to hide
the parameters of the BatchNorm modules. Those parame-
ters stay deterministic and are fit to minimize the log likeli-
hood part of the ELBO.

2.1.3 Guide

The guide argument is the only place where the initializa-
tion of our VariationalBNN and MCMC_BNN differs.
tyxe.VariationalBNN expects a function that auto-
matically constructs a guide for the network weights, e.g. a
pyro.infer.autoguide, and an optional second such
function for variables in the likelihood if present (e.g. an
unknown variance in a Gaussian likelihood).

To facilitate local reparameterization and computation
of KL-divergences in closed form, we implement an
AutoNormal guide, which samples all unobserved sites in
the model from a diagonal Normal. This is similar to Pyro’s
AutoNormal autoguide, which constructs an auxiliary
joint latent variable with a factorized Gaussian distribution.
Variational parameters can be initialized as for autoguides
by sampling from the prior/estimating statistics like the prior
median, or through additional convenience functions that
we provide, such as sampling the means from distributions
with variances depending on the numbers of units in the
corresponding layers, akin to how deterministic layers are
typically initialized. This also permits initializing means
to the values of pre-trained networks, which is particularly
convenient when converting a deep network into a BNN.

The tyxe .MCMC_BNN class expects an MCMC kernel as
guide, either HMC (Neal, 2012) or NUTS (Hoffman & Gel-
man, 2014), and runs Pyro’s MCMC on the full dataset to ob-
tain samples from the posterior. For both BNN classes, argu-
ments to the guide constructor can be passed via partial
from Python’s built-in functools module. Listing 3
shows an example of this.

2.1.4 Likelihood

Our likelihoods are wrappers around Pyro’s
distributions, expecting a dataset_size ar-
gument to correctly scale the KL term when using
mini-batches. Specifically we provide Bernoulli, Categori-

TyXe: Pyro-based Bayesian neural nets for PyTorch

1 optim = pyro.optim.Adam({"1lr": 1r})
> with tyxe.poutine.\

3 local_reparameterization():

4 bnn.fit (loader, n_epochs, optim)

5 pred_params = bnn.predict (
6 test_data, num_predictions=n)

Listing 2: Regression fit and predict example with local
reparameterization enabled for training only.

cal, HomoskedasticGaussian and HeterosketdasticGaussian
likelihoods. Implementing a new likelihood requires
a predictive_distribution (predictions)

method returning a Pyro distribution for sampling. Further,
it should provide a method for calculating an error estimate
for evaluation, such as the squared error for Gaussian
models or classification error for discrete models. Hence
it is easy to add new likelihoods based on existing
distributions, e.g. a Poisson likelihood.

2.2 Fitting a BNN

Our BNN class provides a scikit-learn-style £it function
to run inference for a given numbers of passes over an
Iterable,e.g. aPyTorch DataLoader. Each element
is a length-two tuple, where the first element contains the
network inputs (and may be a list) and the second is the like-
lihood targets, e.g. class labels. The VariationalBNN
class further requires a Pyro optimizer.

tyxe.VariationalBNN runs stochastic variational in-
ference (Ranganath et al., 2014; Wingate & Weber, 2013), a
popular training algorithm for Bayesian Neural Networks,
e.g. (Blundell et al., 2015) based on maximizing the ev-
idence lower bound (ELBO). Our implementation auto-
matically handles correctly scaling the KL-term vs. the
log likelihood in the ELBO. tyxe . MCMC_BNN provides a
compatible interface to Pyro’s MCMC class.

Listing 2 shows a call to £it. Besides the data loader and
number of epochs or samples, it is possible to pass in a
callback function to the VariationalBNN, which is
invoked after every epoch with the average value of the
ELBO over the epoch and can be used e.g. to check the log
likelihood of a validation data set. By returning True, the
callback function can stop training. The MCMC_BNN passes
any keyword arguments on to Pyro’s MCMC class.

2.3 Predicting with a BNN

The predict method returns predictions for a given num-
ber of weight samples from the approximate posterior. List-
ing 2 invokes predict at the bottom. By default it
aggregates the sampled predictions, i.e. averages them.
Via aggregate=False the sampled predictions can be

returned in a stacked tensor. We further implement an
evaluate method that expects test labels and returns their
log likelihood along with an error measure depending on
the model, e.g. squared error for Gaussian likelihoods and
classification error for Categorical or Binary ones.

2.4 Transformations via effect handlers

One crucial component missing from Pyro that TyXe pro-
vides is BNN-specific effect handlers (Plotkin & Pretnar,
2009; Bingham et al., 2019), specifically local reparameteri-
zation (Kingma et al., 2015) and flipout (Wen et al., 2018)
for gradient variance reduction. Local reparameterization
samples the pre-activations of each data point rather than
a single weight matrix shared across a mini-batch for fac-
torized Gaussian approximate posteriors over the weights
and layers performing linear mappings, such as dense or
convolutional layers. Flipout, on the other hand, samples
a rank-one matrix of signs per data point, which allows for
using distinct weights in a computationally efficient man-
ner in linear operations, if the weights are sampled from a
factorized symmetric distribution.

Typically, these are implemented as separate layer classes,
e.g. (Tran et al., 2019). This creates an unnecessary redun-
dancy in the code base, since there are now two versions of
the same model differing only in sampling approaches for
gradient estimation at each linear mapping. From a proba-
bilistic modeling point of view it is preferable to separate
model and inference explicitly to facilitate reuse of models
and inference approaches. Fortunately, Pyro provides an ex-
pressive module for effect handling, which we can leverage
to modify the computation as required. Specifically, we im-
plement a LocalReparameterizationMessenger
which marks linear functions called by PyTorch mod-
ules, such as F.linear, as effectful in order to mod-
ify how linear computations are performed as required.
The Messenger maintains references from samples to their
distributions and, when a linear function is called in
a local_reparameterization context on weights
from a factorized Gaussian, samples the output from the
Gaussian over the result of the linear mapping.

Listing 2 calls £it in such a context. The call to predict
could be wrapped too, but the purpose of local reparameter-
ization and flipout is to reduce gradient variance. As they
double the computational cost, we omit them for testing.

3 LARGE-SCALE VISION CLASSIFICATION

The biggest advantage resulting from our choice not to im-
plement bespoke layer classes is that implementations of
popular architectures can immediately be turned into their
Bayesian counterparts. While implementing the two-layer
network from the regression example with Bayesian layers

TyXe: Pyro-based Bayesian neural nets for PyTorch

1 resnet = torchvision.models.resnetl8 (pretrained=True)
2 prior = tyxe.priors.IIDPrior (dist.Normal (0, 1), expose_all=False,
3 hide_module_types=[nn.BatchNorm2d])

4 likelihood =
5 guide = partial (tyxe.guides.AutoNormal,

bayesian_resnet =

© o 9 o

11l _prior =
10 expose_modules=[resnet.fc])
n lr_guide =

tyxe.likelihoods.Categorical (dataset_size)
train_loc=False,

init_scale=le-4,

init_loc_fn=tyxe.guides.PretrainedInitializer.from_net (resnet))
tyxe.VariationalBNN (resnet,
alternative last-layer prior and guide below
tyxe.priors.IIDPrior (dist.Normal (O,

prior, likelihood, guide)

1), expose_all=False,

pyro.infer.autoguide.AutoLowRankMultivariateNormal

Listing 3: Bayesian ResNet. Line 1 loads a ResNet with pre-trained parameters from torchvision. The prior in lines
2—3 excludes BatchNorm layers, keeping their parameters deterministic. Arguments to the guide are passed with partial
as in lines 5—6. We show how to set the Gaussian means to the pre-trained weights and only fit the variances, which are
initialized to be small. The BNN object in line 7 is constructed exactly the same way as in the regression example. Lines
9—11 show an alternative prior that only applies to the final fully-connected layer alongside a Pyro autoguide.

is of course not complicated, writing the code for a modern
computer vision architecture, e.g. a ResNet (He et al., 2016),
is significantly more cumbersome and error-prone. With
TyXe, users can use the ResNet implementation available
through torchvision as shown in Listing 3. In this ex-
ample we further highlight the flexibility of TyXe to only
perform inference over some parameters while keeping oth-
ers deterministic by excluding nn . BatchNorm2d layers
from a Bayesian treatment.

To showcase how the clean separation of network archi-
tecture, prior, guide and likelihood in TyXe facilitates an
experimental workflow, we investigate the predictive un-
certainty of different inference strategies for a Bayesian
ResNet. In Listing 3 we define a fully factorized Gaus-
sian guide that fixes the means to the values of pre-trained
weights and only fits the variances as parameters. While
we would usually want the approximate posterior to be as
flexible as possible, it has been observed in the literature
(Louizos & Welling, 2017; Trippe & Turner, 2018) that
such restrictions can improve the predictive performance of
a BNN. We further investigate a mean-field guide where we
similarly initialize the means to pre-trained weight values,
but do not fix them for optimization, and restrict the vari-
ance of the variational distribution to a maximum of 0.1 to
prevent underfitting. Finally we test performing inference in
only the final classification layer with a Gaussian guide with
either a diagonal or low-rank plus diagonal covariance ma-
trix (also shown in the Listing) while using the pre-trained
weights for the previous layers. Switching between these
options is easy, with typically only a single or two lines
of code differing. As baselines we compare to maximum
likelihood (ML) and maximum a-posteriori (MAP). For the
full code see examples/resnet.py.

Fig. 2 compares calibration and entropy of the predictive
distributions on test and out-of-distribution (OOD) data.

Table 1: Bayesian ResNet-18 predictive performance.

Inference | NLL| Acc.f(%) ECEL(%) OOD?t
ML 0.33 94.29 4.10 0.78
MAP 0.29 92.14 4.44 0.82
MEF (sd only) | 0.27 93.66 3.14 0.93
MF 0.20 93.28 0.97 0.94
LL MF 0.35 93.36 3.62 0.89
LL low rank | 0.34 93.31 3.75 0.89

Mean-field (MF) with learned means leads to better cali-
brated predictions than variants (re-)using point estimates.
It best distinguishes test from OOD data as measured by the
area under the ROC curve based on the maximum predicted
probability and has the lowest expected calibration error
(ECE) and negative log likelihood (NLL), see Tab. 1.

We use the usual data augmentation techniques for CIFAR10
of randomly flipping and cropping the images after padding
them with 4 pixels on each dimension and we normalize
all channels to have zero-mean and unit-standard deviation.
All methods use the Adam optimizer (Kingma & Ba, 2015).
We train the deterministic inference methods (ML, MAP)
for 200 epochs with a learning rate of 10~3 and another 100
epochs with a learning rate of 10~%. All variational methods
are trained for 200 epochs with a learning rate of 10~3 and
we initialize the means to pre-trained ML parameters. We
use a rank of 10 for the low-rank plus diagonal posterior
and average over 32 samples for predictions on the test and
OOD sets. The factorized Gaussian posteriors all use local
reparameterization and we limit the standard deviation of
the mean-field posteriors to 0.1.

We provide a pure Pyro snippet for a variational ResNet
in Appendix B for a direct comparison. The implementa-
tion requires knowledge of a range of Pyro constructs to
avoid pitfalls such as incorrectly scaling prior and likeli-

TyXe: Pyro-based Bayesian neural nets for PyTorch

ML MAP == Mean-field == Mean-field (sd only)

1.0 9 — = Pperfect predictor
- 0.8
9]
o
=}
g 06 &7
- ‘S 4
S #
< 0.4 1 .%
Q
uE.l o

0.2 Pid

7’
7’
7’
004 ~

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Probability predicted

(a) Test calibration.

=== | ast-layer mean-field Last-layer low-rank Gaussian

1.0 A —
0.8
0.6 -
w
a
o
0.4
0.2
m— Test
0.0 4 == 00D
T T T T T
0.0 0.5 1.0 1.5 2.0

Entropy

(b) Test vs. OOD uncertainty.

Figure 2: Calibration curves and empirical cumulative density of the entropy of the predictive distribution on test and OOD
data for Bayesian ResNet-18 with different inference approaches on CIFAR10 (OOD: SVHN).

hood, yet the code ends up being significantly lengthier and
somewhat convoluted. In contrast, TyXe provides a clean
object-oriented interface that will be intuitive for most users
with a basic understanding of Bayesian statistics and ac-
cessible for pure PyTorch users who do not want to have
to learn Pyro. Crucially, essential features for achieving
good discriminative performance with a BNN, such as repa-
rameterization and clipping the variance of the approximate
posterior are not available in Pyro.

4 COMPATIBILITY WITH EXTERNAL
LIBRARIES

TyXe is compatible with libraries outside of the native Py-
Torch ecosystem and classical settings such as classification
of i.i.d. images or regression, as long as the networks build
on top of nn.Module. Below, we demonstrate this on a
semi-supervised node classification example with a graph
neural network from the DGL (Wang et al., 2019) tutorials,
as well as a 3D rendering example in PyTorch3D.

4.1 Bayesian graph neural networks with DGL

We extend an example from the DGL tutorials” to train a
Bayesian graph neural network (GNN) on the Cora dataset.
Graph datasets are often semi-supervised, where an entire
graph of nodes is provided, but only some of them are
labelled. Hence we need a mechanism for preventing un-
labelled nodes from contributing to the log likelihood. We
combine Pyro’s block and mask poutines to implement
the selective_mask effect handler, which can wrap

2

the call to fit as a context manager as shown in List-
ing 4 and mask out data in the likelihood. The network is
taken from the DGL tutorial without change. As it utilizes
nn.Linear, it is compatible with flipout. Prior, guide,
likelihood and BNN can be constructed exactly as in the
previous examples, see examples/gnn . py for the code.

In Tab. 2 we report NLLs, accuracies and ECE for ML, MAP
and MF. ML leads to overfitting and requires the use of early
stopping. Further it suffers from overconfident predictions,
which can be mitigated to a degree by the use of variational
inference, although not to the same extent as in the image
classification example. Bayesian GNNs have only recently
been started to be investigated in a few works (Zhang et al.,
2019; Hasanzadeh et al., 2020; Luo et al., 2020; Lamb &
Paige, 2020) and we believe that TyXe can be a valuable
tool for putting Bayesian inference at the disposal of the
graph neural network community.

Following the DGL tutorial, we train ML (and MAP) for
200 iterations with a learning rate of 10~2 using Adam. We
report the test accuracy at the iteration with lowest validation
negative log likelihood. For mean-field, we train for 400
iterations with an initial learning rate of 0.1, which we
decay by a factor of 10 every 100 iterations and we limit the
variational standard deviations to 0.3. Means are initialized
to the random initialization of the deterministic network and
we draw 8 posterior samples for evaluation. We use 10 bins
to calculate the expected calibration error.

4.2 Custom losses: Bayesian NeRF with PyTorch3D

Next, we adapt a more complex example on Neural Ra-
diance Fields (NeRF) (Mildenhall et al., 2020) from the

https://docs.dgl.ai/en/0.5.x/tutorials/models/1_gnn/1_gcn.html
https://docs.dgl.ai/en/0.5.x/tutorials/models/1_gnn/1_gcn.html

TyXe: Pyro-based Bayesian neural nets for PyTorch

1 class GCNLayer (nn.Module) : 1 class GNN (nn.Module) :
2 Ce 2 c.
3 def forward(self, graph, x): 3 def forward(self, graph, x):
4 with graph.local_scope(): 4 x = self.gcn_layerl (graph, x)
5 graph.ndata['h'] = x 5 x = torch.relu(x)
6 graph.update_all (6 return self.gcn_layer2 (graph, x)
7 gcn_msg, gcn_reduce)
8 h = graph.ndata['h']
9 return self.linear (h)
I bgnn = tyxe.VariationalBNN (gnn, prior, guide, likelihood)

4 bgnn.fit ([((graph, x), y)]l, optim,

3 with tyxe.poutine.selective_mask (mask=mask, expose=["likelihood.data"]):
n_epochs)

Listing 4: GNN example. The graph convolutional layer definition (top left) relies on DGL’s graph functionality and is used
for the GNN (top right). The Bayesian GNN can be constructed in line 1 with the exact same prior, guide and likelihood
options as previously. The selective_mask in line 3 ensures that only predictions on labelled nodes contribute to the
log likelihood when calling £it in line 4. The input data now consists of a graph and node features.

1 nerf_bnn =
2 optim =

tyxe.PytorchBNN (nerf_net,

4 images, rays =
5 image_loss =
6 loss =
7 loss.backward();

renderer (cameras_batch,
calc_loss(images, rays,

optim.step ()

prior,
torch.optim.Adam(nerf_bnn.pytorch_parameters (dummy_data),

guide)
lr=1e-3)

nerf_bnn)

targets)
image_loss + scale * nerf bnn.cached kl_loss

Listing 5: Bayesian NeRF example. Constructing a Pyt orchBNN is similar to a Variat ionalBNN in line 1 but without
the likelihood. No downstream changes except for parameter collection for the PyTorch optimizer in line 2 — which requires
a batch of data to trace parameters on a call to the net’s forward method — are needed. The nerf_lbnn can be passed into
the PyTorch3D renderer in line 4 as a drop-in replacement for the nerf_net. The loss can be calculated as before in
lines 5, with the possible addition of the KL regularizer in line 6. Automatic differentiation and parameter updates can be

performed as in standard PyTorch code in line 7.

Table 2: Performance of deterministic and Bayesian GNNs
on the Cora dataset. We report the lowest validation NLL
along with the test accuracy and ECE at the corresponding
epoch (mean and two standard errors over five runs).

Inference ‘ NLL| Acc. ECE|

ML 1.014+.04 75.64+1.28 15.384+0.97
MAP 0.93+.03 75.94+0.73 12.78 +0.96
MF 0.77+.02 78.02+1.00 10.22+1.31

PyTorch3D repository” to train a Bayesian NeRF. The loss
function does not straight-forwardly correspond to a proba-
bilistic likelihood and is calculated as a custom error func-
tion of rendered image and silhouette. Hence there is no
suitable likelihood class to implement for TyXe and it is

3

not clear how the the prior or KL term should be weighed
relative to the error. Therefore this example is not Bayesian
in the proper sense as a ‘posterior’ as a product of likeli-
hood and prior does not exist, but demonstrates that the
uncertainty of a pseudo-Bayesian variational BNN can still
improve the robustness on unseen data.

Specifically, we introduce a more low level Pyt orchBNN
class that does not require a likelihood and can be used to
directly wrap a PyTorch neural network. It is constructed
similarly to VariationalBNN with a variational guide
factory, but due to the absence of the likelihood does not
provide convenience functions such as fit or predict.
Instead, it is intended to serve as a drop-in replacement of
the deterministic neural network in a PyTorch-based work-
flow. The output of the forward method corresponds
to predictions of the network made with a single Monte
Carlo sample from the variational posterior. The corre-
sponding KL penalty term can be accessed through the
cached_k1_loss attribute and added to the loss. It is

https://github.com/facebookresearch/pytorch3d/blob/master/docs/tutorials/fit_simple_neural_radiance_field.ipynb
https://github.com/facebookresearch/pytorch3d/blob/master/docs/tutorials/fit_simple_neural_radiance_field.ipynb
https://github.com/facebookresearch/pytorch3d/blob/master/docs/tutorials/fit_simple_neural_radiance_field.ipynb

TyXe: Pyro-based Bayesian neural nets for PyTorch

(a) Det. NeRF

(b) Bay. NeRF (c) Uncertainty
Figure 3: PyTorch3D example. Top row seen during train-
ing, bottom row excluded. Bayesian NeRF achieves an error
of 8.1x1073 on a set of 10 held-out angles, while the er-
ror is 9.4x 1073 for the deterministic version. Uncertainty
visualizes variance across different weight samples.

updated on every forward pass, i.e. when a sample is drawn
from the approximate posterior. The key difference to a
regular PyTorch neural network is that since Pyro initial-
izes parameters lazily, we cannot provide a parameters
method. Instead, optimizable parameters are collected via
pytorch_parameters, which takes a batch of data to
pass through the network for tracing the parameters.

We provide a code snippet in Listing 5. We emphasize that
parameters are trained with the original PyTorch instead of a
Pyro optimizer, further reducing the required changes to the
original workflow. The renderer is a PyTorch3D object and
uses the Bayesian NeRF object instead of the original Py-
Torch network. The data-dependent loss is then calculated as
before and the KL-divergence of the approximate posterior
from the prior on the weights can be added to the objective
as a regularizer, possible weighed by some scalar scale.
The full code can be found in examples/nerf.py and
is identical to the original notebook for the most part, with
only a few lines needing to be modified to adapt it to TyXe,
as well as some additional plotting code for visualizing the
predictive uncertainty.

In the original example, the network is trained to render
views of a cow from 360°. We hold out 90° as out-of-
distribution data. As Fig. 3 shows, this leads to many ar-
tifacts and discontinuities with a deterministic net. The
pseudo-Bayesian NeRF averages many of these out, and
provides helpful measures of uncertainty in form of the
variances of the predicted images (right column).

We train the deterministic NeRF with the recommended
settings from the tutorial, i.e. 20,000 iterations with an

initial learning rate of 103, which is decayed by a factor
of 10 for the final 5000 iterations. The Bayesian NeRF
uses the same learning rate schedule. Means are initialized
to the parameters of the deterministic NeRF and standard
deviations to 10~2. We linearly anneal the weight of the
KL term over the first 10, 000 iterations to the inverse of the
number of RGB values in the colour images plus the number
silhouette pixels. We use 8 samples for test predictions and
calculate averages and standard deviation over the final
image outputs of the renderer.

S VARIATIONAL CONTINUAL LEARNING

Finally, we show how our separation of prior, guide and
network architecture enables an elegant implementation of
variational continual learning (VCL) (Nguyen et al., 2018).
VCL performs online updates of a single variational pos-
terior over a sequence of datasets by setting the prior to
be equal to the posterior after training on a task. Hence,
having set up and trained a BNN on a first task as in the
previous examples, we only need construct a new prior from
the guide distributions over the weights to update the pre-
vious BNN prior. We show example code for this process
in Listing 6 and the full implementation can be found in
examples/vcl.py. Training on the following task can
then be conducted as usual with the £it method on the
current dataset.

In Fig. 4 we show the test accuracy across the observed tasks
after training on each one on the classical Split-MNIST and
Split-CIFAR benchmarks(Zenke et al., 2017). We do not
use coresets as (Nguyen et al., 2018), but this would only
require some boilerplate code for creating the coresets prior
to training and then fine-tuning on each coreset prior to
testing by calling £it and restoring the state of the Pyro
parameter store. As previously reported in the literature,
deterministic networks suffer from forgetting on previous
tasks, which can be mitigated by using a Bayesian approach
such as VCL.

Following the recommendations in (Swaroop et al., 2019),
we train on each MNIST task for 600 epochs and each CI-
FAR task for 60. We use Adam with a learning rate of 10~3.
The architecture on MNIST is a fully connected network
with a hidden layer of 200 units with ReLU nonlinearities.
The convolutional architecture on CIFAR has two blocks
of Conv — ReLU — Conv — ReLU — M axpool followed
by a fully connected layer with 512 units. The convolution
layers in the first block have 32, in the second block 64
channels and all use 3 x 3 kernels with a stride and padding
of 1. The maxpool operation is 2 x 2 with a stride of 2.
We normalize all CIFAR tasks to have zero-mean and unit-
standard deviation per channel and do not use any form of
data augmentation.

TyXe: Pyro-based Bayesian neural nets for PyTorch

1 bayesian_weights = tyxe.util.pyro_sample_sites (bnn.net)
2 posteriors = bnn.net_guide.get_detached_distributions (bayesian_weights)
3 bnn.update_prior (tyxe.priors.DictPrior (posteriors))

Listing 6: Updating the prior of a BNN for variational continual learning. Line 1 collects all weights over which we perform
inference, line 2 extracts the corresponding variational distributions from the guide, and line 3 uses these to update the

BNN’s prior.
ol t—————4 |
[} -)
©
G907 .
=
= 80+ ML -@- VCL
T T T T T
1 2 3 4 5
80 4 ,
g “\‘-F_._.___.
o
© 60 =
24
=
o 40 41
T T T T T T
1 2 3 4 5 6

Task

Figure 4: Mean accuracy and two standard errors on tasks
seen so far for VCL and ML on Split-MNIST and -CIFAR.

6 RELATED WORK

The most closely related piece of recent work is Bayesian
Layers (Tran et al., 2019), which extends the layer classes
of Keras with the aim of them being usable as drop-in re-
placements for their deterministic counterpart. This forces
the user to modify the code where the network is defined
or write their own boilerplate code. Bayesian Layers are
currently more general in scope, providing an abstraction
over uncertainty over composable functions including nor-
malizing flows and Gaussian Process mappings per layer,
while at this point we have consciously limited ourselves
to weight space uncertainty in neural networks and treat
networks holistically rather than per layer.

For PyTorch, PyVarInf* provides functionality for turning
nn.Modules into BNNs in a similar spirit to TyXe. As it
is not backed by a probabilistic programming framework,
the choice of prior distributions is limited, inference is re-
stricted to variational factorized Gaussians, sampling tricks
such as local reparameterization are not implemented and
MCMC-based inference is not available. BLiTZ> (Esposito,
2020) provides variational counterparts to PyTorch’s linear,
convolutional and some recurrent layers. Networks need to
be constructed manually based on those, with no support
of other layer types. Priors are limited to mixtures of up to
two Gaussians and inference is performed with a factorized

4
5

Gaussian without support for gradient variance reduction
techniques. More recently, LaplaceRedux (Daxberger et al.,
2021a) provides support for modern variants (Ritter et al.,
2018a;b; Daxberger et al., 2021b) of the Laplace approx-
imation for neural networks (MacKay, 1992). Similarly
to TyXe, the package builds on top of existing PyTorch
networks, however inference is limited to the Laplace ap-
proximation and priors to Gaussian distributions. See Tab. 3
for a tabular comparison.

Subsequent to the initial code release of TyXe, UQ360
(Ghosh et al., 2021) and BNNPriors (Fortuin et al., 2021)
were released. BNNPriors is a library focused on explo-
ration of BNN priors and provides support for a range of
different weight priors, restricting inference to (stochastic)
MCMC-based methods; UQ360 provides a general arma-
mentarium of uncertainty estimation techniques, including
frequentist and non-parametric methods. Neither of them
are focused on the PyTorch deep learning practitioner want-
ing to keep their workflow intact.

7 FUTURE DIRECTIONS

In the long-term we view TyXe as a high-level BNN in-
terface that complements Pyro with features specific to
Bayesian deep learning that are not of interest for more
general probabilistic programs. Below we discuss both
some specific components as well as broader directions in
which we plan to move TyXe in the future.

There is a wide range of BNN-specific variational inference
approaches that has been developed in the literature over
recent years. Some of these, e.g. (Swiatkowski et al., 2020)
and (Tomczak et al., 2020) lend themselves particularly
well to the abstractions that we have built and we plan
to implement these methods. Especially the latter can be
conveniently factorized into a general-purpose AutoGuide
and logic that extends our local reparameterization effect
handlers.

On a related note, we are interested in adding a layer of
abstraction to Pyro’s AutoGuides that simplifies the con-
struction of AutoGuide classes with some family of distri-
bution that is shared across all variables for inference. This
feature could conveniently provide matrix normal posteriors
(Louizos & Welling, 2016).

While Pyro provides some full-batch MCMC samplers such

https://github.com/ctallec/pyvarinf
https://github.com/piEsposito/blitz-bayesian-deep-learning
https://github.com/piEsposito/blitz-bayesian-deep-learning

TyXe: Pyro-based Bayesian neural nets for PyTorch

Table 3: Comparison of design features with related packages. * TyXe provides basic support for Laplace through Pyro’s
AutoLaplaceApproximation, which is however not scalable to larger networks.

‘ Bayesian layers PyVarInf BIiITZ BNNPriors LaplaceRedux TyXe
Supports existing nets X v X X v v
Layer agnostic X X X v X v
Flexible priors v X X v X v
Inference VI VI VI MCMC Laplace VI, MCMC, Laplace*

as HMC and NUTS, more scalable mini-batch methods are
not available, such as SGLD (Welling & Teh, 2011). We
intend to add the necessary abstractions and make them
available through TyXe or directly contribute them to Pyro.

Our layer-free implementation of local reparameterization
further offers the possibility of formulating and training
stochastic binary neural networks (Shayer et al., 2018) in
a Bayesian framework, which is an exiting direction of
research that we intend to explore.

A pragmatic approach for uncertainty estimation in practice
is Monte Carlo Dropout (Gal & Ghahramani, 2016). Typi-
cal implementations such as in PyTorch implicitly draw a
single weight sample per input, however for visualization
purposes it can be desirable to fix a single sample across
batches of data. Registering Dropout layers as an effect han-
dler could give access to this functionality through Pyro’s
poutine library.

To further enhance TyXe’s scope and support research on
BNNSs in addition to applying them to practical problems,
we are highly interested in exploring if moment propagation
approaches such as (Hernandez-Lobato & Adams, 2015)
and (Wu et al., 2019) can be implemented as effect handlers
in a similar spirit to our reparameterization poutines. This
may require marking nonlinearity functions as effectful in
addition to linear and convolutional layers in order to allow
passing distributions rather than tensors through a given
network and could greatly facilitate experimenting with
such approaches on a broad range architectures with existing
PyTorch implementations.

8 CONCLUSION

We have presented TyXe, a Pyro-based library that facili-
tates a seamless integration of Bayesian neural networks for
uncertainty estimation and continual learning into PyTorch-
based workflows. We have demonstrated the flexibility of
TyXe with applications based on 3rd-party libraries, rang-
ing from modern deep image classification architectures
over graph neural networks to neural radiance fields, an
important model class in 3d-vision. In all cases the work-
flow of a practitioner knowledgeable in the use of these
libraries is minimally impacted to incorporate TyXe and

transform their systems to incorporate Bayesian neural net-
works. TyXe avoids implementing bespoke layer classes
and instead leverages and expands on Pyro’s powerful effect
handler module, resulting in a flexible design that cleanly
separates architecture definition, prior, inference, likelihood
and sampling logic.

TyXe’s choices of variational distributions are currently
pragmatic, focused on serving practitioners and researchers
interested in generating uncertainty estimates for down-
stream tasks that will benefit from the improvements offered
by standard variational families or HMC over maximum
likelihood. Recent work has even argued that mean-field
may be sufficient for inference in deep networks (Farquhar
et al., 2020). However, we are highly interested in further de-
veloping TyXe to support more complex recent approaches
and become a tool for Bayesian deep learning research with
its backing by Pyro facilitating extensions as discussed in-
depth Section 7. We would expect techniques with struc-
tured covariance matrices (Louizos & Welling, 2016; Ritter
et al., 2018b) as well as hierarchical weight models (Louizos
& Welling, 2017; Karaletsos et al., 2018; Ritter et al., 2021)
to be feasible to express within TyXe, with the latter pos-
sibly requiring additional abstractions. Nevertheless, we
believe that similar to Bayesian Layers (Tran et al., 2019)
TyXe already makes a valuable contribution to the ML soft-
ware ecosystem, filling the gap of easy-to-use uncertainty
estimation for PyTorch.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, 2016.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F.,
Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Hors-
fall, P,, and Goodman, N. D. Pyro: Deep universal proba-
bilistic programming. JMLR, 2019.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural network. In ICML, 2015.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D.,
Goodrich, B., Betancourt, M., Brubaker, M., Guo, J.,

TyXe: Pyro-based Bayesian neural nets for PyTorch

Li, P, and Riddell, A. Stan: A probabilistic programming
language. Journal of Statistical Software, 2017.

Chollet, F. et al. Keras, 2015.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R.,
Bauer, M., and Hennig, P. Laplace Redux-effortless
Bayesian deep learning. NeurIPS, 2021a.

Daxberger, E., Nalisnick, E., Allingham, J. U., Antoran, J.,
and Hernandez-Lobato, J. M. Bayesian deep learning via
subnetwork inference. In ICML, 2021b.

Esposito, P. BLiTZ - Bayesian layers in Torch
zoo (a Bayesian deep learing library for Torch).

, 2020.

Farquhar, S., Smith, L., and Gal, Y. Liberty or depth: Deep
Bayesian neural nets do not need complex weight poste-
rior approximations. In NeurIPS, 2020.

Foong, A. Y., Li, Y., Herndndez-Lobato, J. M., and Turner,
R. E. ’In-between’ uncertainty in Bayesian neural net-
works. arXiv preprint arXiv:1906.11537, 2019.

Fortuin, V., Garriga-Alonso, A., van der Wilk, M., and
Aitchison, L. BNNpriors: A library for Bayesian neu-
ral network inference with different prior distributions.
Software Impacts, 2021.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approxi-
mation: Representing model uncertainty in deep learning.
In ICML, 2016.

Ghosh, S., Liao, Q. V., Ramamurthy, K. N., Navratil, J.,
Sattigeri, P., Varshney, K. R., and Zhang, Y. Uncertainty
quantification 360: A holistic toolkit for quantifying and
communicating the uncertainty of Al, 2021.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In AISTATS,
2010.

Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M.,
Duffield, N., Narayanan, K., and Qian, X. Bayesian graph
neural networks with adaptive connection sampling. In
ICML, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In ICCV, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Hernandez-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of Bayesian neural net-
works. In ICML, 2015.

Hoffman, M. D. and Gelman, A. The No-U-Turn sampler:
Adaptively setting path lengths in Hamiltonian Monte
Carlo. JMLR, 2014.

Karaletsos, T., Dayan, P., and Ghahramani, Z. Probabilistic
meta-representations of neural networks. arXiv preprint
arXiv:1810.00555, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Kingma, D. P, Salimans, T., and Welling, M. Varia-
tional dropout and the local reparameterization trick. In
NeurlPS, 2015.

Lamb, G. and Paige, B. Bayesian graph neural net-
works for molecular property prediction. arXiv preprint
arXiv:2012.02089, 2020.

Louizos, C. and Welling, M. Structured and efficient varia-
tional deep learning with matrix Gaussian posteriors. In
ICML, 2016.

Louizos, C. and Welling, M. Multiplicative normalizing
flows for variational Bayesian neural networks. In ICML,
2017.

Luo, Y., Huang, Z., Zhang, Z., Wang, Z., Baktashmotlagh,
M., and Yang, Y. Learning from the past: Continual meta-
learning with Bayesian graph neural networks. In AAAI,
2020.

MacKay, D. J. A practical Bayesian framework for back-
propagation networks. Neural Computation, 1992.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. NeRF: Representing scenes
as neural radiance fields for view synthesis. In ECCV,
2020.

Neal, R. M. Priors for infinite networks.
Learning for Neural Networks. 1996.

In Bayesian

Neal, R. M. Bayesian learning for neural networks. 2012.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. Varia-
tional continual learning. In /CLR, 2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS, 2019.

Plotkin, G. and Pretnar, M. Handlers of algebraic effects.
In European Symposium on Programming, 2009.

Ranganath, R., Gerrish, S., and Blei, D. Black box varia-
tional inference. In AISTATS, 2014.

https://github.com/piEsposito/blitz-bayesian-deep-learning/
https://github.com/piEsposito/blitz-bayesian-deep-learning/

TyXe: Pyro-based Bayesian neural nets for PyTorch

Ritter, H., Botev, A., and Barber, D. Online structured
laplace approximations for overcoming catastrophic for-
getting. NeurlPS, 2018a.

Ritter, H., Botev, A., and Barber, D. A scalable Laplace
approximation for neural networks. In /ICLR, 2018b.

Ritter, H., Kukla, M., Zhang, C., and Li, Y. Sparse un-
certainty representation in deep learning with inducing
weights. arXiv preprint arXiv:2105.14594, 2021.

Shayer, O., Levi, D., and Fetaya, E. Learning discrete
weights using the local reparameterization trick. In ICLR,
2018.

Swaroop, S., Nguyen, C. V., Bui, T. D., and Turner, R. E. Im-
proving and understanding variational continual learning.
arXiv preprint arXiv:1905.02099, 2019.

Swiatkowski, J., Roth, K., Veeling, B. S., Tran, L., Dillon,
J. V., Mandt, S., Snoek, J., Salimans, T., Jenatton, R., and
Nowozin, S. The k-tied normal distribution: A compact
parameterization of Gaussian mean field posteriors in
Bayesian neural networks. In ICML, 2020.

Tomczak, M. et al. Efficient low rank Gaussian variational
inference for neural networks. In NeurIPS, 2020.

Tran, D., Hoffman, M. D., Moore, D., Suter, C., Vasudevan,
S., Radul, A., Johnson, M., and Saurous, R. A. Simple,
distributed, and accelerated probabilistic programming.
In NeurIPS, 2018.

Tran, D., Dusenberry, M., van der Wilk, M., and Hafner, D.
Bayesian layers: A module for neural network uncertainty.
In NeurIPS, 2019.

Trippe, B. and Turner, R. Overpruning in varia-
tional Bayesian neural networks. arXiv preprint
arXiv:1801.06230, 2018.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,
G, Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works. arXiv preprint arXiv:1909.01315, 2019.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient Langevin dynamics. In ICML, 2011.

Wen, Y., Vicol, P, Ba, J., Tran, D., and Grosse, R. Flipout:
Efficient pseudo-independent weight perturbations on
mini-batches. In /CLR, 2018.

Wingate, D. and Weber, T. Automated variational in-
ference in probabilistic programming. arXiv preprint
arXiv:1301.1299, 2013.

Wu, A., Nowozin, S., Meeds, E., Turner, R. E., Hernandez-
Lobato, J. M., and Gaunt, A. L. Deterministic variational
inference for robust Bayesian neural networks. In ICLR,
2019.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In ICML, 2017.

Zhang, Y., Pal, S., Coates, M., and Ustebay, D. Bayesian
graph convolutional neural networks for semi-supervised
classification. In AAAI 2019.

TyXe: Pyro-based Bayesian neural nets for PyTorch

A OUTLINE OF THE CURRENT CODEBASE

In this section we give an overview of the most relevant
modules and classes in our codebase to guide the interested
reader through our design and towards aspects of the library
that are most relevant to them and discuss some implemen-
tation details.

tyxe/bnn.py This module contains our top-level BNN
classes. They mostly act as wrappers leveraging the
functionality of our Prior classes to turn given Py-
Torch nn .Modules into PyroModules and define
the probabilistic models to perform inference in. Fur-
ther, they provide high-level functionality for training,
prediction and evaluation, which is delegated to the
Likelihood classes and Pyro.

_BNN Base class for all TyXe BNNs. Turns a Py-
Torch neural network into a PyroModule given
a Prior and gives access to a forward pass
through the network with samples from the prior.

GuidedBNN Base class on top of _BNN that gives
access to a forward pass with the network given a
trace (i.e. sample) from some inference procedure
for the network.

PytorchBNN Class for constructing objects that can
act as variational drop-in replacements of PyTorch
network objects in existing codebases. The for-
ward method acts like the forward method of an
nn.Module object, except that the weights and
therefore the function itself are stochastic. Under
the hood, as the BNN class has no control over
whether the guide function returns the network
output (for example, Pyro’s AutoGuides do not)
it makes the forward pass have the side-effect
of caching the output with the object, so that it
can be returned. Similarly it stores the KL diver-
gence between approximate posterior and prior
(which may be approximated stochastically in
each forward pass as the difference of the log
densities with the sample from the approximate
posterior if the KL is not available in closed form)
to use as a regularization term. A further im-
plementation challenge is collecting parameters
as in the .pytorch_parameters method,
which is the equivalent of . parameters on an
nn.Module. As Pyro programs, e.g. the Au-
toGuides, typically initialize their parameters, a
sample batch of data is required to run both prior
(which may have parameters to be estimated via
maximum likelihood) and posterior and capture
all parameters.

_SupervisedBNN Base class inheriting from
GuidedBNN that now also incorporates a
Likelihood describing a model for observed

data that is conditioned on the output of the
neural network. Defines an API for a predict
method that will run forward passes through the
network for multiple posterior samples and either
return them as a stacked tensor or aggregate them
in a likelihood-dependent way (e.g. average them
for predicted class probabilities).

VariationalBNN Class for variational Bayesian neu-
ral networks in a supervised learning setting. Al-
lows for an additional guide constructor to be
passed in for the likelihood if it contains any
variables to be inferred (e.g. the unknown vari-
ance of a Gaussian observation model). Further
provides a . £it method that wraps Pyro’s SVI
and Trace_ELBO objects to minimize the varia-
tional lower bound w.r.t. parameters.

MCMC_BNN Class for MCMC-based BNNs in a su-
pervised learning setting based on Pyro’s MCMC
kernels. Similarly provides £it and predict
methods that run MCMC on some data and make
predictions using those samples respectively.

tyxe/likelihoods.py The likelihood classes

are designed as high-level wrapper around
pyro.distributions that take care of con-
structing a Pyro function for sampling in a forward,
i.e. describing a probabilistic program for the data.
Crucially by providing the dataset size, this handles
correctly scaling the log likelihood against the log
prior (or KL divergence in variational inference) for
mini-batches of data. Further they implement logic for
evaluating test predictions through the log likelihood
and some error measure and aggregating multiple
predictions.

Likelihood Base class for all likelihood classes.
Implements all high-level functionality around
model construction and evaluation. Expects sub-
classes to provide functions that construct distri-
bution objects from given network predictions as
well handling aggregating multiple predictions
and providing an error function.

_Discrete Base class for Bernoulli and Categorical
that handles all classification-related logic of error
calculation and averaging of predicted probabili-
ties or logits.

Bernoulli Likelihood class for binary observations.

Categorical Likelihood class for categorical observa-
tions.

Gaussian Base class for Gaussians. Uses the squared
error as the error measures and aggregates predic-
tions to a mean and standard deviation.

HeteroskedasticGaussian Gaussian likelihood that
assume 2d dimensional predictions for d dimen-

TyXe: Pyro-based Bayesian neural nets for PyTorch

sional observation, with the first half of the di-
mension encoding a mean and the second half
the standard deviation. Uses the predicted stan-
dard deviations to weigh means according to their
precision when aggregating.

HomoskedasticGaussian Gaussian likelihood that
assumes a shared variance for all observations.
Crucially, this variance may be a probabilistic
function that places a prior on an unknown vari-
ance in order to support inference over this addi-
tional variable.

tyxe/priors.py The prior module provides classes

that handle logic around replacing nn.Parameter
attributes of nn . Module objects with PyroSample
with some prior distribution when turning a network
into a PyroModule. They further support updating
the prior attributes of the PyroSamples in order to
facilitate continual learning.

Prior Base class for prior classes that implements
apply and update functions for the conversion
and updating of nn.Modules. Further handles
hide/expose functionality (following the logic
of Pyro’s block poutine) that allows exclud-
ing/including different network parameters based
on their module instance (i.e. a specific layer),
their module type (i.e. a specific layer class), their
attribute name or their full name. This way entire
layers classes can be excluded from a Bayesian
treatment, e.g. BatchNorm layers, only specific
layers can be considered, e.g. the final layer, or
specific parameters can be left to be learned via
maximum likelihood estimation, e.g. the bias
terms and gives the user high flexibility for their
probabilistic model specification through a simple
and compact interface.

IIDPrior Class for i.i.d. prior across all parame-
ters based on a given distribution object, e.g.
dist.Normal (0, 1).

LayerwiseNormalPrior Convenience class for per-
layer i.i.d. Gaussian priors with variance depend-
ing on weight shape, e.g. inversely proportional
to the number of input dimensions.

DictPrior Convenience wrapper around dictionaries
to map parameter names to distributions, e.g. for
continual learning.

LambdaPrior Convenience wrapper around func-
tions that dynamically generate a distribution for
a given parameter object.

tyxe/guides.py This module builds on top of Pyro’s

autoguide module. It provides an equivalent to the
AutoNormal class that samples from the approximate
posterior directly rather than transforming samples and

wrapping them in a Delta distribution, order to be com-
patible with local reparameterization and calculating
KL divergences in closed form. Further it provides
convenience features such as limiting the variance of
the learned posterior or only learning means or vari-
ances, which are not generally of interest for Bayesian
inference as they reduce rather than increase the flex-
ibility of the variational posterior, however these can
improve the discriminative performance of Bayesian
neural networks which may outweigh concerns over
approximating the true posterior as closely as possible.
Finally, the class provides a method for returning a dic-
tionary mapping sampling site names to distributions
with detached parameters, which simplifies turning a
guide object into a prior. The module further provides
some neural-network style initialization functions for
variational mean parameters.

tyxe/poutine/reparameterization_messenger.py

Effect handlers for reparameterization of certain linear
operations. Specifically, these replace samples from
weight distributions with samples from the distribu-
tions over the outputs, which reduces gradient variance.
We implement these operations as ‘Messenger’ classes
to be compatible with Pyro’s poutine library.

_ReparameterizationMessenger Base class that
marks PyTorch functions as effectful to register
them with Pyro’s effect handling stack and
handles basic logic around catching reparame-
terizable sites (currently only fully-factorized
Gaussian and Delta distributions). The core
idea is to monkey-patch PyTorch functions
used by linear layers such as nn.Linear and
nn.Conv with a version of the corresponding
F.linear and F.conv function wrapped in
Pyro’s effectful decorator. This does not
modify any behaviour outside of Pyro functions,
but allows for subclasses of Messenger to
modify the behavious of these functions at
runtime. We use this to maintain a mapping
from samples of tensor to their respective
sampling distributions to check if the weights
of a reparameterizable function come from a
compatible distribution. If that is the case, we
delegate sampling the corresponding output to
a _reparameterize method that is to be
implemented in a subclass.

LocalReparameterizationMessenger Implements
local reparameterization (Kingma et al., 2015)
logic for reparameterization.

FlipoutMessenger Implements flipout (Wen et al.,
2018) logic for reparameterization.

TyXe: Pyro-based Bayesian neural nets for PyTorch

B COMPARISON TO PYRO

Here, we show an example of a variational ResNet in pure
Pyro and discuss some of the differences to the TyXe version.
We stress that Listing 3 and Listing 7 are not equivalent, as
Pyro lacks an implementation of local reparemterization and
its autoguide classes do not support clipping the variance
of a variational guide, so custom implementations of these
features would be required in order to achieve competitive
discriminative performance.

While TyXe has an object-oriented interface for constructing
prior, likelihood, guide and finally the BNN, with classes
for the typical components of a Bayesian modelling work-
flow, Pyro requires the user to modify their neural network
in-place and manually set prior distributions as attributes
of the object itself. The likelihood then requires defining a
function that calls the (now Bayesian) network in a proba-
bilistic program to pass into Pyro’s SVI class. Finally, TyXe
removes the need for boilerplate code when training and
making predictions. In particular the latter again requires ei-
ther familiarity Pyro’s poutine library or the Predictive class
to perform a standard step of the Bayesian deep learning
workflow (which is arguably less common in a smaller-scale
Bayesian modelling workflow for which Pyro was primarily
designed, where we may be interested in modelling and
making inferences on a given dataset rather than predicting
on held-out test data). Overall, we are convinced that TyXe
makes Pyro’s functionality significantly more accessible for
PyTorch users interested in adding Bayesian methods to
their workflow, in particular for those that have been pri-
marily focused on pure deep learning, as TyXe has been
designed with Bayesian deep learning at its core. Finally,
TyXe fills critical gaps in the functionality Pyro for suc-
cessfully training performant BNNs and further provides
support for continual learning.

TyXe: Pyro-based Bayesian neural nets for PyTorch

resnet = torchvision.models.resnetl8 (pretrained=True)
resnet.state_dict ()
pyro.nn.module.to_pyro_module (resnet)

values

prior definition
for m in resnet.modules():
if isinstance(m, (nn.Linear, nn.Conv2d)) :
m.weight = pyro.nn.PyroSample (dist.Normal (
torch.zeros_like (m.weight),
torch.ones_like (m.weight)) .to_event ())
m.bias = pyro.nn.PyroSample (dist.Normal (
torch.zeros_like (m.bias),
torch.ones_like (m.bias)) .to_event ())

likelihood
def model (x, y=None):
logits = resnet (x)
with pyro.plate("data_plate", dataset_size):
pyro.sample ("data", dist.Categorical (logits=logits), obs=y)
return logits

guide

guide = pyro.infer.autoguide.AutoNormal (
model, init_scale=le-4,
init_loc_fn=pyro.infer.autoguide.init_to_value (values=values))

optimization
optim = pyro.optim.Adam({"1lr": le-3})
svi = pyro.infer.SVI (model, guide, optim, pyro.infer.Trace_ELBO())

for _ in range (num_epochs) :
for x, y in iter (loader):
svi.step(x, V)

prediction
test_predictions = []
for _ in range (num_test_samples) :
tr = pyro.poutine.trace(guide) .get_trace(x_test)
test_predictions.append(pyro.poutine.replay (model, trace=tr) (x_test))
test_p = torch.stack (test_predictions).softmax(-1) .mean (0)

Listing 7: Code snippet for defining and training a pure Pyro variational ResNet.

	Introduction
	TyXe by example: non-linear regression
	Defining a BNN
	Network architecture
	Prior
	Guide
	Likelihood

	Fitting a BNN
	Predicting with a BNN
	Transformations via effect handlers

	Large-scale vision classification
	Compatibility with external libraries
	Bayesian graph neural networks with DGL
	Custom losses: Bayesian NeRF with PyTorch3D

	Variational continual learning
	Related work
	Future directions
	Conclusion
	Outline of the current codebase
	Comparison to Pyro

