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ABSTRACT
The paper proposes and optimizes a partial recovery training system, CPR, for recommendation models. CPR
relaxes the consistency requirement by enabling non-failed nodes to proceed without loading checkpoints when
a node fails during training, improving failure-related overheads. The paper is the first to the extent of our
knowledge to perform a data-driven, in-depth analysis of applying partial recovery to recommendation models
and identified a trade-off between accuracy and performance. Motivated by the analysis, we present CPR, a
partial recovery training system that can reduce the training time and maintain the desired level of model accuracy
by (1) estimating the benefit of partial recovery, (2) selecting an appropriate checkpoint saving interval, and
(3) prioritizing to save updates of more frequently accessed parameters. Two variants of CPR, CPR-MFU and
CPR-SSU, reduce the checkpoint-related overhead from 8.2–8.5% to 0.53–0.68% compared to full recovery, on a
configuration emulating the failure pattern and overhead of a production-scale cluster. While reducing overhead
significantly, CPR achieves model quality on par with the more expensive full recovery scheme, training the
state-of-the-art recommendation model using Criteo’s Terabyte CTR dataset. Our results also suggest that CPR
can speed up training on a real production-scale cluster, without notably degrading the accuracy.

1 INTRODUCTION

Recommendation algorithms form the core of many internet
services. For instance, the algorithms enable products that
suggest music on Spotify (Jacobson et al., 2016), videos
on YouTube and Netflix (Covington et al., 2016; Gomez-
Uribe & Hunt, 2015), mobile applications on Google Play-
Store (Cheng et al., 2016), stories on Instagram (Medvedev,
Ivan and Wu, Haotian and Gordon, Taylor, 2019), commer-
cial products (Smith & Linden, 2017; Chui et al., 2018), or
advertisements (Zhao et al., 2020). The impact of recom-
mendation algorithms on user experience is tremendous. Re-
cent studies show that a significant amount of content—60%
of the videos on YouTube and 75% of the movies on Netflix
that were viewed—come from suggestions made by recom-
mendation algorithms (Chui et al., 2018; Underwood, 2019;
Xie et al., 2018b). Thus, the industry devotes significant
infrastructure resources to recommendation models—across
computing clusters serving a wide variety of machine learn-
ing workloads, about 50% of training (Acun et al., 2021) and
80% of inference cycles are dedicated to recommendation
at Facebook (Gupta et al., 2020b).
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Over the past decades, a plethora of research has been de-
voted to the development of recommendation algorithms,
from classical techniques (Van Meteren & Van Someren,
2000; Sarwar et al., 2001; Koren et al., 2009) to machine
learning (ML) (He et al., 2017; Wang et al., 2016; Rendle
& Schmidt-Thieme, 2010) and deep learning (DL) (Cheng
et al., 2016; Naumov et al., 2019; Zhou et al., 2018; Zhang
et al., 2019; Guo et al., 2017; Song et al., 2020; Weinberger
et al., 2009; Gupta et al., 2020a). Domain-specific systems
tailored to deep learning-based recommendations have also
been designed to enable performant and energy-efficient
execution (Zhao et al., 2020; 2019; Kalamkar et al., 2020;
Nvidia, 2019; 2020b; Jouppi et al., 2017; Nvidia, 2020a; Ke
et al., 2020; Hwang et al., 2020; Kwon et al., 2019).

State-of-the-art deep learning recommendation models con-
sist of two major components: Multi-Layer Perceptron
(MLP) and embedding layers (Emb), jointly trained to reach
a target model quality (Naumov et al., 2019; Cheng et al.,
2016). MLP layers are replicated across multiple nodes
(trainers) and run in parallel, while Emb layers are sharded
across embedding parameter server nodes (Emb PS) due
to their large memory capacity requirement (Zheng et al.,
2020). As the size and the complexity of recommendation
models grow (Zhao et al., 2020; Lui et al., 2021), the scale
of MLP trainers and Emb PS nodes increases quickly, that
leads to growing failure rates of training jobs. By analyzing
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a large collection of industry-scale recommendation training
jobs in production datacenters with failures, we find that the
mean-time-between-failures (MTBF) is 14–30 hours on av-
erage. Similar statistics were reported for other production-
scale systems (Schroeder & Gibson, 2009; Kondo et al.,
2010; Garraghan et al., 2014; Sahoo et al., 2004).

A common approach to handle failures for distributed model
training is with checkpointing. A checkpointing system pe-
riodically saves the system state (a checkpoint) to persistent
storage. At a failure, all nodes participating in the training
load the last checkpoint, setting the model state back to a
consistent, earlier version of the model. We refer to this
baseline as full recovery. We observed that the overheads
coming from checkpoints are non-negligible. Checkpoint-
related overheads in full recovery can consume an average
of 12% of the total training time. And, for the worst 5%
training jobs, training time slowdown can be up to 43%.
This 12% overhead can add up to a significant computa-
tional cost at scale. By analyzing 17,000 training jobs from
a 30-day window, we observed that 1,156 machine-year
worth of computation was spent solely for failure handling.

In this work, we propose to leverage partial checkpoint
recovery to improve the efficiency and reliability of rec-
ommendation model training. Unlike full recovery, partial
recovery restores a checkpoint only for the failed node,
allowing all other trainer and Emb PS nodes to proceed
without reverting their progress. Prior work showed that the
iterative-convergent nature of ML training can successfully
train the model around the inconsistencies partial recovery
introduces to a certain degree (Qiao et al., 2019). However,
we demonstrate in this paper that a naive application of
partial recovery can harm the final model accuracy.

We identify that varying the checkpoint saving interval
trades off the final model accuracy as well as the training
time overhead in partial recovery—a unique, unexplored
trade-off space. To our knowledge, this is the first work that
conducts a thorough characterization study to understand
this trade-off in the context of production-scale recommen-
dation model training. From the characterization study, we
formulate a metric, portion of lost samples (PLS), to navi-
gate the design space.

Using PLS, we introduce Checkpointing with Partial recov-
ery for Recommendation systems (CPR), the first partial
recovery system that is customized for a large-scale pro-
duction recommendation system training. With the user-
specified PLS mapping to a certain accuracy target, CPR
assesses the benefit of using partial recovery and selects a
checkpoint saving interval to meet the target PLS with mini-
mal overheads. CPR implements two additional optimiza-
tions, Most-Frequently Used checkpointing (CPR-MFU)
and Sub-Sampled Used checkpointing (CPR-SSU), to fur-
ther improve the accuracy when using partial recovery. CPR-
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Figure 1. High-level overview of the recommendation system
model architecture (left) and a typical training setup (right).

MFU and CPR-SSU leverage an important observation—
frequently accessed rows in the embedding table experi-
ence larger updates that have heavier effects when lost.
CPR-MFU and CPR-SSU save updates of frequently ac-
cessed rows with higher priority under a constrained system
bandwidth, thereby minimizing the degree of the model
inconsistency introduced by failures.

We design, implement, and evaluate CPR on (1) an emula-
tion framework using the open-source MLPerf recommenda-
tion benchmark (MLPerf, 2020) and (2) a production-scale
cluster, training production recommendation models. Our
evaluation results show that CPR effectively reduces over-
heads while controlling the accuracy degradation using PLS.
On a framework emulating the production-scale cluster, we
show CPR can reduce the checkpoint-related overheads by
93.7% compared to full recovery, while only degrading ac-
curacy by at most 0.017%. Also, our results on a real-world
production cluster demonstrate promising overhead reduc-
tion from 12.5% to a marginal 1%, without any accuracy
degradation. The main contributions are:

• We provide a systematic analysis on the impact of
partial recovery for recommendation model training.

• We introduce PLS, a metric that can be used to predict
the effect of partial recovery on model accuracy.

• We propose CPR, a practical partial recovery system
for immediate adoption in real-world training systems.

2 BACKGROUND AND MOTIVATION

2.1 Deep Learning Recommendation Systems

Figure 1 depicts the generalized model architecture for deep
learning recommendation systems. There are two important
feature types that are modeled in a recommendation system:
dense and sparse features. Dense features represent contin-
uous inputs that are used directly as inputs to the bottom
MLP layer whereas sparse features represent categorical
inputs, such as movies or books a user has liked. The sparse
features are often encoded as multi-hot vectors, with only
the indices mapping to a certain category set. Because of the
large feature domain, the multi-hot vectors are sparse—a
few liked items among millions of items.
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Before being used, the sparse feature representation must
go through embedding tables and be translated to a dense
vector representation. The embedding tables can be viewed
as lookup tables, where each row holds a dense embedding
vector. Embedding vectors encode the semantics of each
feature, and the distance between embedding vectors rep-
resents semantic relatedness. The hot indices in the sparse
feature representation are used as lookup indices to retrieve
a set of embedding vectors, which are then combined in a
feature pooling layer by operations such as summation or
multiplication. The combined embedding vectors and the
output of the bottom MLP layer are aggregated in the feature
interaction layer, where their similarity is calculated, e.g.,
with dot-product. Finally, the result is fed into the top MLP
layer, which predicts the likelihood of user engagement for
the input user-item pair, i.e., click-through-rate or CTR.

MLP layers are compute-intensive and can be on the order
of MBs in size. To exploit data-level parallelism, an MLP
layer is often replicated across multiple trainers and trained
in parallel with different sets of data samples. Trainers
synchronize their replicated parameters periodically, either
through an MLP parameter server (Li et al., 2014; Zhang
et al., 2015) or using point-to-point communication (Assran
et al., 2019; Seide et al., 2014).

Emb layers, on the other hand, are memory intensive. The
embedding tables of production-scale recommendation mod-
els are often in the order of several hundreds of GBs to
TB (Zhao et al., 2020; Lui et al., 2021) in size and do not fit
in a single-node training system (Acun et al., 2021). Thus,
embedding table training exploits model-parallelism, where
tables are partitioned across multiple Emb PS nodes and are
jointly trained with all training data samples.

2.2 Checkpointing for Distributed Model Training

A common practice to handle failures in a distributed system
is to periodically save a checkpoint, i.e., store a snapshot
of the system state to persistent storage. Checkpoints hold
system states necessary to restore the progress. For ML
training, checkpoints usually include the model parameters,
iteration/epoch counts, and the state of the optimizer. When
any of the nodes fails, loading checkpoints for all the nodes
(i.e., full recovery) reverts the system to the same state as
when the checkpoint was saved.

There are four major overheads when using full recovery:
(1) checkpoint saving overhead (Osave), (2) checkpoint load-
ing overhead (Oload), (3) lost computation (Olost), and (4)
rescheduling overhead (Ores). Checkpoint saving/loading
overhead refers to the time spent on saving/loading the
checkpoint. Lost computation is the amount of computation
executed between the last checkpoint and a failure. Because
the intermediate results were not saved, the same compu-
tation has to be re-executed. Rescheduling overhead is the

time spent for the cluster scheduler to find alternative, avail-
able nodes to take over the role of the failed nodes (Basney
& Livny, 2000; Yoo et al., 2003).

With an average node failure period Tfail and the checkpoint
saving interval Tsave, a system’s total overhead Ototal can
be represented roughly as the following formula:

Ototal ≈ Osave
Ttotal

Tsave
+(Oload+

Tsave

2
+Ores)

Ttotal

Tfail
(1)

The first term (Osave
Ttotal

Tsave
) represents the checkpoint sav-

ing overhead, calculated by multiplying the overhead of sav-
ing a checkpoint Osave with the number of saving through-
out training Ttotal

Tsave
. Similarly, the second, third, and fourth

terms represent the overhead of checkpoint loading, lost
computation, and rescheduling, multiplied by the number
of failures (Ttotal

Tfail
). Note that Olost = Tsave

2 , assuming
uniform failure probability. The formula assumes each
overhead is small compared to Ttotal. Otherwise, e.g., the
number of checkpoint saving would have to be calculated
as Ttotal+Ototal

Tsave
instead of Ttotal

Tsave
. With knowing the sys-

tem parameter Osave, Oload, Ores, and Tfail, the optimal
checkpoint saving interval Tsave that minimizes Ototal can
be calculated: Tsave,full =

√
2OsaveTfail.

In a recommendation model training, Emb PS nodes ac-
count for most of the checkpoint-related overhead. Unlike
MLP layers that are small and replicated across trainers,
embedding tables are large and partitioned across multiple
nodes. Thus, saving embedding tables is slow and requires
coordination. Conventional checkpointing strategies (Koo
& Toueg, 1987), therefore, are inefficient for handling Emb
PS failures—the optimization focus of this work.

2.3 Partial Recovery

As an alternative to full recovery, the concept of partial
recovery was proposed in recent work (Qiao et al., 2019).
A distributed system with partial recovery only loads the
checkpoint for the failed node, while keeping the progress of
the remaining nodes. Unless the iteration/epoch count is lost,
partial recovery does not revert the progress, eliminating the
need to re-execute computations. The overhead of partial
recovery does not contain the lost computation:

Ototal par ≈ Osave
Ttotal

Tsave
+ (Oload + Ores)

Ttotal

Tfail
(2)

The performance benefit, however, comes at the expense
of potential model quality degradation, because partial re-
covery introduces state inconsistencies across nodes. Prior
work (Qiao et al., 2019) proposes to compensate for the
accuracy loss with training for additional epochs, although
there is no guarantee on eventual model quality recovery.

In fact, training for additional epochs does not always re-
cover the model quality for recommendation model training,
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Figure 2. The accuracy of partial recovery system with failures
(red crosses) never reached that of a non-failure case.

because recommendation models are prone to model over-
fitting when trained with more than one epoch (Zhou et al.,
2018). We show a motivational training scenario showing
that partial recovery for recommendation model training
can lead to irrecoverable accuracy degradation. In Figure 2,
failures (red cross) during training were handled by partial
recovery (orange, dashed). With partial recovery, the best
accuracy is far lower than that without failures (blue, solid).
Additional epochs do not close the accuracy gap, because
recommendation models overfitted after the first epoch. The
experimental setup for Figure 2 is discussed in Section 6.

Unexplored design trade-off. The accuracy degradation
of partial recovery can be potentially mitigated by saving
checkpoints more frequently. The relationship reveals a
new trade-off space for partial recovery to explore–in partial
recovery, changing the checkpoint saving interval trades off
the training time overhead and model accuracy. The role of
the checkpoint saving interval for partial recovery is very
different from that of full recovery, where the optimal value
is simply Tsave,full =

√
2OsaveTfail. Understanding the

trade-off space is essential for the practical adoption of
partial recovery on real-world applications.

3 UNDERSTANDING FAILURES FOR
PRODUCTION-SCALE TRAINING

Nodes in a large-scale training can fail for various reasons:
hardware failures (Wang et al., 2017; Reagen et al., 2018;
Birke et al., 2014; Narayanan et al., 2016; Dean & Barroso,
2013), system failures (e.g., out-of-memory), user errors
(e.g., bug in the code), and maintenance failures (e.g., kernel
update) (Chen et al., 2014). While the failure probability of
each node may be low, as the number of participating nodes
increases, the likelihood of failure becomes higher.

3.1 Distributed Recommendation Training Failures

Failures are common in distributed systems. Prior stud-
ies show that the mean-time-between-failures (MTBF) for
distributed systems are usually within the order of several
hours: 2–27 hours for the high-performance computing
cluster of the Los Alamos National Lab (Schroeder & Gib-
son, 2009); 0.06–58.72 hours from the Google cloud trace
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Figure 3. The observed failure pattern of the training jobs can be fit-
ted as a gamma distribution (a). Corresponding failure probability
shows a near-constant failure probability except at the beginning
(b). The label shows the number of participating nodes.

log (Garraghan et al., 2014); 0.08–16 hours for a large-scale
heterogeneous server cluster in IBM Research Center (Sa-
hoo et al., 2004); 3–23 hours for a multi-tenant GPU clusters
for DNN training at Microsoft (Jeon et al., 2019).

We observed a similar trend in the MTBF with a large col-
lection of recommendation training workflows from the
production-scale clusters. From the logs of 20,000 training
jobs running on fleets of Intel 20-core 2GHz processors con-
nected with 25Gbit Ethernet, similar to Zheng et al. (2020)
and Kalamkar et al. (2020), we collected the time-to-failure
data. We excluded training runs without failures in the statis-
tics. Figure 3a plots the survival probability of a training job
over time. We overlaid a fitted gamma distribution on top
of the observed survival probability data and extrapolated
the failure probability, shown in Figure 3b.

The median-time-between-failure (corresponding to y = 0.5
in Figure 3a) was 8–17 hours and the MTBF was 14–30
hours, similar to statistics from prior work (Schroeder &
Gibson, 2009; Kondo et al., 2010; Garraghan et al., 2014;
Sahoo et al., 2004). Jobs with more nodes failed more
quickly, with the MTBF decreasing linearly with the in-
creasing number of nodes. Similar to prior work on mod-
eling hardware failures (Wang et al., 2017), the observed
training failures followed a gamma distribution closely, with
an RMSE of 4.4%. The gamma distribution fits the best
compared to other commonly-used heavy-tailed distribu-
tions, e.g., Weibull (Rinne, 2008), exponential (Balakrish-
nan, 2018), and log-normal (Weisstein, 2010). The derived
failure probability was close to uniform, except near the
beginning of training (Figure 3b). The much higher failure
probability near the beginning is likely related to user errors,
e.g., erroneous configuration leading to instant failure.

3.2 Checkpoint Overhead Analysis for Reliable
Recommendation Training

We quantified the impact of the four checkpoint-related
overheads from Section 2.2 in a production-scale training
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Figure 4. Checkpoint-related overheads are responsible for non-
negligible amount of training time.

cluster. Similar to the failure analysis, we inspected 17,000
training jobs that ran for more than 10 hours over a 30-day
period. Figure 4 shows the checkpoint-related overhead
breakdown. The four overhead categories added up to an
average of 12% of the total training time. We estimated the
wasted machine-time due to training failures by multiplying
the time wasted with the number of nodes. Even though the
average overhead of 12% may seem small, the implication is
dire: the total overhead of the 17,000 training jobs summed
up to 1,156 machine-year worth of computation.

Figure 4 shows that the overhead is not dominated by a
single source. The major source of overhead for training
jobs experiencing fewer failures comes from checkpoint
saving (8.8% for p75), while training jobs with more fre-
quent failures suffered from lost computation (13.2% for
p90) and rescheduling (23.3% for p95). High rescheduling
overhead near the tail happens when the cluster is heavily
utilized with additional queuing delay. The diverse sources
of overhead pose a dilemma to full recovery. To optimize for
checkpoint saving overheads, a full recovery system must
save checkpoints less frequently. However, to optimize for
lost computation, the system must save checkpoints more
frequently. Motivated by the dilemma, we explore an al-
ternative solution, partial recovery. Next section describes
the proposed system, CPR, that applies partial recovery to
recommendation model training.

4 THE CPR SYSTEM

CPR is a lightweight design to improve the efficiency and re-
liability of distributed recommendation model training with
partial recovery. In order to understand the performance–
accuracy trade-off space of partial recovery, we define a
new metric—portion of lost samples (PLS)—which is a
function of checkpoint saving interval, the failure rate of
the system, and the number of Emb PS nodes. Our empir-
ical analysis shows that PLS strongly correlates with the
final model accuracy. Based on this observation, a user se-
lects a target PLS corresponding to the degree of accuracy
degradation that is tolerable. Then CPR selects a checkpoint
saving interval to achieve the target PLS. When the selected
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Figure 5. CPR selects between full and partial recovery based on
the benefit analysis. CPR selects the checkpoint saving interval
based on the target PLS. CPR uses MFU/SSU optimization.

interval brings too much overhead, CPR simply falls back
to full recovery. To improve the accuracy for CPR further,
we introduce two optimizations, CPR-MFU and CPR-SSU,
that prioritize saving embedding vectors with large changes.
Figure 5 provides the design overview for CPR.

4.1 Portion of Lost Samples (PLS)

PLS represents the portion of the training data samples
whose effect on the model was lost due to a failure. We
empirically show that PLS has a high correlation to final
model accuracy and can be used to trade-off performance
and accuracy. Let Stotal denote the number of total samples,
Si the number of samples processed up to i-th iteration, and
Nemb the number of Emb PS. The PLS at iteration i is:

PLSi =


0, if i = 0

PLSi−1 +
Si−Slast chkpt

StotalNemb
, if failure at i

PLSi−1, otherwise.
(3)

Si−Slast chkpt

Stotal
represents the portion of the lost samples

among total samples. Nemb in the denominator accounts
for the fact that the lost information from a node failure is
roughly 1/Nemb with Nemb nodes. As verified below in
Section 6.5 with measurement data and analysis, the final
model quality is linearly correlated with the final PLS value
of the recommendation training system. Using this relation-
ship, a CPR user can provide a target PLS corresponding to
the accuracy degradation they are willing to tolerate. CPR
selects the checkpoint saving interval so that the expected
PLS of the system meets the target PLS. The expected PLS
can be calculated from the checkpoint saving interval and
the failure frequency:

E[PLS] =
0.5Tsave

TfailNemb
(4)

We briefly describe the derivation. Expected PLS is the
number of expected node failures times the expected PLS
increase on each node failures. With the time at i-th iteration
of ti, the total training time of Ttotal, and the expected value
for all i, Ei, the expected PLS increases on node failures
is: E[∆PLS] = Ei[

Si−Slast chkpt

StotalNemb
] = Ei[

ti−tlast chkpt

TtotalNemb
] =
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Figure 6. The size of the changes has a strong correlation (0.9832)
with the access frequency to the particular embedding vectors.

0.5Tsave

TtotalNemb
. This derivation assumes a constant sample pro-

cessing rate. Multiplying this term with the expected num-
ber of failures (Ttotal

Tfail
) leads to Equation 4.

With the target PLS specified, CPR can use Equation 4
to directly calculate the checkpoint saving interval to use:
Tsave,part = 2(PLS)NembTfail. Later, we show in Sec-
tion 6.1 that the optimal checkpoint saving interval for par-
tial recovery is often much larger than that for full recov-
ery. The less frequent checkpoint saving of partial recovery
brings an additional performance benefit over full recovery.
When the checkpoint saving interval is too small to reap
performance benefit from, CPR falls back to full recovery.
Once the relationship between the target PLS and the final
accuracy is well established, it is also possible for the user
to specify target accuracy instead, which is more intuitive.

4.2 CPR Execution and Optimization

PLS-based checkpointing. CPR selects a checkpoint sav-
ing interval using the user-specified target PLS. The exact
relationship between PLS and the final model accuracy de-
pends on the machine learning algorithm and model in use.
Selecting a correct target PLS requires empirical knowl-
edge; however, we show in Section 6.1 that choosing a
rough, conservative value (e.g., 0.1) works reasonably well
across many setups. After calculating the checkpoint saving
interval, CPR compares the estimated overhead of using full
recovery (Equation 1) and partial recovery (Equation 2) us-
ing the selected interval to see if partial recovery can bring
benefit. If the expected benefit is small or if there is no
benefit, CPR uses full recovery. Our evaluation shows that
our production-scale training cluster can have a large benefit
by adopting partial recovery (Section 6.1).

Frequency-based prioritization. Partial recovery un-
avoidably loses updates made to the embedding vectors.
With the limited I/O bandwidth, prioritizing to save impor-
tant updates can make the final model quality to improve. A
recent work (SCAR) (Qiao et al., 2019) proposed a heuris-
tic to prioritize saving parameters with larger changes. By
tracking the L2-norm of the updates, SCAR saves the most-

changed rN parameters every rTsave (r < 1), instead of
saving N parameters every Tsave.

CPR can potentially benefit from adopting SCAR. How-
ever, SCAR is impractical to implement in industry-scale
recommendation training systems. Tracking updates to the
embedding tables of several TBs in size requires the same
order-of-magnitude memory capacity, at most requiring as
much memory as the model itself. Furthermore, selecting
the top rN most changed vectors has a time complexity of
O(N log(N)), scaling poorly with increasing N .

Instead of tracking the updates directly, we propose to only
track the access frequency. Figure 6 shows the strong cor-
relation between the access frequency and the size of the
update to embedding vectors, measured after 4096 iterations
for the Kaggle dataset (Criteo Labs, 2014) (evaluation de-
tails in Section 6). The correlation coefficient is high, at
0.983, meaning that the access frequency is an excellent
proxy to the magnitude of the embedding vector update.
Based on this observation, we propose time- and memory-
efficient alternatives over SCAR: CPR-MFU and CPR-SSU.

CPR-MFU. CPR-MFU saves the Most-Frequently-Used
(MFU) rN out of N parameters on every rTsave, with
r < 1. A 4-byte counter is allocated for each vector in
the embedding table to track the access frequency. The
typical size of an embedding vector ranges from 64–512
bytes (Naumov et al., 2019), making the memory overhead
of the counter 0.78–6.25% of the size of the embedding
tables. This is much smaller compared to the 100% memory
overhead of SCAR. When an embedding vector is saved,
its counter is cleared. The time complexity, however, is the
same with SCAR, being in the order of O(N log(N)).

CPR-SSU. CPR-SSU further improves the time and mem-
ory overhead of CPR-MFU. CPR-SSU Sub-Samples Used
(SSU) embedding vectors and keeps a list of vectors that
were ever accessed from the subsampled data points, of size
rN . If the list overflows, CPR-SSU randomly discards the
overflowing entries. The idea of CPR-SSU is that the sub-
sampling will act as a high-pass filter, giving vectors with
more frequent accesses a higher likelihood of staying in the
list. Because CPR-SSU only requires a list of size rN , the
memory overhead is r < 1 times that of CPR-MFU. With
r = 0.125, the memory overhead becomes 0.097–0.78%

Time Mem (rel. to emb tbl)
SCAR ≈ O(Nlog(N)) 100%
MFU ≈ O(Nlog(N)) 0.78− 6.25%
SSU ≈ O(N) 0.097− 0.78%

Table 1. Time and memory overhead of SCAR (Qiao et al., 2019),
CPR-MFU, and CPR-SSU. Memory overhead is shown for embed-
ding vectors of size 64–512 bytes, with r = 0.125.
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of the embedding tables. CPR-SSU only needs to keep a
non-duplicate list of size rN , which has a time complexity
in the order of O(N). Table 1 summarizes the overhead of
SCAR, CPR-MFU, and CPR-SSU.

5 EXPERIMENTAL METHODOLOGY

We evaluated CPR in two different settings: (1) a framework
that emulates the characteristics of the production-scale
cluster, and (2) a real production-scale cluster.

5.1 Emulation Framework

The emulation framework allows a fast evaluation of CPR
using a small model and a small dataset, while emulating the
failure/overhead characteristics from the production cluster.
For emulation, we implemented and trained CPR on top of
the DLRM recommendation architecture (Naumov et al.,
2019), a standard reference provided by MLPerf (Wu et al.,
2020; MLPerf, 2020). We trained DLRM using two datasets
of different sizes, the Criteo Kaggle (Criteo Labs, 2014) and
Terabyte datasets (Criteo Labs, 2013). The hyperparameters
of DLRM differed depending on the dataset. For Kaggle,
we use 64-byte embedding vectors, a 4-layer Bottom MLP
of (13×512, 512×256, 256×64, 64×16), and a 3-layer Top
MLP of (432×512, 512×256, 256×1). For Terabyte, we
use 256-byte embedding vectors, a 3-layer Bottom MLP
of (13×512, 512×256, 256×64), and a 4-layer Top MLP
of (1728×512, 512×512, 512×256, 256×1). DLRM was
trained on a single machine with two NVIDIA V100 GPUs
attached to a server with 20 CPUs and 64GB memory. Using
a single node does not affect the accuracy of DLRM because
the implementation is fully synchronous.

We ran training for a single epoch using all the data samples
and reported the final test receiver operating characteris-
tic area under curve (AUC). AUC is less susceptible to
unbalanced datasets and is a standard metric for evaluat-
ing DLRM (MLPerf, 2020). Training for a single epoch is
common for DLRM (Naumov et al., 2019; Mattson et al.,
2020a;b), because DLRM suffers from overfitting if the
same training data is revisited.

Failure and overhead emulation. Because the emulation
runs much faster than production-scale training, we project
the failure/overhead characteristics from Section 3 down
to account for the training time difference. We emulate a
56-hour training job for simplicity; the average number of
failures for a 56-hour training was exactly 2. We inject 2 fail-
ures randomly, as the failure probability is nearly uniform
for the real-world cluster (Section 3.1). A failure clears 50%,
25%, or 12.5% of the embedding tables and triggers partial
recovery, emulating 50%, 25%, or 12.5% of the total Emb
PS failures. We linearly scale down the checkpoint-related
overheads and the checkpoint saving interval.

Strategies. We implemented and compared full recovery,
baseline partial recovery, CPR-vanilla, CPR-SCAR, CPR-
MFU, and CPR-SSU. Full recovery uses the optimal check-
point saving interval (Tsave =

√
2OsaveTfail). The base-

line partial recovery naively uses the same interval. CPR
calculates the checkpoint saving interval from the target
PLS. We compare four different variants of CPR: CPR-
vanilla calculates the checkpoint saving interval from the
target PLS without additional optimizations. CPR-SCAR
implements the SCAR optimization from prior work (Qiao
et al., 2019), which imposes significant memory overhead.
CPR-MFU/SSU applies our memory-efficient MFU/SSU
optimizations. For CPR-SSU, we use a sampling period
of 2. We only apply SCAR/MFU/SSU optimizations to
the 7 largest tables among 26 tables, which take up 99.6%
(Kaggle) and 99.1% (Terabyte) of the entire table size, re-
spectively. For the 7 tables, we save checkpoints 8 times
more frequently but, at most, only 1/8 of the parameters
compared to full recovery (i.e., r = 0.125). Other tables are
always fully saved.

5.2 Production-scale Cluster

The evaluation on the production-scale cluster used 20 MLP
trainers and 18 Emb PS nodes. Each node consists of Intel
20-core, 2GHz processors connected with 25Gbit Ethernet,
similar to (Zheng et al., 2020). We trained the model for a
total of 50 hours, during which 5 failures were injected, with
each failure on any four randomly selected Emb PS nodes.
To simply test the effect of partial recovery, we mimicked
the behavior of partial recovery by switching part of the
checkpoints to an older version and triggering full recovery
right after saving a checkpoint. Except for the nodes whose
checkpoints were switched, loading checkpoints would not
revert the model, having the same effect as partial recovery.

6 EVALUATION RESULTS

6.1 Emulation Results: Training Time and Accuracy

We ran full recovery (Full.), baseline partial recovery (Part.),
and different variants of CPR on our failure emulation frame-
work, which closely emulates our production-scale cluster’s
failure rate and the checkpoint saving overhead. For the vari-
ants of CPR, we used target PLS =0.1. Figure 7 summarizes
the result for both Kaggle and Terabyte datasets.

CPR reduces the training time. Compared to full re-
covery, CPR reduces the checkpoint-related overhead by
93.7% and 91.7% for Kaggle and Terabyte, respectively.
The speedup can be broken down into two factors. Elim-
ination of the lost computation reduces the overhead for
Kaggle from 8.5% to 4.4% and for Terabyte from 8.2% to
4.4% (Figure 7, Full. vs. Part.). PLS-based checkpoint
saving interval selection additionally brings down the 4.4%
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Figure 7. CPR reduces the checkpoint-related overhead over full
recovery by 93.7% (Kaggle) and 91.7% (Terabyte) on a setup em-
ulating the production cluster, while achieving similar accuracy.
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Figure 8. CPR’s training loss increased only by 0.0007 from full
recovery to CPR-vanilla with PLS=0.1, while the overhead was
reduced from 7.8% to 0.71% on a production-scale setup.

(4.4%) overhead to 0.53% (0.68%) for Kaggle (Terabyte),
respectively (Figure 7, Part. vs. CPR).

CPR maintains reasonable accuracy. With optimiza-
tions, CPR was able to mostly achieve accuracy on
par with full recovery, losing at most only 0.0002 test
AUC with optimizations. For both full recovery and base-
line partial recovery, the test AUC was 0.8028/0.7977
for Kaggle/Terabyte dataset. CPR-vanilla trades off ac-
curacy with performance. While reducing the overhead
to a marginal 0.53–0.68%, the AUC for CPR-vanilla de-
creased to 0.8025/0.7974, for Kaggle/Terabyte dataset
(0.04% degradation). CPR-SCAR/MFU/SSU improves ac-
curacy, making CPR much more practical. For Kaggle,
they all reached a test AUC on par with that of full re-
covery. For Terabyte, CPR-SCAR/MFU/SSU achieved
AUC=0.7976/0.7976/0.7975 (0.011/0.012/0.017% degrada-
tion), respectively. While using less memory (Table 1) CPR-
MFU/SSU achieved accuracy similar to that of CPR-SCAR.

6.2 Production-scale cluster Results: Training Time
and Accuracy

We evaluated full recovery and CPR-vanilla on a production-
scale cluster. We injected 5 failures uniformly throughout
training that failed 4 of the 18 Emb PS nodes randomly.
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Figure 9. CPR trades off performance and accuracy.

We varied the target PLS for CPR-vanilla used a target PLS
from 0.025 to 0.1, which resulted in using checkpoint saving
interval of 2–8 hours. Full recovery saved checkpoints every
2 hours. Because the production-scale training did not report
AUC, we report the training loss instead. Note that unlike
AUC, the training loss is lower the better.

Figure 8 summarizes the result. The training loss only in-
creased by 0.0007 from full recovery to CPR-vanilla with
PLS=0.1. Meanwhile, the overhead decreased significantly
with CPR-vanilla with PLS=0.1, from 7.83% to 0.708%.
Most of the overhead reduction (5%) came from the elim-
ination of lost computation. 2.12% reduction came from
saving checkpoints less frequently. The limited number of
data points suggests a possible benefit of using CPR in a pro-
duction environment. We did not evaluate CPR-MFU/SSU,
because the accuracy was already good.

In addition, we studied how much hot embedding vectors
change throughout the training process. We observed that
most embedding tables converged quickly with marginal
changes in the cosine distance when compared to full re-
covery. This can potentially explain why CPR achieves
a similar model accuracy. However, a few embedding ta-
bles changed more drastically. The distinct convergence
behavior of the individual embedding tables indicates fur-
ther optimization opportunities in the context of CPR with,
for example, hybrid failure handling strategies.

6.3 Sensitivity Study: PLS

To evaluate the effect of different target PLS, we varied
the target PLS between 0.02, 0.1, and 0.2 and present the
resulting accuracy and overhead. We only show the result
of CPR-vanilla and CPR-SSU from the Kaggle dataset for
brevity; other configurations showed a similar trend. Fig-
ure 9 summarizes the result. For both CPR-vanilla and CPR-
SSU, varying PLS effectively traded off accuracy and per-
formance. For CPR-vanilla, increasing the target PLS from
0.02 to 0.2 decreased the overhead from 2.9% to 0.3%, while
degrading accuracy from AUC=0.8028 to AUC=0.8021. For
CPR-SSU, the degradation was much lower. CPR-SSU ex-
periences a marginal AUC decrease from AUC=0.8028 to
AUC=0.8027 for the same speedup.
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Figure 10. CPR is less effective with more failures.

6.4 Sensitivity Study: Failures

We also varied the number of failures and the portion of
lost nodes on each failure. We fixed the target PLS to 0.02.
We varied the number of failures between 2, 20, and 40.
20 and 40 failures represent a hypothetical case where the
system experiences 10–20× more failures. Such a setup can
represent a scenario of off-peak training, a training that only
uses idle resources and gets suspended whenever a higher
priority job arrives (e.g., Amazon Spot (Amazon, 2020)).
On each failure, we varied the portion of the Emb PS nodes
failed between 12.5–50%. We only plot the overhead; the
accuracy was similar across all experiments. The overhead
is normalized to the overhead of full recovery for simple
comparison. Again, we only selectively show full recovery
and CPR-SSU, trained with Kaggle dataset. Omitted data
points showed a similar trend. The configurations CPR
found as not beneficial to run a partial recovery are marked
in a red hatch. We still plot what the overhead would have
been like had CPR run partial recovery in such setups.

Figure 10 shows that CPR correctly estimates the bene-
fit of using partial recovery. The overhead of the setup
CPR predicted as not beneficial to run partial recovery (red
hatch) was all higher than that of full recovery. Figure 10
also shows that CPR’s speedup becomes smaller when fail-
ures occur more frequently or when more nodes fail at
once. CPR is less effective with more frequent failures
because the checkpoint saving interval of partial recovery
(2(PLS)NembTfail) decreases faster with decreasing mean-
time-to-failure, compared to full recovery (

√
2OsaveTfail).

6.5 PLS and Accuracy

CPR relies on the linear relationship between the PLS and
the final model accuracy. To evaluate the relationship, we
generated runs with 1–32 random failures, each clearing
6.25–50% of the embedding vectors. We also randomly
selected a checkpoint saving interval so that the expected
PLS falls near 0–1. We applied partial recovery without
any optimization and plotted the final accuracy degradation
compared to the non-failing case.

Figure 11 shows the strong linear relationship between PLS
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(a) Kaggle dataset.
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(b) Terabyte dataset.

Figure 11. PLS shows a strong correlation with the model accuracy
for both Kaggle (corr=0.8764) and Terabyte (0.8175) dataset.
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Figure 12. CPR-SSU (blue) reduces the slope for the PLS–
accuracy relationship compared to CPR-vanilla (red), allowing
CPR to expand the useful range of PLS values.

and the final model accuracy. The correlation holds re-
gardless of the number of the failed portion or the failure
frequency, i.e., there is no strong correlation between the
failure frequency or the failed portion and the final accuracy
as long as the PLS values are the same. With the relation-
ship known in prior, a CPR designer can limit the accuracy
degradation by specifying a target PLS. Note that the seem-
ingly high variance of AUC is inherent to the benchmark,
as the variance of PLS=0 is already high.

Figure 12 shows the PLS–accuracy relationship—CPR-SSU
reduces the slope significantly, enabling CPR to explore a
larger range of target PLS. A recent study showed that some
error (e.g., impaired input image) is more harmful at an
early stage of training (Achille et al., 2018). However, we
did not observe such correlation between when the failures
occurred and the final model accuracy.

6.6 Partial Recovery Scalability Analysis

To study the scalability of CPR, we analytically estimated
the overhead of full recovery and CPR using Equation 1
and Equation 2. To conjecture how the rate of node failures
would increase, we assumed two different models: (1) lin-
early decreasing mean-time-between-failure (MTBF) with
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Figure 13. CPR shows better scalability than full recovery.

an increasing number of nodes, which was the behavior
observed from Section 3.1, and (2) assuming that each node
has an independent failure probability p. The second model
leads to an MTBF equation in the form of 1

1−(1−p)n , which
deviates from the linear behavior seen from the production
cluster. Still, we consider this model due to its simplicity.

Figure 13 plots the result. For both of the failure models,
CPR showed better scalability than full recovery, where
the overhead actually decreased with an increasing number
of nodes. For both cases, full recovery saw an increasing
overhead with the increasing number of nodes. CPR scales
better with an increasing number of nodes because, although
the probability of observing a failure increases, the portion
of the updates lost decreases with the number of nodes.
Full recovery loads all the checkpoints even if only a small
fraction of the model is lost, resulting in worse scalability.

7 ADDITIONAL RELATED WORK

7.1 Prior Work on Checkpointing

Checkpointing for non-ML applications. Checkpoint-
ing is a common technique used in data centers to handle
failures (Chandy & Lamport, 1985; Koo & Toueg, 1987).
Traditional checkpointing saves a globally consistent state
across all the participating nodes and use full recovery to
ensure correct behavior (Chandy & Lamport, 1985), which
is often expensive. Many optimizations orthogonal to CPR
have been proposed to speed up checkpointing, including
using multi-level hierarchy (Moody et al., 2010; Bautista-
Gomez et al., 2011), adding asynchronous operations (Nico-
lae et al., 2019), leveraging memory access patterns (Nicolae
& Cappello, 2013; Carbone et al., 2015), or simultaneously
using logging (Wang et al., 2019). These works aim to
support arbitrary workloads and are complementary.

Intermittent computing (Ransford et al., 2011; Jayakumar
et al., 2014; Maeng & Lucia, 2018; Maeng et al., 2019;
Maeng & Lucia, 2019; 2020; Hester et al., 2015; Hester &
Sorber, 2017; Lucia & Ransford, 2015; Van Der Woude &

Hicks, 2016; Hicks, 2017; Ma et al., 2015; Choi et al., 2019),
a field enabling compute on an energy-harvesting device
with frequent failures, has also widely adopted checkpoint-
ing. However, these works focus on a single-node system.

Checkpointing for distributed ML training. Sev-
eral distributed training systems implement checkpoint-
ing (Chilimbi et al., 2014; Narayanan et al., 2019; Cipar
et al., 2013). Orpheus (Xie et al., 2018a) incrementally
saves a checkpoint by breaking the model into a running
sum of decomposed vectors, from which the original model
can be recalculated. DeepFreeze (Nicolae et al., 2020) im-
proves the checkpointing efficiency by introducing multi-
level storage, sharding the work across nodes, and overlap-
ping compute with checkpoint saving. While some of the
prior works reduce checkpoint-related overhead by lever-
aging ML-specific characteristics, they do not use partial
recovery like CPR. SCAR (Qiao et al., 2019) is the first
system that explores the benefit of partial recovery. CPR ad-
ditionally studies the trade-off of partial recovery that SCAR
neglected and proposes memory-efficient optimizations.

8 CONCLUSION AND FUTURE WORK

Training a recommendation system requires a fleet of ma-
chines due to its high compute and memory demand. With
the ever-increasing number of participating nodes, the train-
ing process experiences more and more frequent failures.
We studied the failure characteristics and the resulting over-
heads and observed that traditional full recovery adds unnec-
essary checkpoint saving overhead and lost computation.

We propose CPR, a system leveraging partial recovery to
reduce the checkpoint-related overheads for recommenda-
tion system training. CPR selects checkpoint saving interval
based on the user-specified target PLS, maximizing perfor-
mance while maintaining reasonable accuracy. CPR also
implements low-overhead optimizations that further reduce
the accuracy degradation. We show that CPR can effectively
eliminate checkpoint-related overhead with partial recovery
while suppressing significant accuracy degradation.

Partial checkpoint recovery after a failure perturbs the train-
ing process. Consequently, when training with CPR it may
be beneficial to use more robust distributed training methods,
such as those designed to handle more adversarial Byzantine
failures (Yin et al., 2018; Chen et al., 2018). We leave this
line of investigation to future work.
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