
DOPING: A TECHNIQUE FOR EXTREME COMPRESSION OF LSTM MODELS
USING SPARSE STRUCTURED ADDITIVE MATRICES

Urmish Thakker 1 Paul N. Whatmough 2 Zhigang Liu 2 Matthew Mattina 2 Jesse Beu 2

ABSTRACT
Structured matrices, such as those derived from Kronecker products (KP), are effective at compressing neural
networks, but can lead to unacceptable accuracy loss when applied to large models. In this paper, we propose the
notion of doping - addition of an extremely sparse matrix to a structured matrix. Doping facilitates additional
degrees of freedom for a small number of parameters, allowing them to independently diverge from the fixed
structure. To train LSTMs with doped structured matrices, we introduce the additional parameter matrix while
slowly annealing its sparsity level. However, we find that performance degrades as we slowly sparsify the doping
matrix, due to co-matrix adaptation (CMA) between the structured and the sparse matrices. We address this over
dependence on the sparse matrix using a co-matrix dropout regularization (CMR) scheme. We provide empirical
evidence to show that doping, CMA and CMR are concepts generally applicable to multiple structured matrices
(Kronecker Product, LMF, Hybrid Matrix Decomposition). Additionally, results with doped kronecker product
matrices demonstrate state-of-the-art accuracy at large compression factors (10− 25×) across 4 natural language
processing applications with minor loss in accuracy. Doped KP compression technique outperforms previous
state-of-the art compression results by achieving 1.3−2.4× higher compression factor at a similar accuracy, while
also beating strong alternatives like pruning and low-rank methods by a large margin (8% or more). Additionally,
we show that doped KP can be deployed on commodity hardware using the current software stack and achieve
2.5− 5.5× inference run-time speed-up over baseline.

1 INTRODUCTION

Language models (LMs) based on neural networks have
been extremely effective in enabling a myriad of natural lan-
guage processing (NLP) applications in recent years. How-
ever, many of these NLP applications are increasingly being
deployed on consumer mobile devices and smart home ap-
pliances, where the very large memory footprint of large
LMs is a severe limitation. To help bridge this gap in model
size, model optimization techniques have been demonstrated
to reduce the memory footprint of the weight matrices (Fe-
dorov et al., 2019; Dennis et al., 2019; Kusupati et al., 2018).
However, results published to date still result in very sig-
nificant off-chip DRAM bandwidth, which increases the
power consumption of mobile devices (Li et al., 2019). This
is especially significant for NLP applications that are run-
ning for long periods of time. For example, to efficiently
deploy a 25 MB LM on a device with 1 MB L2 cache, re-
quires 25× compression or a 96% reduction in the number
of parameters. Such a high pruning ratio leads to signifi-

1SambaNova Systems 2Arm ML Research. Correspondence to:
Urmish Thakker <uthakker@cs.wisc.edu>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

cant accuracy degradtion ((Gale et al., 2019b; Zhu & Gupta,
2017)), which is not acceptable from an application point
of view. Therefore, to enable efficient inference on resource
constrained devices (Zhu et al., 2019), there is a sustained
need for improved compression techniques that can achieve
high compression factors without compromising accuracy.

Model compression using structured matrices has been
previously demonstrated on various image and audio
tasks, such as object detection, human activity recogni-
tion (HAR), orthogonal projections and key-word spotting
(KWS) (Thomas et al., 2018; Sindhwani et al., 2015; Ding
et al., 2017a; Deng et al., 2018; Thakker et al., 2019c). For
example, Kronecker Products (KP) were used to compress
HAR and KWS models by 15-38× compression factors
(Thakker et al., 2019a) while achieving better accuracy than
other traditional compression techniques such as pruning
(Zhu & Gupta, 2017) and low-rank matrix factorization
(LMF).However, applying KP to more complex tasks, such
as a large LM, results in a 26% loss in perplexity, while
applying a low rank structure using tensor train decomposi-
tion leads to a greater than 50% decrease in perplexity score
(Grachev et al., 2019). Figure 1a shows that the root issue
with conventional KP is that during the optimization of the
constituent matricesB andC, all elements ofW inside each

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

1 2

3 4

0 3

2 1

1x0=0 1x3=3 2x0=0 2x3=6

1x2=2 1x1=1 2x2=4 2x1=2

3x0=0 3x3=9 4x2=0 4x3=12

3x2=6 3x1=3 4x2=8 4x1=4

W

CB

(a) Conventional Kronecker product matrix.

1 2

3 4

0 3

2 1

0 3 0 6

2 1 4 2

0 9 0 12

6 3 8 7CB

Kronecker Product
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 3

WWsWk

Sparse Matrix

(b) Doped Kronecker product matrix.

Figure 1. In the conventional Kronecker product (a), individual elements in the expansion W cannot diverge independently without
impacting other elements in the block. This restricts freedom in the parameter space and limits accuracy. By doping with a sparse matrix
Msp (b), we relax this constraint with an additional degree of freedom in the parameter space, with minimal overhead.

block of 4 elements (colored in the figure) are related. This
limitation in the parameter space leads to perplexity loss
on larger problems. Specifically, the issue gets exaggerated
in bigger matrices as structured decomposition of bigger
matrices for large compression factors creates more number
of such relations. Other structured matrices (Thomas et al.,
2018) face a similar challenge.

In this paper, we relax this limitation in the parameter space
by doping the structured matrix Mk with an extremely
sparse additive matrix Ms (Figure 1b). This approach was
inspired by robust PCA techniques, and allows an addi-
tional degree of freedom to recover accuracy at very low
inference-time cost. The contributions of this paper are
further summarized below:

• We propose sparse matrix doping1, which addresses
the accuracy limitations of structured matrix compres-
sion using an additional sparse matrix with negligible
inference cost.

• A training recipe to learn the structured and the sparse
matrix, describing regularization techniques to reduce
the co-matrix adaptation (CMA) encountered as we
anneal sparsity, using co-matrix regularization (CMR).

• Show that doping, CMA and CMR are applicable to a
a wide variety of structured matrices.

• Present state-of-the-art results for compressing lan-
guage models and translation applications using doped
KP, which are 1.5× - 2.4× smaller than previous work
at comparable accuracy values.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly surveys related work. Section 3, introduces
sparse matrix doping by applying the technique to Kro-
necker product matrix compression, which is the main focus
of the paper. We discuss the challenges in training doped
structured matrices (Section 4) and propose a training recipe
that includes regularization to prevent co-matrix adaptation
which otherwise leads to accuracy loss (Section 5). Using

1The term “doping” is an analogy to intentionally introducing
impurities into an intrinsic semiconductor in material science.

this training recipe, we discuss how doped structured ma-
trix compression techniques can be applied to a variety of
structured matrices in Section 6.2 and discuss why doped
KP leads to higher accuracy than other structured matri-
ces evaluated in this paper. We demonstrate state-of-the art
models using doped KP compression on three language mod-
eling tasks and one translation task in Sections 6.3.1,6.3.2
and 6.3.3. Doping introduces negligible run-time overhead,
which we confirm by benchmarking the inference perfor-
mance of all models on a Raspberry Pi 4 (Section 6.3.5).

2 RELATED WORK

Random Pruning (Han et al., 2016; Zhu & Gupta, 2017;
Sanh et al., 2020; Fedorov et al., 2020; Whatmough et al.,
2018; Liu et al., 2020; Whatmough et al., 2019) of neu-
ral networks seems to be a very successful compression
technique across many different tasks. However, so-called
random pruning is hard to exploit on real hardware due to
the lack of regularity in the resulting matrix multiplications
unless the sparsity level is large.

Structured Matrices have shown significant potential for
compression of neural networks (Sindhwani et al., 2015;
Ding et al., 2018; 2017b; Cheng et al., 2015; Zhou et al.,
2015; Thomas et al., 2018; Thakker et al., 2019a; 2020b).
Block circular compression is an extension of structured ma-
trix based compression technique, converting every block
in a matrix into a structured matrix. Building on top of
this, our work proposes a method to increase the compres-
sion achieved using structured matrices at baseline accuracy
by introducing sparse matrix doping on top of structured
matrices.

Tensor Decomposition including Tucker decomposition,
Kronecker etc. These methods have also been employed to
achieve significant reduction in parameters (Tjandra et al.,
2017; Gope et al., 2019; 2020b). Low-rank Matrix Factor-
ization (LMF) (Kuchaiev & Ginsburg, 2017; Chen et al.,
2018; Grachev et al., 2017; Thakker et al., 2019; Thakker
et al., 2020a) can also be categorized under this topic. LMF

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

aware NN are a special case of structured matrix as it also
imposes a certain constraint on the expressibility of the ma-
trix. We will show in this paper that doped KP can lead to
better accuracy than LMF.

Quantization is another popular technique for compression
(Hubara et al., 2017; 2016; Sanh et al., 2019; Liu et al.,
2018; Gope et al., 2020a; Banbury et al., 2021). Networks
compressed using DKP can be further compressed using
quantization.

Dynamic techniques are used to improve inference run-
time of RNNs by skipping certain RNN state updates (Cam-
pos et al., 2018; Seo et al., 2018; Yu et al., 2017; Tao et al.,
2019). These techniques are based on the assumption that
not all inputs to an RNN are needed for final classification
task. Thus we can learn a small and fast predictor that can
learn to skip certain inputs and its associated computation.
Doped KP technique is orthogonal to this technique and net-
works compressed using doped KP can be further optimized
using this technique. These dynamic techniques could be
extended to networks beyond LSTMs also (Raju et al., 2020;
Huang et al., 2020).

Efficient Network Architectures for LSTMs, such as SRU
(Lei et al., 2018), QRNN (Bradbury et al., 2016) and PRU
(Mehta et al., 2018) have also led to networks with faster in-
ference run-time performance through increased parameter
efficiency. Doped KP can be used to compress the weight
matrices in all of these architectures to further optimize the
inference time performance.

Word Embedding Compression is another way to reduce
the parameter footprint of embedding matrices in NLP
(Acharya et al., 2019; Mehta et al., 2019). In this paper,
we show that DKP can compress networks with compressed
word embedding layers also.

Combining features: The doped KP compression tech-
nique replaces a weight matrix with the sum of a sparse
additive matrix and a structured matrix. This leads to output
features that are a combination of those generated from a
structured matrix and another from a sparse matrix. Kusu-
pati et al. (2018) and He et al. (2015) also combine features
from two different paths. However, their work deviates from
ours for multiple reasons. Firstly, their aim is to combine
features to tackle the vanishing gradients issue. Secondly,
they use a residual connection for the additive feature, and
as a result, they do not see the CMA issue discussed in our
work. Finally, their technique is not well suited for the pur-
pose of enabling additional degrees of freedom in features
constrained by a structured matrix. Specifically, the sparse
matrix selects specific elements in a feature vector that need
additional degrees of freedom which their work cannot do.

In this work, doped KP combines very high-sparsity ran-
dom pruning with structured matrix techniques. Our results

are compared with pruning, structured matrix and tensor
decomposition techniques. Quantization can subsequently
be used to further compress the models we present.

3 DOPED KRONECKER PRODUCT

In this paper we will focus on applying the doping technique
to Kronecker product structured matrices. However, doping
can be generalized to other structured matrices and we will
also give some results for other structures in Section 6.

Let lowercase and uppercase symbols denote vectors and
matrices, respectively. In doped KP, a parameter matrix
W is the sum of a KP matrix Wk and a sparse matrix Ws

(Figure 1b),

W =Wk +Ws, (1)
Wk = B ⊗ C, (2)

where, ⊗ represents the Kronecker operator (Nagy, 2009)
For B ∈ RM1×N1, C ∈ RM2×N2, W ∈ RM×N , M =
M1×M2 and N = N1×N2 the compression factor (CF)
can be calculated using the formula:

CF = (M1 ∗N1 +M2 ∗N2 + ‖Ws‖0)/(M ∗N). (3)

3.1 Sizing doped KP Matrices

Identifying the dimensions of the B and C matrices is non-
trivial. A matrix can be expressed as a KP of multiple
smaller matrices of varying sizes. For example, if Wk is of
size 100×100, B and C can be of size 2 × 50 and 50 × 2
each or 10 × 10 and 10 × 10 each. Both solutions lead to
a compression factor of 50×. Recent work (Thakker et al.,
2019a) described a straightforward methodology to achieve
maximum compression of Wk using KP, while achieving
maximum rank. Empirical evidence suggests that the large
rank value corresponds to larger accuracy gains. Therefore,
we adopt the methodology in (Thakker et al., 2019a) to
decompose Wk into B and C. We run ablation studies
to further confirm that this choice indeed holds true. The
results of these ablation studies can be found in Appendix A.

Once the size of Wk is fixed, ‖Ws‖0 can be set during
hyperparameter optimization, to maximize the compression
factor without impinging on performance. As an example,
if W is of size 100×100, B and C are of size 10×10, then
95% sparsity in W s results in a compression factor of 14×;
the same scenario with 90% sparsity in Ws results in an
8.4× compression factor.

3.2 Training doped KP Networks

The doped KP networks are trained from scratch, i.e. they
do not start from a pre-trained network. Doped KP replaces
all the parameter matrices in the neural network with the

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

0

1

2

3

4

5

6

50% 75% 87.50% 90% 95%

Sp
e

e
d

-u
p

 o
ve

r
b

as
e

lin
e

Sparsity

Figure 2. Speed-up of matrix-vector product kernels as a function
of matrix sparsity, with a dense vector. The matrix is of dimension
256 × 256. Measured on a single Arm Cortex A-72 CPU of the
Raspberry Pi 4 board using the Eigenc C++ library.

sum of Wk and Ws matrices. We initially set Ws with a
dense random initialization. Then, as training progresses,
we apply magnitude weight pruning to Ws, annealing the
sparsity towards the target level. We use the methodology
described in (Zhu & Gupta, 2017) to achieve this transition,
which aims to allow the training optimization algorithm to
retain the non-zero elements in Ws, which have the greatest
impact on cross entropy.

3.3 Inference on doped KP Networks

For inference on an edge device, NLP applications gener-
ally use a batch size of one and thus execute a matrix-vector
product kernel (Thakker et al., 2019b). The matrix vec-
tor product for doped KP will lead to the execution of the
following computation:

y =W ∗ x (4)
y = (Wk +Ws) ∗ x, where (5)

Wk = B ⊗ C, (6)

where,W ∈ RM×N , x ∈ RN×1, y ∈ RM×1, B ∈
RM1×N1,C ∈ RM2×N2,M1×M2 =M andN1×N2 =
N .

The above inference leads to multiply accumulate (MAC)
and actual runtime reductions as both Wk ∗ x and Ws ∗ x
can be computed cheaply.

Inference Cost of (Wk ∗x): (Thakker et al., 2019a) show
that to execute Wk ∗x on an embedded hardware, we do not
need to expand the Kronecker matrix to the larger matrix.
We can achieve significant speedup by using the following
set of equations (Nagy, 2009) -

yk = (B ⊗ C) ∗ x (7)
yk = vec(Yk) where, (8)

Yk = C ×B ×XT and X = matrix(x) (9)

0

20

40

60

80

100

0

50

100

150

200

11 31 51 71 91 111 131 151 171 191 211 231

Sp
ar

sit
y

(%
)

Tr
ai

ni
ng

 P
er

pl
ex

ity

Epochs

Ws
Sparsity

Without CMR

With CMR

Figure 3. Training a medium LM at 100× compression. As the
sparsity of Ws is increased, training perplexity degrades due to
over dependence on non-zero elements of Ws established early
on. Using CMR we are able to prevent perplexity collapse as we
anneal sparsity.

where X ∈ RN2×N1, Yk ∈ RM2×M1, vec() converts a
matrix into a vector and matrix() converts a vector into
matrix. Thus, the matrix vector product, when the matrix
is expressed as KP of two smaller matrices, gets converted
into two small GEMM kernel calls.

Inference Cost of (Ws ∗ x): We emphasize that the addi-
tional latency cost of doping by adding Ws ∗ x is negligible
at inference time as long as Ws is sufficiently sparse. Fig-
ure 2 shows the results of running matrix-vector product
calculation on a Raspberry Pi 4 development board (Foun-
dation, 2009), for various sparsity values of the matrix. The
matrix is of dimension 256× 256 and the kernels use Eigen
C++ library (Guennebau & Jacob, 2009). Clearly, the matrix
sparsity has to be rather high to achieve a speedup compared
to the dense baseline. However, with doping, the additional
sparse matrix can be very high and therefore the additional
cost is low. For example, in this paper we target Ws sparsity
values of 10× or more, as a result the matrix-vector product
kernel can be executed at a speed-up of 4.1× or more when
compared against the baseline implementation.

4 CO-MATRIX ADAPTATION (CMA)
Initial attempts to train doped KP LSTMs were hampered
by accuracy collapse as Ws sparsity was increased. For
example, we compressed the medium LM from (Zaremba
et al., 2014) using KP (Thakker et al., 2019a) and doped KP
(Rows 2 and 3 in Table 1). However, the resulting perplexity
score degrades by 44.7% when trained using doped KP,
even with slightly more parameters. To clarify the source
of this accuracy loss, Figure 3 shows the training perplexity
and sparsity for the medium LM at an aggressive 100×
CF to clearly illustrate the issue. As the sparsity of Ws

increases, the perplexity soon collapses, indicating that the
model develops an over reliance on Ws while it is dense,

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

Compression
Factor

Training
Method

Sparsity
of Msp

Test
Ppl.

1x - - 82.1

338× (KP) - 0 104.1

100× (doped KP)

Eq 1 99% 150.7
Eq 17a+BCD 99% 100.5
Eq 17b+BCD 99% 100.9

CMR 99% 95.4

Table 1. Medium LM 100× compression results using KP and
DKP. Four different DKP networks are evaluated: one trained with-
out CMR (eq 1), others trained using eq 17a, eq 17a with block
coordinate descent (BCD) and CMR (eq 12). While other tech-
niques show promising results, CMR achieves drastically improved
perplexity showing that it is a more effective training technique for
doped KP networks.

during the initial training phase. Subsequently, as we anneal
the sparsity of Ws, the perplexity collapses. We refer to this
phenomena as co-matrix adaptation (CMA).

4.1 Understanding CMA

An input feature vector x in a dense layer is multiplied with
the doped KP weight matrix (eq 1) to give the output y,

y =Wkx+Wsx. (10)

Thus, the input flows through both Wk and Ws and the
output of the matrix-vector product is combined to create
the final output. The above equation can be viewed as,

yj = (wj
k)

Tx+ (wj
s)

Tx, (11)

where the superscript refers to the jth row of the matrix.
Each element of the output feature vector is the sum of neu-
rons coming from the Wk matrix and the Ws matrix. CMA
arises early on due to the co-adaptation of the incoming
neurons through both Wk and Ws, essentially balancing the
significance of the each. However, this is problematic as we
start to progressively prune Ws as training progresses.

This co-adaptation is also obvious when we focus on the
number of back-propagation updates during the initial phase
of training. The rate of back-prop updates is not even be-
tween Wk and Ws, which introduces further undesirable
emphasis on the dense Ws. In the example medium LM,
B is 52×65, and C is 50×20, and therefore Wk has a total
of ∼4.4K parameters. While Ws is 2600×1300, which is
∼3.4M parameters in the initial dense form. Thus, during
the initial training phase, Ws receives 700× more weight
updates than Wk leading to the over-reliance.

5 CO-MATRIX REGULARIZATION (CMR)
In order to prevent undesirable reliance on non-zero ele-
ments of Ws that will later be pruned away, we introduce a
random row dropout process which we refer to as co-matrix
regularization (CMR). Thus, eq 11 becomes

yj = ((wj
k)

T x) ◦ b1 + ((wj
s)

T x) ◦ b2, (12)

where b1 and b2 are CMR dropout values drawn from
Bernoulli distribution with probability p, and ◦ is element-
wise multiplication. CMR creates 4 different scenarios for
the output neuron:

yj = (wj
k)

T x + (wj
s)

T x (13)

yj = (wj
k)

T x (14)

yj = (wj
s)

T x (15)

yj = 0 (regular dropout) (16)

By ensuring that the output neuron is occasionally produced
without the presence of one of the incoming neurons, CMR
can reduce the co-dependence between the matrices. Fig-
ure 3 demonstrates that CMR helps manage CMA and pre-
vent perplexity collapse, Table 1 summarizes final test accu-
racy, which is improved by 36.7% with CMR (equation 12).

5.1 Alternatives to CMR

We also explore other ways to manage CMA that relied on
adding constraints to the Wk and Ws matrices in varying
forms:

W = B ⊗ C + β ×Ws,min ‖β‖ (17a)

W = α× (B ⊗ C) + β ×Ws,

min(‖β‖+ ‖1/α‖)
(17b)

Each of these constrains in equation 17a - 17b can be fur-
ther enhanced by training using Block Coordinate Descent
(BCD). In BCD we alternate between, only training Wk,
blocking gradient flow to Ws, or train Wk, blocking gradi-
ent flow to Ws.

The training curves and test results corresponding to these
methods of overcoming CMA are shown in Figure 4 and
Table 1. While these methods help in overcoming CMA,
CMR is far more effective than these techniques.

5.2 CMR for Generalized Doped Structured Matrices

CMR is a phenomenon that we observe when we combine
Ws with other structured matrices also. We run experi-
ments where we combine a low-rank matrix factorized ma-
trix (Kuchaiev & Ginsburg, 2017) with a sparse matrix, i.e.,
the parameter matrix is replaced as:

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

0

20

40

60

80

100

0

50

100

150

200

11 31 51 71 91 111 131 151 171 191 211 231

Sp
ar

si
ty

 (
%

)

Tr
ai

n
in

g
P

e
rp

le
xi

ty

#Epochs

1 17a 17b 17a+BCD 17b+BCD CMR Sparsity

Ws Sparsity

CMR

Figure 4. (Best viewed in color) Using the various alternative tech-
niques described in equation 17a - 17b with and without block
coordinate descent (BCD), we see that the reliance on Ws has
reduced. The increase in training perplexity that was visible in
Figure 3 has been managed considerably. However, none of the
alternative techniques match the training accuracy of CMR.

W =Wlmf +Ws, (18)
Wlmf = B × C, (19)

where, B ∈ RM×d, C ∈ Rd×N and Wlmf ∈ RM×N

and d < min(M,N). We call this method doped LMF.
Similarly, we can create doped HMD (Thakker et al., 2019)
compression method. We show that doping, CMR and CMA
are applicable and useful for achieving high-accuracy for
doped LMF (HMD) compression method also. Section 6.2
discusses results of compression using doped LMF (HMD)
and how they fare against doped KP compression method.

5.3 Training using CMR Dropout

CMR dropout is needed to avoid CMA. However as the
Ws gets pruned over-time, the need for CMR decreases. In
order to verify this, we experiment with 3 different CMR
schedules:

• constant: The CMR dropout value remains constant
throughout the training run

• linDec: This is the linear decrease schedule. We main-
tain a constant CMR dropout value for the first few
epochs. We start decreasing the CMR value linearly
to zero as soon as we start pruning Ws. We linearly
decrease CMR to zero. The number of steps in which
the CMR decreases to zero is equal to number of steps
taken to prune Ws to the required sparsity values. Fi-
nally, we train the network with no CMR (zero CMR)
for a few more epochs.

• expDec: This is the exponential decrease schedule.
We maintain a constant CMR dropout value for the
first few epochs. We start decreasing the CMR value
proportional to the density of the Ws matrix as soon as

Table 2. Ablation study comparing various CMR dropout sched-
ules (Section 5.3). Schedules that adapt to changing sparsity levels
in Ws achieve better results than other schedules. Thus, linDec
and expDec achieve better Test Perplexity than constant. con-
stant schedule maintains a large dropout value even after most of
the weights in Ws are pruned away, inhibiting learning.

Compression
CMR
Schedule

Test
Ppl.

Baseline 1x - 82.1

Doped KP
20x constant 88.5
20x expDec 83.6
20x linDec 82.9

we start pruning Ws. Once the Ws matrix is pruned to
the required sparsity value, CMR dropout converges to
zero. Finally, we train the network with no CMR (zero
CMR) for a few more epochs.

Results in Table 2 indicate that linDec achieves the best
accuracy when compared to other schedules. constant
achieves the highest test perplexity value while expDec
achieves comparable accuracy to linDec. constant leads
to least accuracy as having a CMR dropout after pruning
away most of the weights in Ws inhibits learning. Thus,
schedules that adapt to the sparsity levels of Ws generally
fare better. This paper uses the linDec schedule for CMR
dropout.

6 RESULTS

6.1 Datasets and Benchmarking Methodology

We evaluate the compression technique on networks trained
on two different datasets. We train the language mod-
els on the Penn Treebank Corpus (Marcus et al., 1993).
The dataset consists of 929k training words, 73k validation
words and 82k test words with a total vocabulary size of
10000. The machine translation network is trained on the
English-Vietnamese Translation dataset. The dataset con-
sists of 133k training sentence examples, 1553 sentences in
the validation set and 1268 sentences in the test set. The
networks were trained using Tensorflow 1.14 platform using
2 Nvidia RTX 2080 GPUs.

We compare networks compressed using DKP with multiple
alternatives:

• Pruning: We use the magnitude pruning framework
provided by (Zhu & Gupta, 2017). While there are
other possible ways to prune, recent work (Gale et al.,
2019a) has suggested that magnitude pruning provides
state-of-the-art or comparable performance when com-
pared to other pruning techniques (Neklyudov et al.,
2017; Louizos et al., 2018).

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

• Low-rank Matrix Factorization (LMF): LMF
(Kuchaiev & Ginsburg, 2017) expresses a matrix
A ∈ Rm×n as a product of two matrices U ∈ Rm×d

and V ∈ Rd×n, where d controls the compression
factor.

• Small Baseline: Additionally, we train a smaller base-
line with the number of parameters equal to that of the
compressed baseline. The smaller baseline helps us
evaluate if the network was over-parameterized.

• Previous state-of-the-art: Additionally, we show re-
sults comparing our method with previous state-of-the-
art compression results on the same benchmark.

In order to understand the generality of the compression
technique, we evaluate and compress 4 different benchmarks
across two applications - Language Modeling and Language
Translation. They are:

• Medium LM in (Zaremba et al., 2014): The LM con-
sists of 2 LSTM layers with hidden size of 650. The
baseline network was trained using a learning rate of
1.0 for 39 epochs with a learning rate decay of 0.8. For
regularization we use max grad norm value of 5 and a
dropout of 0.5 for all the layers.

• Large LM in (Zaremba et al., 2014): The LM consists
of 2 LSTM layers with hidden size of 1500. The base-
line network was trained using a learning rate of 1.0
for 55 epochs with a learning rate decay of 0.85. For
regularization we use max grad norm value of 10 and
a dropout of 0.65 for all the layers.

• RHN LM in (Zilly et al., 2016): We train the RHN
network with a depth of 10 layers and hidden size of
830. The input and output weight embedding are tied
together.

• En-Vi translation network in (Luong et al., 2017):
The model uses 2-layer LSTMs of size 512 units with
bidirectional encoder and unidirectional decoder, em-
bedding of dimension 512 and an attention layer. The
network is trained using a learning rate of 1.0, using a
dropout value of 0.2 and gradient norm value of 5.0.

For all of the above networks we compress the LSTM layers
in the network, unless stated otherwise. We compare the
accuracy of the compressed networks and identify the com-
pression method that achieves the lowest preplexity (highest
accuracy). The hyperparameters of the compressed network
can be found in Appendix B. We also measure the number
of operations required to execute the compressed network
and the wall-clock inference run-time of the compressed
network on an embedded device.

6.2 Impact of doping structured matrices

Doping is applicable to a variety of structured matrices.
We applied doping to low-rank matrix factorization (doped
LMF) technique, HMD (Thakker et al., 2019) (doped HMD)

Table 3. Medium LM LSTM results demonstrate that doping is
beneficial when applied to structured compression techniques,
such as KP, LMF and HMD shown here. Doped structured matrix
compression technique outperforms traditional structured matrix
compression (w/o doping). Amongst the different structured matri-
ces, KP outperforms LMF and HMD, due to the higher rank of KP
structure. Additionally, the results also indicate that doped struc-
tured matrix trained without CMR do no achieve good accuracy
due to CMA, thus indicating that CMA and CMR is a phenomenon
unique to other structured matrices also.

Method Compression Test Perplexity
Conventional Doped

Baseline 1x 82.1 -

KP (no CMR) 20x 89.1 93.3
KP w/ CMR 20x 89.1 82.9

LMF (no CMR) 20x 103.4 107.1
LMF w/ CMR 20x 103.4 89.2

HMD (no CMR) 20x 98.7 104.8
HMD w/ CMR 20x 98.7 87.4

and kronecker product (doped KP), using the CMR train-
ing method. Table 3 summarizes the results for standard
and doped structured matrices, trained with and without
CMR. At the same compression ratios, doped structured
matrix compression outperforms standard structured ma-
trix compression by a margin of 14% or more. This shows
that doping, CMA and CMR are generally applicable to
structured matrices also, opening opportunities for develop-
ment and exploration of a broad range of doped structured
compression methods.

The results show that the structured matrix used has a sig-
nificant influence on the final accuracy. Overall, we found
a strong correlation between the rank of the structured ma-
trix and the test perplexity results of the doped Structured
Matrices. Doping KP matrices leads to superior accuracy
than doping LMF and HMD structures. The KP structured
matrix has an order of magnitude higher rank than that of
LMF and HMD (Thakker et al., 2019a) for same number of
parameters. Therefore,the KP matrix is far more expressive
than an LMF or HMD equivalent, resulting in superior per-
formance. This makes KP a better structure to combine with
doping. Similarly, HMD has double the rank of the matrix
than one decomposed using LMF for the same number of
parameters, thus doped HMD has a better perplexity than
doped LMF.

6.3 Compression using Doped Kronecker Product
matrices

Section 6.2 showed that doped KP compression outperforms
other doped structured matrix based compression techniques
by a large margin. In this section we will compare this

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

80

90

100

110

0 5 10 15 20 25 30

Pe
rp

le
xi

ty
 S

co
re

Compression Factor

Small
Baseline

LMF

[Lee 2018]

Baseline

Pruned
Baseline

DKP

[Park 2017]
[Lee 2018]

Figure 5. Medium LM at various compression factors. The base-
line model defines 1× compression. Doped KP is compared with
pruning, LMF ((Kuchaiev & Ginsburg, 2017)), a smaller baseline
(SB), and previous published results on this benchmark (Park et al.,
2017; Lee & Kim, 2018; Lee et al., 2018).

Table 4. Large LM results show that doped KP has the best per-
plexity at high compression factors, compared to previous work.

Method Compression Test Perplexity

Baseline Model 1× 78.3
(Wen et al., 2018) 9.83× 78.6
(Wen et al., 2020) 10.71× 78.1
(Zhu & Gupta, 2017) 20× 83.4
Doped KP (This work) 20× 78.5

compression technique with other strong alternatives on a
wide variety of benchmarks.

6.3.1 Medium and Large LM in (Zaremba et al., 2014)

Figure 5 shows the Medium LM doped KP results at mul-
tiple compression factors, compared with pruned base-
lines ((Zhu & Gupta, 2017)), LMF ((Kuchaiev & Ginsburg,
2017)), and a small baseline with reduced layer sizes. We
also include recently published results for the same LMs. As
shown, doped KP outperforms all traditional compression
techniques known at 20× compression factors and beyond.
These models have Ws sparsity of 95% or higher. Doped
KP achieves 6% better accuracy than pruning and 23.3%
better accuracy than LMF for 25× compression factor. Ad-
ditionally, doped KP outperforms all previously published
results, with 2.4× higher compression at the same perplexity
as previous best result (Lee & Kim, 2018).

Table 4 shows the large LM model compressed using doped
KP at 25× compression. Doped KP consistently outper-
forms both standard techniques and previous work. We
improve the state-of-the art, almost doubling (1.8×) the
compression at comparable accuracy (Wen et al., 2020).

63

68

73

78

83

0 5 10 15

P
e

rp
le

xi
ty

 S
co

re

Compression Factor

LMF Pruned
Baseline

DKP

Baseline

Wen et al.

Figure 6. RHN LM at various compression factors. The baseline
model defines 1× compression. Doped KP is compared with prun-
ing, LMF ((Kuchaiev & Ginsburg, 2017)), and previous published
results on this benchmark (Wen et al., 2018).

Table 5. Compressing a more regularized Large LM regularized
using doped KP. We use weight-tying regularization that serves
dual purpose of compressed word embedding representation and
more regularized network. The results indicate that doped KP can
compress a more regularized version of Large LM.

Network Compression Factor Perplexity
Word
Embeddings

LSTM
Layers

Large LM 1x 1x 78.3
+Weight Tying 2x 1x 73.8
+Doped KP 2x 15x 76.2

Impact of additional regularization: We wanted to under-
stand whether adding more regularization to the previous
models negatively impacted the conclusions in the previous
section. In order to do that, we regularized the Large LM
using weight tying regularization (Inan et al., 2016). Weight
Tying (WT) ties the input and output word embeddings of a
LM resulting in a smaller network with better generalization.
As shown in Table 5, WT compresses the word embeddings
by 2× while simultaneously improves the perplexity of the
Large LM by 4.5 points when compared to the baseline.
Doped KP can further compress the network by 15× with

Table 6. Results of Compression of a GNMT network

Method Compression
BLEU
Score

Baseline Model 1x 25.5
Pruned Baseline 15x 24.2
LMF 15x 22.8
Small Baseline 15x 23.1
Doped KP 15x 24.9

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

Table 7. Overview of the results highlighting the compressing abilities of doped KP method across a variety of benchmarks. Speed-up
over baseline is measured by running the network on a Raspberry Pi 4 board using Eigen C++ Library.

Benchmark
Compression
Technique

Perplexity/ BLEU
score

Compression
Factor

MAC
Reduction

Speed-up on
commodity hardware

Medium LM
Baseline 82.1 1x 1x 1x
(Lee et al., 2018) 83.1 10x Not Reported NAa

Ours (Doped KP) 83.2 25x 7.41x 4.06x

Large LM
Baseline 78.3 1x 1x 1x
(Wen et al., 2020) 78.1 10.71x 7.48x 14.7x
Ours (Doped KP) 78.5 20x 5.64x 5.49x

RHN
Baseline 65.9 1x 1x 1x
(Wen et al., 2018) 71.2 10x 5.3x 10.7x
Ours (Doped KP) 71.1 15x 5.79x 5.34x

GNMT
Baseline 25.5 1x 1x 1x
(Zhu & Gupta, 2017) 24.9 10x 10x 3.3x
Ours (Doped KP) 24.9 15x 6.12x 2.55x

a Previous state-of-the-art ((Lee et al., 2018)) cannot be implemented on commodity hardware.

minor impact on perplexity score.

6.3.2 Recurrent Highway Networks (RHN)

We also tested Doped KP compression of a more recent
and more heavily regularized LM by Zilly et al. (2016).
Figure 6 shows the results of these experiments. As shown
in the figure, doped KP can compress the RHN network
by 10× with only minor degradation in perplexity score.
Additionally, doped KP achieves 1.5× more compression
than previous state-of-the-art compression technology while
achieving similar perplexity.

6.3.3 Compressing a Language Translation Network

To understand whether doped KP can be used to com-
press applications beyond LMs, we compress an English-
Vietnamese translation network from Luong et al. (2017).
Results in Table 6 show that doped KP can achieve better
accuracy than other traditional compression techniques.

6.3.4 Compressing an Intent Detection Network

Using doping, we are able to compress the Intent Detection
network (Liu & Lane, 2016) trained on the ATIS dataset
by 10 ×, with 0.7% loss in baseline accuracy (97.65%).
Pruning the baseline network to a compression factor of
10× leads to 1.3% loss in baseline accuracy, while LMF
leads to 4.2% loss in baseline accuracy.

6.3.5 Impact on Op count and Inference run-time

Table 7 shows the multiply-accumulate operation (MAC)
reduction achieved by the networks discussed in this paper

for various compression factors. Doped KP achieved near
iso-accuracy at 25× compression for the Medium LM, 20×
for the Large LM, 15× for GNMT and 10× for RHN. These
compression factors correspond to 7.41×, 5.64×, 6.12×
and 5.79× reduction in MAC operations required to execute
the LSTM layers of the network.

To measure the wall-clock inference run-time, we imple-
ment the compressed network on a Raspberry Pi 4 board
(Foundation, 2009). The borad has Arm Cortex A-72 pro-
cessor and the networks were implemented using Eigen C++
library (Guennebau & Jacob, 2009). As shown in Table 7,
doped KP compressed networks not only achieve MAC re-
duction, but also achieves 2.5×−5.5× inference speed-up.

7 DOPED QUANTIZED NETWORK

In general, the doping technique introduced in our paper
should apply to any models that use fully connected lay-
ers and convolutions. Therefore, in addition to LSTMs, it
should also be applicable to MLPs, transformers and CNNs.
To demonstrate this, we ran further experiments to apply
doping to a quantized AlexNet CNN (Krizhevsky et al.,
2012) trained on the ImageNet dataset (Deng et al., 2009).
To do this, we first aggressively quantized the weights in an
AlexNet model to 2-bits, which leads to a top-1 accuracy
of 50.1%. Next, we doped the network with 1% of FP32
values. We found that this tiny level of doping increases the
accuracy by 3.1% to 53.1%. Although this is a preliminary
result, we believe it indicates that doping (i.e., the addition
of sparse additive matrices) can be useful for CNNs, as well
as the LSTMs studied in our paper. It further shows that

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

doping can generalize to structures beyond those discussed
in the paper.

8 LIMITATION AND FUTURE WORK

In common with many other structured matrix approaches,
Doped KP currently introduces a 2-3x training slowdown.
This is due to (a) the additional memory required for the
sparse matrix (which is initially dense before pruning), and
(b) the lack of efficient KP GPU kernels (for both forward-
and back-propagation). This training time limitation has
so far prevented us from applying doping to big models
and big datasets. We believe that (a) could potentially be
addressed by the use of second order approximation meth-
ods (Wu et al., 2019; Dong et al., 2020b). These methods
can help identify locations in the structured matrix that
are stuck in sub-optimal minima and might benefit from a
non-zero value in an equivalent location in the sparse ma-
trix. This might allow us to learn the sparse matrix directly,
without the need to prune down from a dense matrix. Ad-
ditionally, (b) can be avoided by developing specialized
GPU kernels for structured matrices. Recently, (Dong et al.,
2020a) showed how to develop such kernels for block cir-
cular matrices, another popular structured matrix. We leave
the training time challenge for future work.

9 CONCLUSION

This paper introduces doping, a technique to improve ac-
curacy of networks compressed using structured matrices
like the Kronecker product (KP). Doping introduces an addi-
tional additive matrix to the the KP matrices, which we force
to be very sparse during training. To train high accuracy
networks with large compression factors, doped structured
matrices need to over-come co-matrix adaptation (CMA)
using the co-matrix regularization (CMR). Doped struc-
tured matrices trained using CMR and CMA can train to
higher accuracy at larger compression factors than using the
structured matrix alone, while achieving better compression
factors than previous state-of-the-art compression technique.
Specifically, doped KP lead to 10×−25× with minor loss
in accuracy while improving the compression factor of pre-
vious state-of-the-art by 1.3×−2.4×. These results were
collected by evaluating 4 different NLP application in the
domain of language modeling and language translation. Ad-
ditionally, doped KP compressed network can be deployed
on commodity hardware achieving inference speed-up of
2.5− 5.5× over baseline.

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

REFERENCES

Acharya, A., Goel, R., Metallinou, A., and Dhillon, I. On-
line embedding compression for text classification using
low rank matrix factorization. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 6196–6203, 2019.

Banbury, C., Zhou, C., Fedorov, I., Navarro, R. M., Thakker,
U., Gope, D., Reddi, V. J., Mattina, M., and Whatmough,
P. N. Micronets: Neural network architectures for de-
ploying tinyml applications on commodity microcon-
trollers. In Proceedings of Machine Learning and Sys-
tems (To Appear), 2021. URL https://arxiv.org/

pdf/2010.11267.pdf.

Bradbury, J., Merity, S., Xiong, C., and Socher, R. Quasi-
recurrent neural networks. CoRR, abs/1611.01576, 2016.
URL http://arxiv.org/abs/1611.01576.

Campos, V., Jou, B., Giró-i Nieto, X., Torres, J., and Chang,
S.-F. Skip rnn: Learning to skip state updates in recur-
rent neural networks. In International Conference on
Learning Representations, 2018.

Chen, T., Lin, J., Lin, T., Han, S., Wang, C., and Zhou, D.
Adaptive mixture of low-rank factorizations for compact
neural modeling. Advances in neural information process-
ing systems (CDNNRIA workshop), 2018. URL https:

//openreview.net/forum?id=B1eHgu-Fim.

Cheng, Y., Yu, F. X., Feris, R. S., Kumar, S., Choudhary, A.,
and Chang, S. An exploration of parameter redundancy in
deep networks with circulant projections. In 2015 IEEE
International Conference on Computer Vision (ICCV), pp.
2857–2865, Dec 2015. doi: 10.1109/ICCV.2015.327.

Deng, C., Liao, S., Xie, Y., Parhi, K. K., Qian, X., and
Yuan, B. Permdnn: Efficient compressed dnn architecture
with permuted diagonal matrices. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 189–202, 2018.

Deng, J., Dong, W., Socher, R., Li, L., Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Dennis, D., Acar, A., Vikram, M., Simhadri, H., Saligrama,
V., and Jain, P. Sharnn: A method for accurate time-
series classification on tiny devices. In Proceedings of the
Thirty-second Annual Conference on Neural Information
Processing Systems (NeurIPS), 2019. URL all papers/

DennisAVSSJ19.pdf. slides/DennisAVSSJ19.pdf.

Ding, C., Liao, S., Wang, Y., Li, Z., Liu, N., Zhuo, Y.,
Wang, C., Qian, X., Bai, Y., Yuan, G., Ma, X., Zhang,

Y., Tang, J., Qiu, Q., Lin, X., and Yuan, B. Cir-
cnn: Accelerating and compressing deep neural net-
works using block-circulant weight matrices. In Pro-
ceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-50 ’17, pp.
395–408, New York, NY, USA, 2017a. Association for
Computing Machinery. ISBN 9781450349529. doi:
10.1145/3123939.3124552. URL https://doi.org/

10.1145/3123939.3124552.

Ding, C., Liao, S., Wang, Y., Li, Z., Liu, N., Zhuo, Y.,
Wang, C., Qian, X., Bai, Y., Yuan, G., Ma, X., Zhang,
Y., Tang, J., Qiu, Q., Lin, X., and Yuan, B. Circnn:
Accelerating and compressing deep neural networks us-
ing block-circulant weight matrices. In Proceedings
of the 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO-50 ’17, pp. 395–
408, New York, NY, USA, 2017b. ACM. ISBN 978-
1-4503-4952-9. doi: 10.1145/3123939.3124552. URL
http://doi.acm.org/10.1145/3123939.3124552.

Ding, C., Ren, A., Yuan, G., Ma, X., Li, J., Liu, N.,
Yuan, B., and Wang, Y. Structured weight matrices-
based hardware accelerators in deep neural networks:
Fpgas and asics. In Proceedings of the 2018 on Great
Lakes Symposium on VLSI, GLSVLSI ’18, pp. 353–
358, New York, NY, USA, 2018. ACM. ISBN 978-1-
4503-5724-1. doi: 10.1145/3194554.3194625. URL
http://doi.acm.org/10.1145/3194554.3194625.

Dong, S., Zhao, P., Lin, X., and Kaeli, D. Explor-
ing gpu acceleration of deep neural networks
using block circulant matrices. Parallel Comput-
ing, 100:102701, 2020a. ISSN 0167-8191. doi:
https://doi.org/10.1016/j.parco.2020.102701. URL
https://www.sciencedirect.com/science/

article/pii/S0167819120300909.

Dong, Z., Yao, Z., Arfeen, D., Gholami, A., Mahoney,
M. W., and Keutzer, K. Hawq-v2: Hessian aware
trace-weighted quantization of neural networks.
In Larochelle, H., Ranzato, M., Hadsell, R., Bal-
can, M. F., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp.
18518–18529. Curran Associates, Inc., 2020b. URL
https://proceedings.neurips.cc/paper/2020/

file/d77c703536718b95308130ff2e5cf9ee-

Paper.pdf.

Fedorov, I., Adams, R. P., Mattina, M., and Whatmough,
P. N. SpArSe: Sparse Architecture Search for CNNs on
Resource-Constrained Microcontrollers. In Advances
in Neural Information Processing Systems 32, pp.
4978–4990. Curran Associates, Inc., 2019. URL
http://papers.nips.cc/paper/8743-sparse-

https://arxiv.org/pdf/2010.11267.pdf
https://arxiv.org/pdf/2010.11267.pdf
http://arxiv.org/abs/1611.01576
https://openreview.net/forum?id=B1eHgu-Fim
https://openreview.net/forum?id=B1eHgu-Fim
all_papers/DennisAVSSJ19.pdf
all_papers/DennisAVSSJ19.pdf
https://doi.org/10.1145/3123939.3124552
https://doi.org/10.1145/3123939.3124552
http://doi.acm.org/10.1145/3123939.3124552
http://doi.acm.org/10.1145/3194554.3194625
https://www.sciencedirect.com/science/article/pii/S0167819120300909
https://www.sciencedirect.com/science/article/pii/S0167819120300909
https://proceedings.neurips.cc/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
http://papers.nips.cc/paper/8743-sparse-sparse-architecture-search-for-cnns-on-resource-constrained-microcontrollers.pdf
http://papers.nips.cc/paper/8743-sparse-sparse-architecture-search-for-cnns-on-resource-constrained-microcontrollers.pdf
http://papers.nips.cc/paper/8743-sparse-sparse-architecture-search-for-cnns-on-resource-constrained-microcontrollers.pdf

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

sparse-architecture-search-for-cnns-on-

resource-constrained-microcontrollers.pdf.

Fedorov, I., Stamenovic, M., Jensen, C., Yang, L.-C., Man-
dell, A., Gan, Y., Mattina, M., and Whatmough, P. N.
TinyLSTMs: Efficient Neural Speech Enhancement for
Hearing Aids. arXiv preprint arXiv:2005.11138, 2020.

Foundation, R. P. Raspberry pi 4 model b.
https://www.raspberrypi.org/products/

raspberry-pi-4-model-b/specifications/,
2009. Accessed: 2020-08-10.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity
in deep neural networks. CoRR, abs/1902.09574, 2019a.
URL http://arxiv.org/abs/1902.09574.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity
in deep neural networks. CoRR, abs/1902.09574, 2019b.
URL http://arxiv.org/abs/1902.09574.

Gope, D., Dasika, G., and Mattina, M. Ternary hybrid
neural-tree networks for highly constrained iot applica-
tions. In Proceedings of Machine Learning and Systems
2019, pp. 190–200. 2019.

Gope, D., Beu, J., Thakker, U., and Mattina, M. Ternary
mobilenets via per-layer hybrid filter banks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2020a.

Gope, D., Beu, J. G., Thakker, U., and Mat-
tina, M. Aggressive compression of mobilenets
using hybrid ternary layers. tinyML Summit,
2020b. URL https://www.tinyml.org/summit/

abstracts/Gope Dibakar poster abstract.pdf.

Grachev, A. M., Ignatov, D. I., and Savchenko, A. V. Neural
networks compression for language modeling. In Shankar,
B. U., Ghosh, K., Mandal, D. P., Ray, S. S., Zhang, D.,
and Pal, S. K. (eds.), Pattern Recognition and Machine
Intelligence, pp. 351–357, Cham, 2017. Springer Interna-
tional Publishing. ISBN 978-3-319-69900-4.

Grachev, A. M., Ignatov, D. I., and Savchenko, A. V.
Compression of recurrent neural networks for ef-
ficient language modeling. Applied Soft Com-
puting, 79:354 – 362, 2019. ISSN 1568-4946.
doi: https://doi.org/10.1016/j.asoc.2019.03.057.
URL http://www.sciencedirect.com/science/

article/pii/S1568494619301851.

Guennebau, G. and Jacob, B. Eigen library. http://

eigen.tuxfamily.org/, 2009. Accessed: 2020-08-10.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. International Confer-
ence on Learning Representations (ICLR), 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. CoRR, abs/1512.03385,
2015. URL http://arxiv.org/abs/1512.03385.

Huang, X., Thakker, U., Gope, D., and Beu, J. Push-
ing the envelope of dynamic spatial gating technolo-
gies. In Proceedings of the 2nd International Work-
shop on Challenges in Artificial Intelligence and Ma-
chine Learning for Internet of Things, AIChallengeIoT
’20, pp. 21–26, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450381345. doi:
10.1145/3417313.3429380. URL https://doi.org/

10.1145/3417313.3429380.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 29, pp. 4107–4115. Curran Associates, Inc.,
2016. URL http://papers.nips.cc/paper/6573-

binarized-neural-networks.pdf.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neu-
ral networks with low precision weights and activations.
J. Mach. Learn. Res., 18(1):6869–6898, January 2017.
ISSN 1532-4435.

Inan, H., Khosravi, K., and Socher, R. Tying word vectors
and word classifiers: A loss framework for language
modeling. CoRR, abs/1611.01462, 2016. URL http:

//arxiv.org/abs/1611.01462.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,
K. Q. (eds.), Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012. URL
https://proceedings.neurips.cc/paper/2012/

file/c399862d3b9d6b76c8436e924a68c45b-

Paper.pdf.

Kuchaiev, O. and Ginsburg, B. Factorization tricks for
LSTM networks. CoRR, abs/1703.10722, 2017. URL
http://arxiv.org/abs/1703.10722.

Kusupati, A., Singh, M., Bhatia, K., Kumar, A., Jain,
P., and Varma, M. Fastgrnn: A fast, accurate, sta-
ble and tiny kilobyte sized gated recurrent neural net-
work. In Proceedings of the Thirty-first Annual Con-
ference on Neural Information Processing Systems
(NeurIPS), pp. 9031–9042, 2018. URL all papers/

KusupatiSBKJV18.pdf. slides/fastgrnn.pdf.

Lee, D. and Kim, B. Retraining-based iterative weight quan-
tization for deep neural networks. CoRR, abs/1805.11233,
2018. URL http://arxiv.org/abs/1805.11233.

http://papers.nips.cc/paper/8743-sparse-sparse-architecture-search-for-cnns-on-resource-constrained-microcontrollers.pdf
http://papers.nips.cc/paper/8743-sparse-sparse-architecture-search-for-cnns-on-resource-constrained-microcontrollers.pdf
http://papers.nips.cc/paper/8743-sparse-sparse-architecture-search-for-cnns-on-resource-constrained-microcontrollers.pdf
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
https://www.tinyml.org/summit/abstracts/Gope_Dibakar_poster_abstract.pdf
https://www.tinyml.org/summit/abstracts/Gope_Dibakar_poster_abstract.pdf
http://www.sciencedirect.com/science/article/pii/S1568494619301851
http://www.sciencedirect.com/science/article/pii/S1568494619301851
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://arxiv.org/abs/1512.03385
https://doi.org/10.1145/3417313.3429380
https://doi.org/10.1145/3417313.3429380
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
http://arxiv.org/abs/1611.01462
http://arxiv.org/abs/1611.01462
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1703.10722
all_papers/KusupatiSBKJV18.pdf
all_papers/KusupatiSBKJV18.pdf
http://arxiv.org/abs/1805.11233

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

Lee, D., Kapoor, P., and Kim, B. Deeptwist: Learning model
compression via occasional weight distortion. CoRR,
abs/1810.12823, 2018. URL http://arxiv.org/abs/

1810.12823.

Lei, T., Zhang, Y., Wang, S. I., Dai, H., and Artzi, Y. Simple
recurrent units for highly parallelizable recurrence. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 4470–4481,
Brussels, Belgium, October-November 2018. Association
for Computational Linguistics. doi: 10.18653/v1/D18-
1477. URL https://www.aclweb.org/anthology/

D18-1477.

Li, H., Bhargav, M., Whatmough, P. N., and Philip Wong,
H. . On-Chip Memory Technology Design Space Explo-
rations for Mobile Deep Neural Network Accelerators.
In 2019 56th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6, 2019.

Liu, B. and Lane, I. Attention-based recurrent neural
network models for joint intent detection and slot fill-
ing. CoRR, abs/1609.01454, 2016. URL http://

arxiv.org/abs/1609.01454.

Liu, X., Cao, D., and Yu, K. Binarized LSTM lan-
guage model. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 2113–2121, New Or-
leans, Louisiana, June 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N18-1192. URL
https://www.aclweb.org/anthology/N18-1192.

Liu, Z., Whatmough, P. N., and Mattina, M. Systolic
Tensor Array: An Efficient Structured-Sparse GEMM
Accelerator for Mobile CNN Inference. IEEE Com-
puter Architecture Letters, 19(1):34–37, 2020. doi:
10.1109/LCA.2020.2979965.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l 0 regularization. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=

H1Y8hhg0b.

Luong, M., Brevdo, E., and Zhao, R. Neu-
ral machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt, 2017.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
Building a large annotated corpus of english: The penn
treebank. Comput. Linguist., 19(2):313–330, June 1993.
ISSN 0891-2017.

Mehta, S., Koncel-Kedziorski, R., Rastegari, M., and Ha-
jishirzi, H. Pyramidal recurrent unit for language mod-
eling. CoRR, abs/1808.09029, 2018. URL http://

arxiv.org/abs/1808.09029.

Mehta, S., Koncel-Kedziorski, R., Rastegari, M., and Ha-
jishirzi, H. Define: Deep factorized input token embed-
dings for neural sequence modeling, 2019.

Nagy, J. G. Kronecker products. http:

//www.mathcs.emory.edu/˜nagy/courses/

fall10/515/KroneckerIntro.pdf, 2009. Ac-
cessed: 2020-08-10.

Neklyudov, K., Molchanov, D., Ashukha, A., and Vetrov,
D. Structured bayesian pruning via log-normal multi-
plicative noise. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 6778–6787, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Park, E., Ahn, J., and Yoo, S. Weighted-entropy-based
quantization for deep neural networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 7197–7205, July 2017. doi: 10.1109/
CVPR.2017.761.

Raju, R., Gope, D., Thakker, U., and Beu, J. Understand-
ing the impact of dynamic channel pruning on condi-
tionally parameterized convolutions. In Proceedings of
the 2nd International Workshop on Challenges in Artifi-
cial Intelligence and Machine Learning for Internet of
Things, AIChallengeIoT ’20, pp. 27–33, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN
9781450381345. doi: 10.1145/3417313.3429381. URL
https://doi.org/10.1145/3417313.3429381.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter, 2019.

Sanh, V., Wolf, T., and Rush, A. M. Movement pruning:
Adaptive sparsity by fine-tuning, 2020.

Seo, M. J., Min, S., Farhadi, A., and Hajishirzi, H. Neural
speed reading via skim-rnn. In 6th International Con-
ference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=Sy-dQG-Rb.

Sindhwani, V., Sainath, T., and Kumar, S. Structured trans-
forms for small-footprint deep learning. In Cortes, C.,
Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett,
R. (eds.), Advances in Neural Information Processing Sys-
tems 28, pp. 3088–3096. Curran Associates, Inc., 2015.

http://arxiv.org/abs/1810.12823
http://arxiv.org/abs/1810.12823
https://www.aclweb.org/anthology/D18-1477
https://www.aclweb.org/anthology/D18-1477
http://arxiv.org/abs/1609.01454
http://arxiv.org/abs/1609.01454
https://www.aclweb.org/anthology/N18-1192
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
http://arxiv.org/abs/1808.09029
http://arxiv.org/abs/1808.09029
http://www.mathcs.emory.edu/~nagy/courses/fall10/515/KroneckerIntro.pdf
http://www.mathcs.emory.edu/~nagy/courses/fall10/515/KroneckerIntro.pdf
http://www.mathcs.emory.edu/~nagy/courses/fall10/515/KroneckerIntro.pdf
https://doi.org/10.1145/3417313.3429381
https://openreview.net/forum?id=Sy-dQG-Rb

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

Tao, J., Thakker, U., Dasika, G., and Beu, J. Skipping
rnn state updates without retraining the original model.
In Proceedings of the 1st Workshop on Machine Learn-
ing on Edge in Sensor Systems, SenSys-ML 2019, pp.
31–36, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450370110. doi:
10.1145/3362743.3362965. URL https://doi.org/

10.1145/3362743.3362965.

Thakker, U., Beu, J., Gope, D., Dasika, G., and Mattina, M.
Run-time efficient rnn compression for inference on edge
devices. In 2019 2nd Workshop on Energy Efficient Ma-
chine Learning and Cognitive Computing for Embedded
Applications (EMC2), pp. 26–30, 2019.

Thakker, U., Beu, J. G., Gope, D., Zhou, C., Fedorov, I.,
Dasika, G., and Mattina, M. Compressing rnns for iot
devices by 15-38x using kronecker products. CoRR,
abs/1906.02876, 2019a. URL http://arxiv.org/

abs/1906.02876.

Thakker, U., Dasika, G., Beu, J. G., and Mattina, M. Mea-
suring scheduling efficiency of rnns for NLP applica-
tions. CoRR, abs/1904.03302, 2019b. URL http:

//arxiv.org/abs/1904.03302.

Thakker, U., Fedorov, I., Beu, J. G., Gope, D., Zhou, C.,
Dasika, G., and Mattina, M. Pushing the limits of rnn
compression. ArXiv, abs/1910.02558, 2019c.

Thakker, U., Beu, J., Gope, D., Dasika, G., and Mat-
tina, M. Rank and run-time aware compression of
NLP applications. In Proceedings of SustaiNLP: Work-
shop on Simple and Efficient Natural Language Pro-
cessing, pp. 8–18, Online, November 2020a. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/
2020.sustainlp-1.2. URL https://www.aclweb.org/

anthology/2020.sustainlp-1.2.

Thakker, U., Whatamough, P., Mattina, M., and Beu, J. G.
Compressing language models using doped kronecker
products. CoRR, abs/2001.08896, 2020b. URL https:

//arxiv.org/abs/2001.08896.

Thomas, A., Gu, A., Dao, T., Rudra, A., and Ré, C.
Learning compressed transforms with low displace-
ment rank. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.
(eds.), Advances in Neural Information Processing
Systems 31, pp. 9052–9060. Curran Associates, Inc.,
2018. URL http://papers.nips.cc/paper/8119-

learning-compressed-transforms-with-low-

displacement-rank.pdf.

Tjandra, A., Sakti, S., and Nakamura, S. Compressing
recurrent neural network with tensor train. In Neural
Networks (IJCNN), 2017 International Joint Conference
on, pp. 4451–4458. IEEE, 2017.

Wen, L., Zhang, X., Bai, H., and Xu, Z. Structured pruning
of recurrent neural networks through neuron selection.
Neural Networks, 123:134 – 141, 2020. ISSN 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2019.11.018.
URL http://www.sciencedirect.com/science/

article/pii/S0893608019303776.

Wen, W., Chen, Y., Li, H., He, Y., Rajbhandari, S.,
Zhang, M., Wang, W., Liu, F., and Hu, B. Learning
intrinsic sparse structures within long short-term
memory. In ICLR 2018 Conference, February
2018. URL https://www.microsoft.com/en-us/

research/publication/learning-intrinsic-

sparse-structures-within-long-short-term-

memory/.

Whatmough, P. N., Lee, S. K., Brooks, D., and Wei, G.
DNN Engine: A 28-nm Timing-Error Tolerant Sparse
Deep Neural Network Processor for IoT Applications.
IEEE Journal of Solid-State Circuits, 53(9):2722–2731,
2018. doi: 10.1109/JSSC.2018.2841824.

Whatmough, P. N., Zhou, C., Hansen, P., Venkataramana-
iah, S. K., sun Seo, J., and Mattina, M. FixyNN: Effi-
cient Hardware for Mobile Computer Vision via Transfer
Learning. In 2nd Conference on Systems and Machine
Learning (SysML), 2019.

Wu, L., Wang, D., and Liu, Q. Splitting steepest
descent for growing neural architectures. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL
https://proceedings.neurips.cc/paper/2019/

file/3a01fc0853ebeba94fde4d1cc6fb842a-

Paper.pdf.

Yu, A. W., Lee, H., and Le, Q. Learning to skim
text. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 1880–1890, Vancouver,
Canada, July 2017. Association for Computational Lin-
guistics. doi: 10.18653/v1/P17-1172. URL https:

//www.aclweb.org/anthology/P17-1172.

Zaremba, W., Sutskever, I., and Vinyals, O. Recurrent
neural network regularization. CoRR, abs/1409.2329,
2014. URL http://arxiv.org/abs/1409.2329.

Zhou, S., Wu, J., Wu, Y., and Zhou, X. Exploiting
local structures with the kronecker layer in convolu-
tional networks. CoRR, abs/1512.09194, 2015. URL
http://arxiv.org/abs/1512.09194.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
e-prints, art. arXiv:1710.01878, October 2017.

https://doi.org/10.1145/3362743.3362965
https://doi.org/10.1145/3362743.3362965
http://arxiv.org/abs/1906.02876
http://arxiv.org/abs/1906.02876
http://arxiv.org/abs/1904.03302
http://arxiv.org/abs/1904.03302
https://www.aclweb.org/anthology/2020.sustainlp-1.2
https://www.aclweb.org/anthology/2020.sustainlp-1.2
https://arxiv.org/abs/2001.08896
https://arxiv.org/abs/2001.08896
http://papers.nips.cc/paper/8119-learning-compressed-transforms-with-low-displacement-rank.pdf
http://papers.nips.cc/paper/8119-learning-compressed-transforms-with-low-displacement-rank.pdf
http://papers.nips.cc/paper/8119-learning-compressed-transforms-with-low-displacement-rank.pdf
http://www.sciencedirect.com/science/article/pii/S0893608019303776
http://www.sciencedirect.com/science/article/pii/S0893608019303776
https://www.microsoft.com/en-us/research/publication/learning-intrinsic-sparse-structures-within-long-short-term-memory/
https://www.microsoft.com/en-us/research/publication/learning-intrinsic-sparse-structures-within-long-short-term-memory/
https://www.microsoft.com/en-us/research/publication/learning-intrinsic-sparse-structures-within-long-short-term-memory/
https://www.microsoft.com/en-us/research/publication/learning-intrinsic-sparse-structures-within-long-short-term-memory/
https://proceedings.neurips.cc/paper/2019/file/3a01fc0853ebeba94fde4d1cc6fb842a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3a01fc0853ebeba94fde4d1cc6fb842a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3a01fc0853ebeba94fde4d1cc6fb842a-Paper.pdf
https://www.aclweb.org/anthology/P17-1172
https://www.aclweb.org/anthology/P17-1172
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1512.09194

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

Zhu, Y., Mattina, M., and Whatmough, P. N. Mobile Ma-
chine Learning Hardware at ARM: A Systems-on-Chip
(SoC) Perspective. In 1st Conference on Systems and
Machine Learning (SysML), 2019.

Zilly, J. G., Srivastava, R. K., Koutnı́k, J., and Schmidhuber,
J. Recurrent highway networks. CoRR, abs/1607.03474,
2016. URL http://arxiv.org/abs/1607.03474.

http://arxiv.org/abs/1607.03474

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

A IMPACT OF THE DIMENSIONS OF B AND
C MATRICES IN Wk

Table 8. Impact of the choice of different KP compression method-
ology used for Wk matrix. In this paper we follow the methodology
in (Thakker et al., 2019a). The results of this ablation study com-
pare this choice with various alternatives discussed in (Thakker
et al., 2019a). For overall compression of 10×, we can either start
from a 338× KP compressed method and add a Ws matrix with
9% non-zero values (9% doping) or start from one of the other
alternative points and vary the amount of doping. The former fol-
lows the methodology used in this paper, while the later describes
alternative methodologies that could have been followed. These
results validate our initial choice of KP compression for Wk and
show that the methodology followed in this paper is optimal.

Methodology
KP

Compre-
ssion

Doping
%

Overall
Compre-

ssion

Test
Ppl.

Alternative 1 10× 0% 10× 97.4
Alternative 2 20× 4.5% 10× 91.7
Alternative 3 40× 7% 10× 86.8

This
Paper 338× 9% 10× 82.1

Section 3.1 discussed the various choices for the dimension
of B and C matrices to express Wk. For example, if Wk is
of size 100×100, B and C can be of size 2× 50and50× 2
each or 10× 10and10× 10 each. In this paper, we use the
methodology proposed in (Thakker et al., 2019a) to identify
the configuration ofB andC matrix that achieves maximum
compression while still preserving the rank of the matrix
after compression. Their results indicate that this methodol-
ogy leads to better accuracy than others. We run a study to
validate whether their assumption is applicable to Doped KP
networks and thus to validate our initial choice for setting
up the compression problem in section 3.1. Table 8 shows
the results for this ablation study. The various rows in the
table indicate the various methodologies for KP compres-
sion and ways to achieve 10× compression using them. For
example the last row shows that using the methodology in
this paper, we can start with a Wk matrix that is compressed
by 338× and add a Ws matrix with 9% non-zero parame-
ters (9% doping) to achieve 10× overall compression. The
second last row starts with one of the alternative KP com-
pression methods that compresses the Wk matrix by 40×
and dopes 7% parameters in the Ws matrix to achieve an
overall compression of 10×. The results validate the choices
made in the paper. For iso-compression, doping on top of a
matrix compressed using KP compression methodology in
(Thakker et al., 2019a) achieves least perplexity score when
compared to doping on top of a matrix compressed using
alternative KP compression methodologies.

B HYPER-PARAMETERS

Table 9. Large LM Hyper-parameters
Large LM
Hyper-parameters Baseline

20x compressed
network

size(W) 6000x3000

size(Wk) NA
52x65
50x20

sparsity(Ws) NA 96.60%
Initial LR 1 0.3
LR decay 0.85 0.96
#Epochs 55 100
LR Decay
Start Epoch 10 15

CMR NA 0.7
L2 Regularization 0.0001 0.0001
Max Grad Norm 5 5
Dropout 0.65 0.65

Sparsity
Schedule

Epoch #
during start
of pruning

NA 20

Epoch #
during end
of pruning

NA 90

Table 10. GNMT Hyper-parameters
Baseline Compressed

Attention
Type scaled luong

dropout 0.2 0.2
encoder type bidirectional
learning rate 1.0 1
max grad norm 5 5
size(W) 2048x1024

size(Wk) NA
32x8

64x128
sparsity(Ws) NA
src max len 50 50
beam width 10 10
#TrainSteps 12000 20000
LR Schedule luang234

Sparsity
Schedule

Epoch #
during start
of pruning

2000 130000

Epoch #
during end
of pruning

2000 130000

Doping: A technique for Extreme Compression of LSTM Models using Structured Matrices

Table 11. Medium LM hyperparameters

Medium LM
Hyper-parameters Baseline

10x
compressed
network

20x
compressed
network

25x
compressed
network

size(W) 2600x1300
size(Wk) NA 52x65 & 50x20
sparsity(Ws) NA 91.10% 95.30% 96.30%
Initial LR 1 0.3 0.3 0.3
LR decay 0.8 0.96 0.96 0.96
#Epochs 40 100 100 100
LR Decay
Start Epoch 5 15 15 15

CMR NA 0.7 0.7 0.7
L2 Regularization 0.0001 0.0001 0.0001 0.0001
Max Grad Norm 5 5 5 5
Dropout 0.5 0.5 0.5 0.5

Sparsity Scedule

Epoch #
during start
of pruning

NA 20 20 20

Epoch #
during end
of pruning

NA 90 90 90

