
SENSAI: CONVNETS DECOMPOSITION VIA CLASS PARALLELISM
FOR FAST INFERENCE ON LIVE DATA

Guanhua Wang 1 Zhuang Liu 1 Brandon Hsieh 1 Siyuan Zhuang 1

Joseph Gonzalez 1 Trevor Darrell 1 Ion Stoica 1

ABSTRACT
Convolutional Neural Networks (ConvNets) enable computers to excel on vision learning tasks such as image
classification, object detection. Recently, real-time inference on live data is becoming more and more important.
From a system perspective, it requires fast inference on each single, incoming data item (e.g. 1 image). Two
main-stream distributed model serving paradigms – data parallelism and model parallelism – are not necessarily
desirable here, because we cannot further split a single input data piece via data parallelism, and model parallelism
introduces huge communication overhead. To achieve live data inference with low latency, we propose sensAI,
a novel and generic approach that decouples a CNN model into disconnected subnets, each is responsible for
predicting certain class(es). We call this new model distribution paradigm as class parallelism. Experimental
results show that, sensAI achieves up to 18x faster inference on single input data item with no or negligible
accuracy loss on CIFAR-10, CIFAR-100 and ImageNet-1K datasets.

1 INTRODUCTION

Convolution Neural Networks (CNNs) have recently suc-
ceeded in many computer vision tasks, such as image classi-
fication (Krizhevsky et al., 2012; Simonyan & Zisserman,
2015; He et al., 2016) and object detection (Ren et al.,
2015; Girshick et al., 2014). As both model size (Hu et al.,
2018; Real et al., 2019) and image resolution (Deng et al.,
2009; Lin et al., 2015) grow larger, the serving time of a sin-
gle ConvNet increases drastically. Thus, distributed model
serving is adopted to accelerate the process by running a sin-
gle CNN over multiple GPUs or machines simultaneously
(Paszke et al., 2017; Abadi et al., 2016). Conventional dis-
tributed approaches are data parallelism (Chen et al., 2015;
Li et al., 2014) and model parallelism (Lee et al., 2014;
Dean et al., 2012). In data parallelism, each GPU has a full
copy of the model and does inference independently on a
subset of the whole input data. Model parallelism adopts
a different approach: each GPU only maintains a portion
of the whole model, and communicates intermediate results
(e.g. feature-maps) during each round of model serving.

Making faster decision on live data is becoming increasingly
important. In cases like autonomous driving (Paden et al.,
2016; Badue et al., 2019), once the camera captures a frame
of image that contains pedestrians, it may save people’s

1University of California, Berkeley. Correspondence to: Guan-
hua Wang <guanhua@cs.berkeley.edu>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

lives if the stop decision can be made slightly faster. Other
application scenarios like automatic stock trading using ma-
chine learning, right now is happening in giant banks like JP
Morgan (Porzecanski, 2019) and Goldman Sachs (Jennings,
2018; Horwitz, 2020). If one party can make the trading
decision several milliseconds earlier than the others, it can
bring in huge amount of profits. From a system perspective,
making faster decision on live data means faster model serv-
ing on each incoming, atomic data item (e.g. a single image,
a stock’s instantaneous price).

Neither the conventional data parallelism nor model paral-
lelism can achieve faster serving on single data item. It is
infeasible to split an atomic input piece further for data par-
allelism (shown in Fig. 1(a)). Model parallelism introduces
huge communication overhead for transferring intermedi-
ate results (like feature-maps shown as red-dashed lines in
Fig. 1(b)) among the GPUs in use. To achieve faster infer-
ence on single data item, we propose sensAI, a novel and
generic approach that distributes a single CNN into discon-
nected subnets, and achieves decent serving accuracy with
negligible communication overhead (1 float value).

sensAI achieves this extremely low communication over-
head in distributed model serving by adopting a new concept:
class parallelism, which decouples a classification ConvNet
into multiple binary classifiers for independent, in-parallel
inference (shown as Fig. 1(c)). The intuition behind class
parallelism is, within a CNN, different neurons (i.e. chan-
nels) are responsible for predicting different classes, and
typically only a subset of neurons is crucial for predicting

sensAI

Machine 1 Machine 2

(a) Data Parallelism

Machine 3

Machine 1 Machine 2

Machine 4

(b) Model Parallelism

Machine 1 Machine 2

output: cat? output: dog?

output: cat/dog?

(c) Class Parallelism
Figure 1. Comparison of distributed model serving on single data piece among data parallelism, model parallelism and class parallelism.

one specific class probability (Yu et al., 2018). Class par-
allelism can also be used with data parallelism together by
duplicating the whole set of binary classifiers.

For image classification tasks with a relatively small number
of classes N, e.g., CIFAR-10 (Krizhevsky, 2009), we achieve
class parallelism by pulling out N binary classifiers from a
pretrained N-way classification CNN. And we use all these
binary classifiers to perform faster, in-parallel inference by
taking the maximum confidence output from these models
to determine the predicted class. For harder classification
tasks with more classes, e.g., ImageNet-1K (Russakovsky
et al., 2015) with 1000 classes, instead of decoupling a
given CNN into N binary classifiers, we divide the image
classes into k groups, with each group containing m classes
(m×k = N). For each group of classes, we distill a m-way
classifier from the base model. And we combine the outputs
from those k smaller m-way classifiers to obtain the target
N -way classification results.

In sensAI, we trade more computation resources (e.g.
more GPUs) for faster inference speed on single data
item. sensAI achieves decent scalability with class
parallelism. Extensive experimental results on CIFAR-
10/100 (Krizhevsky, 2009) and ImageNet-1K (Russakovsky
et al., 2015) datasets show that, compared with baseline of
single-GPU and multi-GPU via model parallelism, sensAI
achieves up to 18x speedup for single image serving time.
We also demonstrate sensAI’s effectiveness on more effi-
cient CNNs like MobileNet-V2 (Sandler et al., 2018) and
ShuffleNet-V2 (Ma et al., 2018). Despite that the aggregated
size of all our decoupled binary/grouped classifiers may be
similar or larger than the size of the base model, the FLOPs
and model size are significantly reduced on each device
(e.g. a GPU). Additionally, different from traditional model
parallelism, sensAI’s tiny classifiers on each device can
be concurrently executed without blocking each other. Our
main goal is to reduce inference latency on live data, and
sensAI’s class parallelism is a generic and simple method
to speed up model serving on single data item.

2 RELATED WORK

Data and model parallelism: To boost up model serv-
ing speed, data parallelism (Goyal et al., 2017; Jia et al.,
2019; Wang et al., 2020; Or et al., 2020) and model paral-
lelism (Kim et al., 2016; Dean et al., 2012; Huang et al.,
2019) are widely adopted for in-parallel CNN inference (Yu
& Chowdhuryo, 2020). In data-parallel model serving, each
machine (or GPU) maintains a replica of the entire CNN
model, and process a partition of input data (Gu et al., 2019;
Peng et al., 2019). Another common parallelism strategy
is model parallelism (Dean et al., 2012), where a CNN
model is split into disjoint subsets on multiple devices (Kim
et al., 2016; Lee et al., 2014). For each mini-batch of model
serving, a large amount of intermediate results (e.g. feature-
maps) need to be transferred among the GPUs that hold
adjacent model partitions.

However, neither of them can be used to reduce inference
latency on live data. Given that we cannot further split an
atomic data piece, data parallelism is not applicable to speed-
up inference on single input data item (Li et al., 2020; Ja-
yarajan et al., 2019). Although we can increase parallelism
via model parallelism, given that the inference time of a sin-
gle input piece is extremely short (e.g. several milliseconds),
the systematic networking communication time for transmit-
ting huge intermediate results (e.g. feature-maps) are often
several orders of magnitude higher than the inference time
of an image (Dean et al., 2012; Paszke et al., 2017; Jeaugey,
2017; Lee et al., 2014), making model parallelism unlikely
to speed-up single image inference. sensAI proposes a
new parallelism method, called class parallelism, which
decouples a CNN model into disconnected subnets. Only a
single float value (i.e. the confidence level of predicting an
input piece belonging to one specific class) communication
is needed in the end. This new approach of independent,
in-parallel inference allows us to further accelerate infer-
ence on single input piece. In addition, our class parallelism
can also be adopted together with data parallelism (by repli-
cating the whole set of binary classifiers) to further reduce

sensAI

Fully-trained
CNN

Dog classifier

Cat classifier

dog?

cat?

0.2

0.6

SoftMax
Decision:

Cat

Class-specific
pruning
(One-shot)

retrain

Active neurons

Inactive/pruned neurons

Figure 2. sensAI workflow for binary, in-parallel inference.

model serving latency on batches of input data.

Class-specific neuron analysis: Zhou et al. (Zhou et al.,
2018) point out that unit ablation on a fully trained CNN
model will only decrease inference accuracy on certain class,
and then analyze the correlation between units ablation and
its impacted class. Yu et al. (Yu et al., 2018) show the
possibility of decoupling a 10-way CNN model into ten
binary classifiers. However, even these literature points out
that the neurons belonging to certain class of images can
be relatively independent, sensAI is the first approach
to propose the concept of class parallelism and use it for
in-parallel model inference.

Network pruning: Over-parameterization is a well-known
attribute of CNNs (Denton et al., 2014; Ba & Caruana,
2014). To reduce memory footprints and computational
cost, network pruning (Han et al., 2015; Li et al., 2017; Liu
et al., 2017) gains attention and is recognized as an effective
way to improve computational efficiency while maintain-
ing decent accuracy. sensAI also adopts network pruning
technique to pull out class-parallel models from the original
CNN. Different from existing class-agnostic pruning meth-
ods, sensAI uses one-shot, class-specific pruning. And
sensAI can combine class-agnostic pruning schemes (Liu
et al., 2017; Han et al., 2015; 2016) to further shrink down
the size of our binary models.

One-Vs-All (OVA) reduction: OVA machine learning
model reduction is a general approach which reduces a
multi-class learning problem into multiple simpler problems
solvable with binary classifiers (Galara et al., 2011; Beygelz-
imer et al., 2016). Rifkin et al. (Rifkin & Klautau, 2004) and
Beygelzimer et al. (Beygelzimer et al., 2005) demonstrate
OVA’s effectiveness via both experiments and theoretical
arguments. Another line of work combines OVA with Error-
Correcting Output Codes (ECOC) to further boost model
serving accuracy (Dietterich & Bakiri, 1995; Kong & Diet-
terich, 1995; Deng et al., 2010). Different from traditional
OVA approaches and ECOC extension which train binary
classifiers with predefined model structure (Anand et al.,
1995; Dietterich & Bakiri, 1995), sensAI learns different
model structures from fully-trained base model for different

binary classification tasks, which achieves better serving
accuracy with less redundant binary models.

3 METHOD
In sensAI, we trade more computational resources (e.g.
more GPUs) for fast inference on single data item. Our
main goal is to reduce model serving latency (not FLOPs or
model size) on single input piece. sensAI proposes class
parallelism, which decouples a CNN model into binary clas-
sifiers for each class. For dataset with too many classes,
we design grouped classifiers, that each is responsible for
prediction of multiple classes. And our grouped classifiers
can achieve arbitrary degree of scalability from single ma-
chine to number of machines equivalent to image classes. In
this section, we first present sensAI high-level workflow.
Then we describe how each component works and discuss
the corresponding design in details.

3.1 Workflow overview
We assume to have a normally fully-trained N -way CNN
classifier where N is the total number of classes. As a
toy example shown in Fig. 2, sensAI decouples a CNN
model for faster, in-parallel inference via the following 3
steps: class-specific pruning, retraining and combining re-
sults back to original N-way predictions. Given a pre-trained
CNN, we first conduct one-shot, class-specific pruning to
pull out binary or grouped (i.e. multi-class) classifiers from
the base model. Second, to recover possibly lost serving
accuracy, we retrain each binary/grouped classifier indepen-
dently. Third, we deploy each binary/grouped classifier on
a single GPU for faster, in-parallel inference on live data.

3.2 Class-specific pruning
Here we first discuss how to distill binary classifiers from
the pre-trained base model. Then we extend it to pull out
grouped (multi-class) classifiers from the base model.

3.2.1 Binary classifiers:

In the process of distilling binary classifiers from a fully-
trained model, we would like to identify the neurons that
are important for predicting each specific class. Here we
use activation-based criteria to determine the importance of

sensAI

neurons for each class. After feeding all input images of
one class to the fully-trained model, we collect activation
statistics for each neuron (i.e. channel), and based on that
statistics we determine which neurons to keep or prune for
obtaining binary classifier for that class. For example, if our
criterion is Average Percentage of Zeros (APoZ (Hu et al.,
2017)), we prune out the neurons that have larger number of
zeros in their activation maps when taking that certain class
as input. For the final classification layer, we only keep the
prediction head of the class of interest.

How to obtain such binary classifiers via class-specific prun-
ing is crucial to the success of our method, as it is respon-
sible for identifying sub-network that performs well for
predicting each class, from which we will combine the out-
puts to get the final prediction results. Here we examine
three activation-based pruning criteria, namely APoZ (Hu
et al., 2017), average activations (Avg) (Yu et al., 2018), and
a hybrid criterion we proposed which combines the above
two. The APoZ criterion is already explained above. The
average activation criterion is similar to APoZ except it uses
the mean absolute value of a channel instead of the average
percentage of zeroes.

Our hybrid policy is defined as follows:

Ψ(Nc
i,j) =

Dc∑
Φ(Ac

i,j < θ1)

Dc
(1)

where Θ(Ac
i,j) < θ2 (2)

where N c
i,j denotes the j-th neuron in i-th layer evaluating

on the c-th class of images, and its corresponding output
featuremaps are Ac

i,j . Dc refers to the number of images
belongs to the c-th class. Φ(·) calculates the average per-
centage of featuremap values smaller than θ1 for each image
in the set of the c-th class.

First, instead of calculating average percentage of zeros
(APoZ), we generalize it as Ψ(·), which calculates the av-
erage percentage of featuremap values less than threshold
θ1. Then we generate the initial candidate list of neurons
need to be pruned by setting a percentage threshold on Ψ(·).
Second, for each prune candidate, we evaluate its corre-
sponding featuremaps’ mean absolute value Θ(Ac

i,j). If the
mean absolute value is larger than the threshold θ2 we set,
we exclude it from the prune candidate list. The key insight
of this hybrid policy is to avoid pruning neurons that gener-
ate featuremaps with high percentage of near-zero values,
and have very large non-zero values at the same time.

3.2.2 Grouped classifiers:
For simple classification tasks like 10-class CIFAR-10 dat-
set (Krizhevsky, 2009), it is feasible to distill from pre-
trained model into 10 binary classifiers to achieve paral-
lelism across 10 GPUs or machines. However, for tasks
with a huge amount of classes, such as 1000-way ImageNet-
1K classification dataset (Russakovsky et al., 2015), pulling

(a) CIFAR-10 (b) CIFAR-100
Figure 3. t-SNE visualization for feature representation of training
images using pre-trained VGG-19 on CIFAR-10 and CIFAR-100.

out 1000 binary classifiers for class parallelism can be unre-
alistic, as maintaining 1000 binary models can be expensive
and parallelism over 1000 GPUs may not be practical in
many circumstances.

In this case, instead of distilling binary classifiers per class,
we first divide all N classes into k groups, each with m
classes (m × k = N), and then use similar pruning tech-
niques to distill a multi-class classifier for each group. The
grouping assignment can be done randomly or based on
some priors on similarity among the classes. Here we eval-
uate two grouping approaches: random grouping, and our
novel grouping method called nearby grouping for grouping
similar classes.

In our nearby grouping, we first evaluate the similarity
of feature representation for images belonging to different
classes, and then group the classes that share high similarity.
As shown in Fig. 3, we use t-distributed stochastic neighbor
embedding (t-SNE) (van der Maaten & Hinton, 2008) to
visualize distance of feature representation (collected from
feature-vector before the last fully-connected layer when
passing training images into a fully-trained VGG-19) for
all images in both CIFAR-10 (Fig. 3(a)) and CIFAR-100
(Fig.3(b)). In Fig. 3, the data points with same color repre-
sent the feature-vector of images belong to the same class.
We then adopt k-means clustering (MacQueen, 1967) (as
we describe in Appendix. A) over feature representation of
images to group multiple classes that are close to each other
(nearby grouping), as t-SNE ensures nearby classes will be
close in projected space by minimizing the Kullback-Leibler
divergence between joint distribution of points in input and
projected space (Linderman & Steinerberge, 2019).

In group-wise pruning, we feed all the images in one class
group (instead of a single class) and collect the statistics for
pruning. For the final classification layer, we keep all m
predictions of classes in that group. We add another head
to indicate the “negative” samples, which refers to the input
images do not fall into this group of classes. Therefore, each
grouped classifier becomes an (m+ 1)-way classification
model.

Note that even though our grouping technique is designed
for the special case of too many classes, it is also applicable
to problems with fewer classes, to accommodate the need
for different levels of parallelism. It also works decently

sensAI

even in the case that the class number cannot be divided by
the grouping number. In reality, we can always ensure the
class difference between largest and smallest class-group to
be <= 1 (by splitting classes as evenly as possible), thus
the imbalance effect should be minimal, especially when
total number of classes is large.

3.3 Retraining
For binary classifiers, we impose a retraining process to
regain the possibly lost serving performance. For each
binary model, we form a new retraining dataset, which
consists of all the positive samples (i.e. images belong to
that class), and images from the rest of classes as negative
training samples. We also balance the positive and negative
samples by keeping the number of images from two groups
to be the same when loading images for each epoch of
retraining. Each binary classifier is then trained with binary
cross-entropy (BCE) loss on its own retraining dataset.

For grouped classifiers, the retraining process is roughly
the same, except now we have (m+ 1)-way classification
(instead of binary classification) for each grouped model,
with m positive and 1 negative classes probability heads.
Here we also balance the retraining dataset so that we draw
equal number of images from m+ 1 classes in each epoch
of retraining. Each grouped classifier is trained with the
conventional multi-way cross-entropy (CE) loss. Note that
cross-entropy loss also works perfectly even with imbal-
anced dataset, in which case the output produced by the
network still represents its estimated probabilities.

3.4 Combine results back to N-way predictions
After getting all the retrained binary models, we combine
their outputs together for the originalN -way inference tasks.
We simply select the maximum probability (e.g. 0.6 in
Fig. 2) of being positive across all binary classifiers’ out-
puts to determine the N -way classification result (e.g. “cat”
decision in Fig. 2).

In the case of grouped classifiers, instead of outputting a
single scalar (the probability of being a specific class), each
grouped classifier outputs a m+ 1 dimensional probability
vector that sums up to 1. The first m scalars correspond
to the probability of being each of the m classes, and the
last one refers to the probability of not belonging to the
classes in this group. Collecting the first m scalars from
all k grouped models, we have m × k = N probability
back again. We simply take the maximum among those N
probabilities as the predicted class.

4 EXPERIMENTS

4.1 Datasets and Models
We evaluate sensAI model serving performance mainly
using two standard types of CNN models, namely ResNet
(He et al., 2016) and VGGNet (Simonyan & Zisserman,
2015), on three different datasets: CIFAR-10, CIFAR-

0 2 4 6 8 10 12 14
Parameters per node (106)

80

82

84

86

88

90

92

94

Te
st

A
cc

ur
ac

y
(%

)

Baseline, 20.04M
APoZ pruning
Avg. pruning
Hybrid pruning

Figure 4. Pruning methods com-
parison: APoZ, Avg, hybrid
(VGG-19, CIFAR-10).

pl
an

e
ca

r
bi

rd ca
t

de
er

do
g

fro
g

ho
rs

e
sh

ip
tru

ck

planecarbirdcatdeerdogfroghorseshiptruck 0.30
0.45
0.60
0.75
0.90

Figure 5. Similarity among bi-
nary classifiers measured by
IoU on channels.

100 (Krizhevsky, 2009) and ImageNet-1K (Russakovsky
et al., 2015). We also verify sensAI’s effectiveness on
more efficient networks like MobileNet-V2 (Sandler et al.,
2018) and ShuffleNet-V2 (Ma et al., 2018). We report
model-size and FLOPs reduction, the actual time speed-up
when running in parallel, and the test accuracy performance
(Top-1 accuracy) change.

We use G3 instance (NVIDIA Tesla M60 GPU) on Ama-
zon Web Services (AWS) for all experiments. For each
binary/grouped classifier we have, we assign it on a single
GPU with no sharing among other workloads.

4.2 CIFAR-10 results
For CIFAR-10, we mainly evaluate two standard types of
CNNs: VGG-19 with batch normalization and ResNet-164,
which are different in both network type (VGG v.s. ResNet)
and model depth (19 v.s. 164). We also test sensAI im-
provements on two more efficient CNNs: MobileNet-V2
and ShuffleNet-V2 in Section 4.2.5. We re-run the training
process with standard hyper-parameter setting 1 (in total
164 epochs, learning rate starts with 0.1, decay by 0.1 at 81,
122 epochs), and get test accuracy of these baseline models:
92.85% for VGG-19, 94.79% for ResNet-164, 94.24% for
MobileNet-V2 and 93.46% for ShuffleNet-V2.

In this section, we first evaluate three popular channel-level
pruning metrics, namely APoZ, Avg, and our hybrid policy
as we discussed in Sec. 3.2.1. Since hybrid pruning gives
the best results, we adopt hybrid pruning policy for all the
following experiments on different datasets (e.g. CIFAR-
10/100). Second, with one-shot class-specific pruning and
retraining, we show the maximum model size reduction we
achieved for both VGG-19 and ResNet-164, which leads
to 2-6x speedup over 1-GPU baseline for single image in-
ference at no accuracy loss. Third, we further conduct per-
formance comparison between sensAI and baseline with
model parallelism using the same number of GPUs, where
sensAI achieves up to 18x latency reduction for per-image
serving. Fourth, we compare the test accuracy between train-
ing small binary classifiers with pre-defined structure (OVA)
and sensAI’s binary models distilled from pre-trained base
model. Fifth, we further demonstrate sensAI’s effective-

1Borrowed from multiple popular github repositories like
bearpaw/pytorch-classification and kuangliu/pytorch-cifar

sensAI

ness on more efficient neural networks like ShuffleNet-V2
and MobileNet-V2. Lastly, we conduct some statistical
analysis over our distilled binary classifiers.

4.2.1 Pruning policy comparison
Here we evaluate three popular structured (i.e. channel-
level) pruning metrics on feature-maps: APoZ (Hu et al.,
2017), Avg (Yu et al., 2018), and our hybrid policy, which
are described in Sec. 3.2.1. We compare the final inference
accuracy performance using these three mechanisms on
VGG-19 using CIFAR-10 dataset.

For implementation of our hybrid neuron pruning method,
as defined in Sec. 3.2.1 as Equation 1 and 2, we collect
neurons with higher percentage (Ψ(·) ≥ x) of featuremap
values less than threshold value θ1 and then combining with
average activation pruning. Therefore we have three hyper-
parameter to tune: ≥ x percentage of value less than θ1,
average activation threshold θ2. The thresholds are deter-
mined by a grid search on a separate validation set, which
are not layer-specific, but global in the network. The pruning
rate of each layer is thus determined by the thresholds.

In Fig. 4, hybrid pruning generally performs better than
either APoZ or Avg pruning: it reaches highest test accu-
racy when the size of distilled binary classifiers are similar
using different pruning techniques. Therefore, we adopt our
proposed hybrid pruning policy as the default class-specific
pruning metric for all the following sensAI experiments.

4.2.2 sensAI evaluation on VGG-19 and ResNet-164
We evaluate sensAI performance in three aspects: number
of parameters in each binary model, FLOPs cost, end-to-
end time saving for model inference. For retraining on
pruned binary classifiers over fully-trained baseline models,
we limit our retrain epochs to be 80, and borrow similar
learning rate decay methodology as illustrated before.

Fig. 6(a), 7(a), 8(a) depict the results of applying class
parallism on VGG-19. Surprisingly, with only one-shot
pruning and retraining, we can reduce number of parameters
by 20x (Fig. 6(a)), FLOPs by 24x (Fig. 7(a)) at no test
accuracy loss, which leads to 6x serving time reduction per
image (Fig. 8(a)).

Similar results are achieved on ResNet-164 which are shown
in Fig. 6(b), 7(b), and 8(b). Compared with base model,
each binary classifier in sensAI achieves model size reduc-
tion by 11x (Fig.6(b)), FLOPs reduction by 11x (Fig.7(b))
without test accuracy loss, which leads to 2x reduction of
serving latency for single image (Fig.8(b)). The less infer-
ence time saving for ResNet-164 model is mainly due to
the model depth is too large. Only reducing the width (i.e.
channels) has less effects on the end-to-end time saving,
since the depth of the model dominates the model inference
time. It is widely-believed that model pruning should not
reduce the model depth (Liu et al., 2017; Li et al., 2017; Liu

0 4 8 12 16 20
Parameters per node (106)

80

85

90

95

Te
st

A
cc

ur
ac

y
(%

)

baseline
20.04M
sensAI

(a) VGG-19

0.0 0.5 1.0 1.5
Parameters per node (106)

88

90

92

94

96

Te
st

A
cc

ur
ac

y
(%

)

baseline
1.71M
sensAI

(b) ResNet-164
Figure 6. Number of parameters v.s. test accuracy comparison of
VGG-19 and ResNet-164 on CIFAR10.

0.0 0.5 1.0 1.5 2.0
FLOPs per node (109)

80

85

90

95

Te
st

A
cc

ur
ac

y
(%

)

baseline
2.4e9
sensAI

(a) VGG-19

0.0 0.5 1.0 1.5
FLOPs per node (109)

88

90

92

94

96

Te
st

A
cc

ur
ac

y
(%

)

baseline
1.51e9
sensAI

(b) ResNet-164
Figure 7. FLOPs v.s. test accuracy comparison of VGG-19 and
ResNet-164 on CIFAR10.

0.2 0.4
Time per-image (ms)

80

85

90

95
Te

st
A

cc
ur

ac
y

(%
)

baseline
0.39ms
sensAI

(a) VGG-19

1.00 1.25 1.50
Time per-image (ms)

88

90

92

94

96

Te
st

A
cc

ur
ac

y
(%

)

baseline
1.67ms
sensAI

(b) ResNet-164
Figure 8. Per-image inference time v.s. test accuracy comparison
of VGG-19 and ResNet-164 on CIFAR10.

et al., 2019). With this in mind, reducing end-to-end model
serving time by 2x on ResNet-164 is still decent.

The intuition behind this high ratio of single-shot pruning is:
we simplify the inference task from 10-way classification to
1-way. Thus, for each binary model, the amount of inactive
neurons we can prune is much more than traditional, class-
agnostic pruning over original 10-way classification model.
Besides the one-shot, class-specific pruning method we
use, we can further shrink down our binary model size by
combining with class-agnostic pruning methods (Liu et al.,
2017; Han et al., 2015; 2016) for further iterative pruning.

Additionally, we achieve better test accuracy when main-
taining a little more neurons in each binary classifiers. On
VGG-19 in Fig.6(a), we get higher test accuracy when each
binary model size is in the range of 2M∼14M. For ResNet-
164 in Fig.6(b), better test accuracy can be achieved when
average binary model size is between 0.16M and 0.91M.

4.2.3 Model parallelism v.s. sensAI
As our main goal is achieving fast inference on single data
piece, data parallelism is not applicable. Therefore, we com-
pare per-image inference speed between model parallelism

sensAI

Model
Test Avg. per-GPU Per-image
acc. model size infer. time
(%) (106) (ms)

MP-baseline VGG-19 92.85 2.00 1.12
(10 GPUs) ResNet-164 94.79 0.17 2.33

sensAI VGG-19 92.86 1.01 0.06
ResNet-164 94.79 0.16 0.81

Table 1. Comparison between baseline with model parallelism
(MP) and sensAI using 10 GPUs.

and sensAI by using the same number of GPUs (10 GPUs).

As suggested by recent literature (Narayanan et al., 2019;
Huang et al., 2019) on model parallelism, we evenly split
both VGG-19 and ResNet-164 models over 10 GPUs to
balance work, and test the performance of single image
inference. The following baseline experiments with model
parallelism on CIFAR-100 and ImageNet-1K obey the same
rule. In Table 1, adopting model parallelism to baseline
model actually perform worse than single GPU baseline,
single image inference time is 0.73 ms longer on VGG-19
and 0.66 ms longer on ResNet-164 than using single GPU.
Thus, compared with baseline with model parallelism using
the same number of GPUs as sensAI, sensAI achieves
18x speedup on VGG-19 and ∼3x speedup on ResNet-164
for per-image serving time without test accuracy loss.

The reason for model parallelism’s bad performance on sin-
gle image serving is twofold: First, model parallelism splits
layers of weights across multiple GPUs, which leads to huge
communication overhead for transferring intermediate re-
sults (e.g. feature-maps) (Dean et al., 2012). Second, model
parallelism also under-utilizes computational resources on
GPUs, which is mainly due to the sequential dependency of
underlying neural networks that introduces more hard syn-
chronization barriers among GPUs holding different model
partitions (Lepikhin et al., 2021). For instance, in Fig. 1(b),
machine 1 and 2 cannot start computation until they com-
pletely receive outputs from machine 3 and 4. In contrast,
the binary classifiers of sensAI can independently process
the input data item without blocking each other.

4.2.4 OVA v.s. sensAI
One-Vs-All (OVA) reduction strategy has been studied for
decades (Galara et al., 2011; Beygelzimer et al., 2016; Di-
etterich & Bakiri, 1995). Since both sensAI and OVA de-
couple a multi-classification problem into a bunch of binary
classification problems, here we conduct a direct compari-
son between training multiple pre-defined small binary mod-
els (OVA) and pulling out binary models from pre-trained
base model (sensAI) on CIFAR-10 dataset.

For OVA, we directly train small CNNs like ResNet-20 from
scratch, each of which is responsible for binary classification
task on a single class in CIFAR-10 dataset. We also borrow
the same training recipe mentioned in Sec. 4.2. We use the
same per-class dataset as we used for sensAI binary model
retraining to train each ResNet-20 as OVA’s binary classifier,
and impose calibration among OVA binary classifiers to

Test Accuracy % Average binary
model size (106)

OVA 91.65 0.27

sensAI 94.79 0.16
94.90 0.24

Table 2. Comparison between OVA and sensAI with 10 GPUs.

obtain the possibly best serving accuracy. Then we use these
OVA binary classifiers in the same way as sensAI’s in-
parallel inference setting. For sensAI, we just directly use
two groups of binary classifiers pulling out from ResNet-
164 mentioned in Section 4.2.2, one group with smaller
average model size than OVA’s ResNet-20, the other group
with similar average model size as ResNet-20.

In Table 2, with similar binary model size, as sensAI
with average model size of 0.24M parameters and OVA’s
ResNet-20 with 0.27M parameters, our binary classifiers
pulling from ResNet-164 outperform OVA’s ResNet-20 bi-
nary classifiers by 3.25% on test accuracy. With sensAI
binary models (average size of 0.16M parameters) which
are smaller than OVA ones, sensAI still outperforms
OVA by ∼3% on test accuracy for CIFAR-10 dataset. The
conclusion here is: comparing with OVA’s training small
binary models with the same and pre-defined structure,
sensAI learns different binary model structures from a big
base model for different binary classification tasks, which
achieves better serving accuracy at less computational cost.

4.2.5 sensAI improvements on efficient CNNs
Above we evaluate sensAI on standard CNNs like VGG
and ResNet series. Here we explore the performance gain
that sensAI can achieve on efficient neural networks like
ShuffleNet-V2 (Ma et al., 2018) and MobileNet-V2 (Sandler
et al., 2018).

Since these efficient models are small in number of pa-
rameters and designed to be run on single device, we re-
port sensAI’s speed-up over single GPU baseline. As
shown in Table 3, sensAI achieves 5x model size reduction,
3.5x FLOPs reduction on MobileNet-V2, and 4x reduction
for both model size and FLOPs on ShuffleNet-V2, which
leads ∼2x time reduction for per-image inference on both
MobileNet-V2 and ShuffleNet-V2. It seems unfair to com-
pare sensAI using 10 GPUs whereas baseline models only
use single GPU. However, as Sec. 4.2.3 indicating that,
splitting small and efficient models with model parallelism
across multiple GPUs will definitely perform worse than
using single GPU for single image serving.

4.2.6 Binary models analysis
Here we conduct simple analysis over the best sets of binary
classifiers (i.e. smallest model sizes without test accuracy
loss) we get from VGG-19, ResNet-164, MobileNet-V2 and
ShuffleNet-V2 on CIFAR-10 dataset.

We first analyze the similarity of the pruned binary classi-
fiers, for VGG-19 on CIFAR-10. For each binary classifier,

sensAI

Model

Test Model FLOPs Per-image
acc. size per-GPU infer.
(%) per-GPU (109) time

(106) (ms)

Baseline MobileNet-V2 94.24 2.30 0.56 0.48
ShuffleNet-V2 93.46 1.26 0.27 0.23

sensAI MobileNet-V2 94.27 0.45 0.16 0.22
ShuffleNet-V2 93.50 0.31 0.07 0.12

Table 3. Comparison between efficient baseline model and sensAI.

we collect the index of its channels in the original base-
line model. The similarity of two architectures is measured
by intersection of unions (IoU) of the channel indices. In
Fig. 5, we visualize the similarity of pairs of classes in a
heatmap. Higher similarities are indicated by darker colors.
We observe that the cat and dog binary classifiers share most
channels among all pairs, which is intuitive since they are
similar to human and their features might be more correlated.
Similar correlation results are also found on other popular
models like ResNet-164, MobileNet-V2 and ShuffleNet-V2,
which are shown in Appendix B.

Second, we analyze model size variation in each group of
10 binary classifiers. We find that, the binary models usually
have similar number of parameters. For example, for VGG-
19, the binary models are all with∼1M parameters (variance
<0.1M), and ∼0.16M parameters (variance <0.02M) for
ResNet-164. Binary models getting from efficient CNNs
also have similar patterns, where all binary models are with
∼0.45M parameters (variance <0.05M) for MobileNet-V2,
and ∼0.31M parameters (variance <0.04M) for ShuffleNet-
V2. The intuition behind may because we evenly split the
multi-classification task among all the binary classifiers.
This decent feature guarantees our in-parallel inference can
finish roughly at the same time (i.e. no stragglers) among
the whole set of binary classifiers involved.

4.3 CIFAR-100 results
We discuss results for grouped classifiers on CIFAR-100
dataset. We evaluate two class-grouping methods: random
grouping and nearby grouping described in Sec. 3.2.2. We
test on two CNNs: VGG-19 and ResNet-110. We get test ac-
curacy of these two baseline models as 71.95% for VGG-19,
72.44% for ResNet-110. We measured model size, FLOPs,
and relative speed-ups of per-image inference time for these
two baseline models (as Baseline/MP-baseline in Table 4).

As discussed in Sec. 4.2.6, to achieve good load balancing
and also minimize end-to-end, in-parallel inference time,
each of our grouped model picks the same number of classes,
so that the grouped models may take roughly the same
amount of time in forward propagation during in-parallel
model serving. Therefore, we have two group size settings:
in 10-group setting, each grouped classifier is responsible
for model prediction of 10 classes. In 5-group case, each
grouped classifier is serving for 20 classes.

We directly adopt hybrid pruning policy and learning rate
decay settings during retraining the same as CIFAR-10 ex-

periments. For retraining on CIFAR-100, since the small
amount of training images per-class (500 images per-class)
is more likely to cause overfitting, we reduce the number
of retraining epochs to be 40, and collect the best set of
grouped classifiers during the retraining session.

4.3.1 sensAI speedup over 1-GPU baseline

As shown in Table 4, here we only list the minimum average
grouped model size we can get without losing too much test
accuracy. Our novel nearby grouping performs better than
random grouping regarding both test accuracy and reduction
of single-image serving time.

Random grouping: with 5 groups, we can achieve model
size reduction 4.6x/3.2x, FLOPs reduction 2.2x/2.6x, per-
image inference speed-up 2.17x/1.64x over single GPU
baseline on VGG-19/ResNet-110. For 10-group case, ran-
dom grouping can reduce model size by 9x/7x, FLOPs by
6x/5x, which lead to 3.25x/1.87x time reduction for per-
image inference on VGG-19/ResNet-110, separately.

Nearby grouping: in contrast, with 5 groups, compared
with 1-GPU baseline, our nearby grouping can achieve
reduction in model size by 6.6x/5.3x, FLOPs by 5x/4x,
per-image serving time by 2.44x/1.8x on VGG-19/ResNet-
110. For 10-group case with negligible test accuracy loss
(0.03% loss on ResNet-110), nearby grouping can achieve
12x/10x model size reduction, 11x/9x FLOPs reduction and
4.5x/2.06x single-image serving time reduction on VGG-
19/ResNet-110, respectively.

4.3.2 sensAI speedup over model-parallel baseline

We compare sensAI performance with model-parallel
baseline using same amount of GPUs. Since sensAI with
nearby grouping achieves better performance than random
grouping in most cases, we mainly focus on the comparison
results between model-parallel baseline (MP-baseline) and
sensAI using nearby grouping.

In Table 4, even though model size and FLOPs per-GPU are
significantly reduced, model-parallel baseline (MP-baseline)
generally performs worse than 1-GPU baseline on single
image inference time, which is due to intermediate results
transfer and sequential dependency of different model par-
titions as illustrated in Sec. 4.2.3. We report the results of
5-GPU and 10-GPU cases here.

5-GPU: compared with 5-GPU MP-baseline, sensAI with
5-group achieves similar model size and FLOPs reduction
on both VGG-19 and ResNet-110. However, these small
grouped models in sensAI can run concurrently without
blocking each other (whereas model parallelism does). sen-
sAI can obtain 2.44/0.41=5.95x and 1.8/0.78=2.3x speedup
for per-image serving on VGG-19/ResNet-110, separately.

10-GPU: similarly, compared with 10-GPU MP-baseline,
sensAI with 10-group using nearby-grouping achieves

sensAI

Type Model Grouping Test acc. Model size FLOPs Per-image infer. time speed-up
method (%) (106) (109) (over 1-GPU Baseline)

Baseline VGG-19 N/A 71.95 20.02 2.39 1x
(1 GPU) ResNet-110 N/A 72.44 1.66 1.3 1x

MP-baseline VGG-19 N/A 71.95 4.00 0.48 0.41x
(5 GPUs) ResNet-110 N/A 72.44 0.33 0.29 0.78x

MP-baseline VGG-19 N/A 71.95 2.00 0.24 0.33x
(10 GPUs) ResNet-110 N/A 72.44 0.17 0.14 0.76x

sensAI

VGG-19

Random 5-group 71.75 4.28 1.06 2.17x
Random 10-group 71.84 2.21 0.36 3.25x
Nearby 5-group 72.07 3.01 0.47 2.44x
Nearby 10-group 72.18 1.61 0.21 4.5x

ResNet-110

Random 5-group 72.43 0.513 0.501 1.64x
Random 10-group 72.14 0.24 0.233 1.87x
Nearby 5-group 72.52 0.31 0.298 1.8x
Nearby 10-group 72.41 0.167 0.143 2.06x

Table 4. Comparison between sensAI two grouping methods (random and nearby grouping) with 5-group (5 GPUs) 10-group (10 GPUs)
v.s. baselines of 1-GPU and model parallism (MP) using same amount of GPUs (5, 10 GPUs) on CIFAR-100.

slightly lower numbers in model size and FLOPs per-GPU
for VGG-19 and ResNet-110. For single image serving
time, sensAI with 10-group achieves 4.5/0.33=13.64x and
2.06/0.76=2.71x speedup compared with its model-parallel
counterparts on VGG-19 and ResNet-110, respectively.

4.4 ImageNet-1K results
Here we report experiment results of sensAI for VGG-19
and ResNet-50 on ImageNet-1K dataset. We use the same
hybrid pruning policy as in our CIFAR-10/100 experiments.
And we limit our retraining epochs to be 40, with learning
rate delay by 0.1 at 20, 30 epoch numbers. We use pre-
trained models as our baseline (shown as Baseline in Table
5). Since nearby grouping generally performs better than
random grouping, here we apply nearby grouping strategy
for 10 and 20 groups on ImageNet-1K dataset, each grouped
classifier is responsible for 100 and 50 classes prediction,
separately. And we report the best results (smallest model
size with negligible test accuracy loss) here as Table 5.

4.4.1 sensAI speedup over 1-GPU baseline
For VGG-19, as summarized in Table 5, using 10-group
classifiers in sensAI, comparing with single GPU baseline
model, we reduce each grouped model size by 9x at no loss
of test accuracy, which achieves FLOPs reduction by 6x and
reduce inference time by 3.4x. With 20-group classifiers
in sensAI, we can reduce each grouped model size by
∼17x, and achieves FLOPs reduction by 12x while reducing
inference time by∼6x(i.e. 5.87x) without test accuracy loss.

For ResNet-50, in Table 5, decoupling baseline model
into 10 grouped classifiers with sensAI, we reduce each
grouped model size by 9.4x, FLOPs by 8.4x and inference
time by 2.16x at no loss of test accuracy. With 20 grouped
classifiers, we reduce model size by 14x, FLOPs by 13x, per-
image inference time by 3.08x with moderate accuracy loss
of 0.07%. Compared with deep ResNets (i.e. ResNet-110
and ResNet-164) we used for CIFAR-10/100 datasets, we
show sensAI can indeed prune more neurons and achieve
faster per-image inference performance for slightly shal-

lower ResNet like ResNet-50.

One thing worth pointing out is, for ImageNet-1K dataset,
since the image resolution is much bigger compared with
32x32 CIFAR-10/100 datasets, sensAI can really achieve
per-image inference time reduction at serveral millisecond
level. For example, in 20-group with VGG-19 model setting,
sensAI can reduce 7.79 ms per-image inference latency
over 1 GPU baseline at no accuracy loss.

Another thing worth noting is, since each of our grouped
classifiers is retrained independently, given that ImageNet-
1K dataset takes longer time to train than CIFAR-10/100, we
can adopt data parallelism on each of our grouped classifier
to further boost up retraining speed. We further extend
our class parallelism to class-specific, concurrent model
training with zero communication as Appendix C.

We also note that the aggregated number of parameters
among the whole set of our grouped classifiers is larger than
the base model. However, our main goal is to reduce serving
latency on single image. And Class parallelism provides a
generic way to reduce serving latency on single input piece.
We can further reduce our grouped model size by adopting
some class-agnostic pruning methods (Liu et al., 2017; Han
et al., 2015; 2016) for further iterative pruning.

4.4.2 sensAI speedup over model-parallel baseline
We evenly split the base model onto the same number of
GPUs that sensAI uses. Below we report the comparison
between model-parallel baseline and our approach.

10-GPU: compared with 10-GPU MP-baseline in Table 5,
even though sensAI with 10-group maintains higher number
of model parameters and FLOPs per-GPU, sensAI achieves
7.5x (3.4/0.45) and 3.7x (2.16/0.58) latency reduction for
single image serving on VGG-19 and ResNet-50, separately.

20-GPU: Compared with baseline of model parallel using
20 GPUs, sensAI with 20-group achieves time reduction
by 13.5x (5.87/0.43) and 5.4x (3.08/0.57) for per-image
inference on VGG-19 and ResNet-50, respectively.

sensAI

Type Model Nearby Test acc. Model size FLOPs Per-image infer. time speed-up
Grouping (%) (106) (109) (over 1-GPU Baseline)

Baseline VGG-19 N/A 74.21 143.68 117.99 1x
(1 GPU) ResNet-50 N/A 76.13 25.56 24.63 1x

MP-baseline VGG-19 N/A 74.21 14.37 11.8 0.45x
(10 GPUs) ResNet-50 N/A 76.13 2.56 2.47 0.58x

MP-baseline VGG-19 N/A 74.21 7.2 5.9 0.43x
(20 GPUs) ResNet-50 N/A 76.13 1.28 1.24 0.57x

sensAI
VGG-19 10-group 74.26 15.34 18.45 3.4x

20-group 74.24 8.57 9.73 5.87x

ResNet-50 10-group 76.17 2.71 2.93 2.16x
20-group 76.06 1.83 1.89 3.08x

Table 5. Comparison between sensAI of 10-group (10 GPUs) and 20-group (20 GPUs) v.s. baselines of 1-GPU and model parallelism
(MP) with 10 GPUs and 20 GPUs on ImageNet-1K.

5 DISCUSSION

We discuss several issues we note regarding sensAI’s class
parallelism approach.

First, in class parallelism, we have a hard limitation: we
can only achieve scalability up to the number of classes we
have to classify. This may limit its usage in many cases.
For example, it cannot distribute a CIFAR-10 inference task
to over more than 10 machines (or GPUs). If the original
problem is a binary classification itself, our method is not
directly applicable.

Second, the aggregated number of parameters for the whole
set of our binary/grouped classifiers maybe even be larger
than the baseline model size (e.g. for CNNs on large dataset
like ImageNet-1K). However, our main goal is to reduce
inference latency (not FLOPs or model parameters) on sin-
gle data piece. Class parallelism is a simple and effective
approach for reducing inference latency on live data (i.e.
single input data item), whereas other parallelism methods
(e.g. data parallelism and model parallelism) cannot achieve.
As we only do one-shot, class-specific pruning to reduce
our binary/grouped model sizes, our model size reduction
already outperforms state-of-the-art class-agnostic channel
pruning techniques (Liu et al., 2019). We can potentially
further reduce our binary/grouped model sizes by incorporat-
ing quantization (NVIDIA, 2020) or class-agnostic pruning
methods (Liu et al., 2017; Han et al., 2015; 2016) for iter-
ative pruning (Liu et al., 2019). We leave this as a future
research direction.

Third, if the binary/grouped models have high variance in
number of parameters, the in-parallel inference time using
class parallelism will be determined by the binary/grouped
model with most computation. Given binary model anal-
ysis in Sec.4.2.6 and the grouped models we designed to
have even number of classes, we found that, our binary and
grouped models mostly have similar number of parameters.
This is possibly because we split original multi-classification
task evenly to our binary/grouped classifiers. This feature
of similar binary/grouped model sizes ensures that all the
binary/grouped classifiers involved during in-parallel infer-
ence can finish model serving at roughly the same time.

Fourth, regarding the baseline, in most cases, the best per-
formance of single image serving time is achieved when
using single GPU. This is because transmitting intermediate
results across GPUs can be expensive, and traditional model
parallelism introduces hard synchronization barriers in our
single-image serving scenario. As we focus on per-image
serving case, data parallelism (Goyal et al., 2017; Wang
et al., 2020) and pipeline parallelism (Huang et al., 2019;
Narayanan et al., 2019) are not applicable here to mitigate
serving latency. And our experimental results verify that,
even though baseline with model parallelism can reduce the
model size and FLOPs consumption on each device, the end-
to-end latency of single image inference is much higher than
using single GPU. The reason that sensAI can decouple
and distribute the baseline model to multiple GPUs while
achieving lower per-image inference latency is, we remove
all possible communication overheads and synchronization
barriers so that all our decoupled subnets can run in-parallel
without blocking each other.

6 CONCLUSION

In sensAI, we propose a novel in-parallel model serving
mechanism, called class parallelism, that enables fast model
serving on live data (i.e. single data item). Experiments on
CIFAR-10 dataset demonstrate its effectiveness: by pulling
out binary classifiers from base model using class-specific
pruning and retraining, sensAI achieves time reduction of
per-image model serving by 6x on VGG-19, and 2x among
ResNet-164, MobileNet-V2 and ShuffleNet-V2 over single
GPU baseline. Compared with model parallel baseline using
same amount of GPUs, sensAI achieves up to 18x time
reduction for single image model serving. Similar results
are achieved on CIFAR-100 and ImageNet-1K datasets with
our grouped classifiers.

ACKNOWLEDGEMENTS

Guanhua Wang and Ion Stoica are supported by NSF CISE
Expeditions Award CCF-1730628. This research is also
supported by gifts from Amazon Web Services, Ant Group,
CapitalOne, Ericsson, Facebook, Futurewei, Google, Intel,
Microsoft, Nvidia, Scotiabank, Splunk and VMware.

sensAI

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. Tensorflow: A system for
large-scale machine learning. In USENIX OSDI, 2016.

Anand, R., Mehrotra, K., Mohan, C. K., and Ranka, S. Effi-
cient classification for multiclass problems using modular
neural networks. IEEE Transactions on Neural Networks,
6(1):117–124, 1995.

Ba, J. and Caruana, R. Do deep nets really need to be deep?
In NeurIPS, 2014.

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Car-
doso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixao, T.,
Mutz, F., Veronese, L., Oliveira-Santos, T., and Souza, A.
F. D. Self-driving cars: A survey. In arXiv:1901.04407,
2019.

Beygelzimer, A., Langford, J., and Zadrozny, B. Weighted
one-against-all. In AAAI, 2005.

Beygelzimer, A., III, H. D., Langford, J., and Mineiro, P.
Learning reductions that really work. Proceedings of the
IEEE, 104(1):136–147, 2016.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M.,
Xiao, T., Xu, B., Zhang, C., and Zhang, Z. MXNet:
A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. arXiv preprint
arXiv:1512.01274, 2015.

Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M.,
Le, Q. V., Mao, M. Z., Ranzato, M., Senior, A., Tucker,
P., Yang, K., and Ng, A. Y. Large scale distributed deep
networks. In NeurIPS, 2012.

Deng, H., Stathopoulos, G., and Suen, C. Y. Applying error-
correcting output coding to enhance convolutional neural
network for target detection and pattern recognition. In
International Conference on Pattern Recognition, 2010.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In CVPR, 2009.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fer-
gus, R. Exploiting linear structure within convolutional
networks for efficient evaluation. In NeurIPS, 2014.

Dietterich, T. G. and Bakiri, G. Solving multiclass learning
problems via error-correcting output codes. Journal of
Artificial Intelligence Research, 2:263–286, 1995.

Galara, M., Fernandez, A., Barrenechea, E., Bustince, H.,
and Herrera, F. An overview of ensemble methods for
binary classifiers in multi-class problems: Experimental
study on one-vs-one and one-vs-all schemes. Pattern
Recognition, 44:1761–1776, 2011.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich
feature hierarchies for accurate object detection and se-
mantic segmentation. In CVPR, 2014.

Goyal, P., Dollar, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, Large Minibatch SGD: Training ImageNet
in 1 Hour. arXiv preprint arXiv:1706.02677, 2017.

Gu, J., Chowdhury, M., Shin, K. G., Zhu, Y., Jeon, M., Qian,
J., Liu, H., and Guo, C. Tiresias: A gpu cluster manager
for distributed deep learning. In USENIX NSDI, 2019.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
NeurIPS, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In ICLR, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Horwitz, J. Goldman: AI tools have potential in fi-
nance beyond smart stock trading. https://bit.ly/
3ckkX3A, 2020.

Hu, H., Peng, R., Tai, Y.-W., and Tang, C.-K. Network
Trimming: A Data-Driven Neuron Pruning Approach
towards Efficient Deep Architectures . arXiv preprint
arXiv:1607.03250, 2017.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation net-
works. In CVPR, 2018.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X.,
Chen, D., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,
Z. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. In NeurIPS, 2019.

Jayarajan, A., Wei, J., Gibson, G., Fedorova, A., and Pekhi-
menko, G. Priority-based parameter propagation for dis-
tributed dnn training. In MLSys, 2019.

Jeaugey, S. Optimized inter-GPU collective operations with
NCCL 2. https://developer.nvidia.com/
nccl, 2017.

Jennings, D. G. Goldman Sachs Gambles Big in AI.
https://bit.ly/3jNLkCj, 2018.

https://bit.ly/3ckkX3A
https://bit.ly/3ckkX3A
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://bit.ly/3jNLkCj

sensAI

Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model
parallelism for deep neural networks. In MLSys, 2019.

Kim, J. K., Ho, Q., Lee, S., Zheng, X., Dai, W., Gibson,
G. A., and Xing, E. P. Strads: A distributed framework
for scheduled model parallel machine learning. In ACM
EuroSys, 2016.

Kong, E. B. and Dietterich, T. G. Error-correcting output
coding corrects bias and variance. In ICML, 1995.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, University of Toronto,
2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NeurIPS, 2012.

Lee, S., Kim, J. K., Zheng, X., Ho, Q., Gibson, G. A.,
and Xing, E. P. On model parallelization and scheduling
strategies for distributed machine learning. In NeurIPS,
2014.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. In ICLR, 2021.

Levy-Kramer, J. and Klaber, M. k-means-constrained
0.4.3. https://pypi.org/project/
k-means-constrained/, 2020.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
Pruning filters for efficient convnets. In ICLR, 2017.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-
tzur, J., Hardt, M., Recht, B., and Talwalkar, A. A system
for massively parallel hyperparameter tuning. In MLSys,
2020.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In USENIX OSDI 2014, 2014.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and
Dollar, P. Microsoft COCO: Common Objects in Context.
arXiv preprint arXiv:1405.0312, 2015.

Linderman, G. C. and Steinerberge, S. Clustering with t-sne,
provably. SIAM Journal on Mathematics of Data Science,
1, 2019.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang,
C. Learning efficient convolutional networks through
network slimming. In ICCV, 2017.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. In ICLR, 2019.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. Shufflenet v2:
Practical guidelines for efficient cnn architecture design.
In CVPR, 2018.

MacQueen, J. B. Some methods for classification and anal-
ysis of multivariate observations. In Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and Prob-
ability, volume 1, pp. 281–297. University of California
Press, 1967.

Malinen, M. I. and Franti, P. Balanced k-means for clus-
tering. In Proceedings of the Joint IAPR International
Workshop on Structural, Syntactic, and Statistical Pattern
Recognition, 2014.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: Generalized pipeline parallelism
for dnn training. In ACM SOSP, 2019.

NVIDIA. TensorRT. https://developer.nvidia.
com/tensorrt, 2020.

Or, A., Zhang, H., and Freedman, M. J. Resource elasticity
in distributed deep learning. In MLSys, 2020.

Paden, B., Cap, M., Yong, S. Z., Yershov, D., and Frazzoli,
E. A survey of motion planning and control techniques
for self-driving urban vehicles. IEEE Transactions on
Intelligent Vehicles, 1(1):33–55, 2016.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. In NeurIPS,
2017.

Peng, Y., Zhu, Y., Chen, Y., Bao, Y., Yi, B., Lan, C., Wu,
C., and Guo, C. A generic communication scheduler
for distributed dnn training acceleration. In ACM SOSP,
2019.

Porzecanski, K. JPMorgan Commits Hedge Fund to AI
in Technology Arms Race. https://bloom.bg/
2P1JUpF, 2019.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized Evolution for Image Classifier Architecture Search.
In AAAI, 2019.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. In NeurIPS, 2015.

Rifkin, R. and Klautau, A. In defense of one-vs-all clas-
sification. Journal of Machine Learning Research, 5:
101–141, 2004.

https://pypi.org/project/k-means-constrained/
https://pypi.org/project/k-means-constrained/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://bloom.bg/2P1JUpF
https://bloom.bg/2P1JUpF

sensAI

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge. International Journal of
Computer Vision, 2015.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In ICLR,
2015.

van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of Machine Learning Research, 9, 2008.

Wang, G., Venkataraman, S., Phanishayee, A., Thelin, J.,
Devanur, N., and Stoica, I. Blink: Fast and Generic
Collectives for Distributed ML. In MLSys, 2020.

Yang, W. pytorch-classification on CIFAR10/100
and ImageNet. https://github.com/bearpaw/
pytorch-classification, 2017.

Yu, F., Qin, Z., and Chen, X. Distilling Critical Paths in
Convolutional Neural Networks. In NeurIPS CDNNRIA
workshop, 2018.

Yu, P. and Chowdhuryo, M. Salus: Fine-grained gpu sharing
primitives for deep learning applications. In MLSys, 2020.

Zhou, B., Sun, Y., Bau, D., and Torralba, A. Revisiting the
importance of individual units in cnns via ablation. arXiv
preprint arXiv:1806.02891, 2018.

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification

sensAI

A K-MEANS CLUSTERING OVER T-SNE
PROJECTED SPACE

After t-SNE (van der Maaten & Hinton, 2008) pre-
processing on training images, we conduct k-means cluster-
ing (MacQueen, 1967) over t-SNE’s output feature repre-
sentations (FR), in order to get proper group arrangement
for each class.

As summarized in Algorithm 1, we first calculate all the
mean feature-representation per-class (Ac) over t-SNE out-
put (Xc). Then we feed these mean FR per-class as the
input data points for k-means clustering algorithm.

Algorithm 1 K-means clustering over t-SNE output
Input : total number of classes: N , number of groups: k,

t-SNE output: {xci} ∈ Xc where c={0,1,..N-1}
for m = 0 to N-1 do

am ←
|Xm|−1∑
n=0

xmn / | Xm | ; // Avg FR per class

end
Data: {ac} ∈ Ac for c={0,1,..N-1}, Minsize ← bN/kc,

Maxsize ← dN/ke
if Minsize == Maxsize then

kmeans-balanced(Ac, N/k)
else

kmeans-constrained(Ac,Minsize,Maxsize)
end

Here we may have two cases, if the number of classesN can
be divided by the number of groups k, we can directly use
kmeans-balanced() algorithm (Malinen & Franti, 2014). If
the number of class is not divisible by the number of groups,
we adopt another variation of k-means clustering algorithm
called kmeans-constrained() (Levy-Kramer & Klaber, 2020)
by passing-in Minsize,Maxsize into the function, where
(Maxsize −Minsize) ≤ 1 as we split the classes as evenly
as possible (Section 3.2.2).

B IOU SIMILARITY AMONG BINARY
CLASSIFIERS ON CIFAR-10

We measure the Intersection over Union (IoU) similarity
comparison among the whole set of binary classifiers pulled
from different models as ResNet-164, MobileNet-V2 and
ShuffleNet-V2 on CIFAR-10 dataset.

Figure 9 depicts the IoU similarity for all three different
kinds of models as ResNet-164 (Figure 9(a)), ShuffleNet-
V2 (Figure 9(b)) and MobileNet-V2 (Figure 9(c)). They
all show that the relatvent bianry classifiers we get from the
original base model share high IoU similarity.

In Figure 9(a), the binary classifiers pulled from ResNet-
164 indicates that, not only cat and dog binary classifiers

pl
an

e
ca

r
bi

rd ca
t

de
er

do
g

fro
g

ho
rs

e
sh

ip
tru

ck

plane
car

bird
cat

deer
dog
frog

horse
ship

truck
0.30

0.45

0.60

0.75

0.90

(a) ResNet-164

pl
an

e
ca

r
bi

rd ca
t

de
er

do
g

fro
g

ho
rs

e
sh

ip
tru

ck

plane
car

bird
cat

deer
dog
frog

horse
ship

truck
0.30

0.45

0.60

0.75

0.90

(b) ShuffleNet-V2
pl

an
e

ca
r

bi
rd ca

t
de

er
do

g
fro

g
ho

rs
e

sh
ip

tru
ck

plane
car

bird
cat

deer
dog
frog

horse
ship

truck
0.45

0.60

0.75

0.90

(c) MobileNet-V2

Figure 9. IoU similarity comparison of ResNet-164, ShuffleNet-
V2 and MobileNet-V2 on CIFAR-10.

share high similarity, but also car and truck. Both pairs are
intuitive since these two pairs also look similar from human
perspective. Compared with ResNet-164, the binary classi-
fiers collected from ShuffleNet-V2 in Figure 9(b) generally
share less neurons. However, the cat-dog pair still share the
highest similarity among the whole set of its binary classi-
fiers. For binary classifiers getting from MobileNet-V2, in
Figure 9(c), besides high similarity of cat-dog and car-truck
pairs, car and ship may also be highly correlated. This is

sensAI

possibly due to the fact that they are all chunky and share
similar cube-like shape from certain angles.

C MODEL TRAINING VIA CLASS
PARALLELISM

C.1 Method

Training binary/grouped model in parallel is slightly differ-
ent from class-parallel inference. Since we do not have a
pre-trained base model, we need to first train the original
N -way model for a certain number of epochs to allow the
base model to learn the feature representations from the
training data. Only based on this “half-baked” model we
could distill subnets for different classes.

On this half-baked model, we conduct the same process
to collect feature-maps from each neuron (i.e. channel) by
passing per-class/per-group images as input. Then for each
class or class group, based on neuron activation statistics,
we use activation-based pruning metrics to prune the base
model and get our binary/grouped ones. We then distribute
each binary/grouped model onto a single GPU and train
these subnets in parallel using the class-specific dataset we
generated from the original training dataset. Once all the
subnets training are done, we use the same procedure to
combine these models’ output for the original multi-way
inference.

Note that in this class-parallel training process, the half-
baked model is only trained using N -way full dataset for
a small number of epochs, and for the rest of the training
epochs, we employ in-parallel binary/grouped model train-
ing with zero communication needed. For example, for
training on the CIFAR-10 dataset, the baseline models are
typically trained for ∼164 epochs with proper learning rate
decay recipes (Yang, 2017). We empirically train the half-
baked base model for only 20 epochs, from which we distill
our binary models. And the rest 144 epochs are trained with
our class parallelism (i.e., each binary or grouped classifier
is trained on one GPU concurrently at no communication
cost). Since each binary/grouped classifier has much less
computation consumption than the base model, we still
achieve training speedup without model synchronization via
class parallelism. After finishing training binary/grouped
classifiers in parallel, we can use the same method to com-
bine all the binary/grouped classifiers results for the original
N -way classification results.

C.2 CIFAR-10 Evaluation

We evaluate in-parallel training via class parallelism using
VGG-19 and ResNet-164 on CIFAR-10 dataset. For pulling
out binary models from a half-baked 10-way model, we first
conduct regular training of baseline 10-way model from

scratch on full dataset for 20 epochs. Given that model
converges fastest during the first tens of epochs, we collect
the per-class feature-maps of each neuron over this half-
baked model and use these feature-maps statistics for hybrid
pruning to get our binary models.

Note that normally for training either VGG-19 or ResNet-
164 to reach a decent test accuracy, it takes around 164
epochs (Yang, 2017). Since we train the full model for 20
epochs at first, there are still 164-20 = 144 epochs of training
budget remaining. We measure per-iteration training time
on base model and maximum of per-iteration training time
from our binary models. Since first 20 epochs are the same
for both sensAI and baseline model training, we report the
total training time after 20 epochs to make a direct compari-
son of training speed between sensAI and baseline single
GPU training.

We use 64 as mini-batch size for training. For sensAI ex-
periments, without losing inference accuracy, we use binary
models with ∼1M parameters for VGG-19, and ∼0.16M
size binary models for ResNet-164. After 20 epochs of
baseline model pre-training, we retrain the pruned binary
models for the rest 144 epochs. Total training time reduction
on VGG-19 is 11x, which is over linear scalibility. The
main reason for this is we reduce the model size to 1/20. It
saves computation time in both forward and backward prop-
agation, which leads to reduction in per-iteration time. On
ResNet-164, we reduce training time by 3x. As discussed in
Section 4.2.2, the model depth and skip layer connections
are the dominant factors for its long training time.

We also note this may not be a fair comparison since
sensAI uses 10 GPUs whereas baseline only uses 1 GPU.
The main point is, we can incorporate sensAI to further
boost up the training speed in data parallelism. More specif-
ically, for each model replica involved in original data paral-
lel training, we can further distribute it to multiple GPUs for
concurrent, zero-communication class parallelism training.

After training, we also evaluate the number of parameters,
FLOPs, and inference time during our class-parallel model
serving. In general, comparing with binary model getting
from fully-trained base-model, the binary models pulling
out from half-baked model have lower top-1 test accuracy
(decrease in the the range from 0.04% to 0.38%). Addition-
ally, the size of binary models pulling out from half-baked
base model is not evenly distributed, some of the binary
models maybe 1.2x∼2x the size of some other smaller bi-
nary models. It may due to the fact that the base model is
not fully trained. Thus the half-baked model generates more
noisy pruning signals such that we may only be able to get
less efficient binary models. However, even in the case that
some binary models are 1.2x∼2x times larger than others,
our end-to-end in parallel inference still has 2∼5x speed up
over the baseline of either single GPU or model parallelism.

sensAI

The key reason is the binary models are already very tiny,
and double the size does not make much difference on its
end-to-end forward propagation time for live data inference.

D CODE REPOSITORY

sensAI is an open-source project. The corresponding
GitHub repository link is here: https://github.com/
GuanhuaWang/sensAI

Since our approach is quite general and should be able to
apply to other domains like Reinforcement Learning (RL),
Natural Language Processing (NLP) models, we are willing
to help if people need to “customize” it with their own input
and model (Support team sensaiworld.slack.com
or Email guanhua@cs.berkeley.edu).

We are now working on extending our ideas to semantic
segmentation tasks in computer vision, control systems on
drones with RL models, etc. We also explore adding fault
tolerance feature on top of our approach and published a
short paper here: https://bit.ly/3e2tDOO

Last, we would like to thank all our main contributors at
UC Berkeley: Kenan Jiang, Kehan Wang, Jichan Chung,
Fangyu Wu, Balaji Veeramani, Yaoqing Yang, Adarsh Kar-
nati, Zihao Fan, Hank O’Brien, Yingxin Kang, Sahil Rao,
for their efforts to this code base and help with debugging on
AWS EC2 performance anomalies. We are also indebted to
Kannan Ramchandran, Fisher Yu (ETH), Zhewei Yao, Gur-
Eyal Sela, Vipul Gupta, Dequan Wang for their insightful
comments on our previous drafts of the paper.

https://github.com/GuanhuaWang/sensAI
https://github.com/GuanhuaWang/sensAI
sensaiworld.slack.com
guanhua@cs.berkeley.edu
https://bit.ly/3e2tDOO

