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ABSTRACT
The rapid demand for memory and computational resources by the emerging complex applications requires
multi-core parallel systems capable to scale the execution of these applications. In this paper, we propose a
distributed graph-theoretic framework for automatic parallelization in multi-core systems, where the goal is
to minimize the data communication while accounting for intrinsic functional interdependence and balancing
the workloads among cores to improve the overall performance. Specifically, we design a general and flexible
greedy-based vertex cut framework for partitioning LLVM IR graphs into clusters while taking into consideration
the data communication and workload balance among clusters. Then, we map the clusters generated by the
vertex cut algorithms onto a non-uniform memory access multi-core platform. Experimental results demonstrate
that our proposed WB-Libra algorithm provides performance improvements of 1.56x and 1.86x over existing
state-of-the-art approaches for 8 and 1024 clusters running on a multi-core platform, respectively.

1 INTRODUCTION

The massive and growing number of complex machine learn-
ing and big data analytics applications (Chen & Zhang,
2014) require highly efficient and scalable multicore plat-
forms. Sequential programs running on single-core systems
fail to provide the necessary performance. However, the
parallel execution in multicores is not a cure-all solution
because it can experience performance degradation due to
load imbalance, synchronization overhead, and resource
sharing contention. The parallel execution performance is
determined by the worst execution time among spawned
threads. Therefore, load imbalance can severely impact the
overall performance. On the other hand, threads compete for
the underlying shared hardware resources, which increases
synchronization overhead if not properly handled.

Therefore, it is crucial to study how to optimize the par-
allel execution of applications in multi-core systems. The
recent related work has focused on fine-grained parallelism
and various task-to-core mapping strategies for minimiz-
ing the execution overhead (e.g., run-time, communication
cost) on multi-core systems. For example, (Hendrickson
& Leland, 1995a) proposed graph partitioning algorithms
based on spectral graph theory to partition coarse-grained
dataflow graphs into parallel clusters for mapping large prob-
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lems onto different nodes while balancing the computational
loads. (Devine et al., 2006) develops hypergraph partition-
ing algorithms to better model communication requirements
and represent asymmetric problems to divide computations
into clusters. Other related research (Murray et al., 2013; Yu
et al., 2008; Murray et al., 2011) designed various systems
for general-purpose distributed data-parallel computing.

Despite the large number of works in this area (Hendrick-
son & Kolda, 2000; Hendrickson & Leland, 1995a; Ver-
belen et al., 2013; Hendrickson & Leland, 1995b), very
few of them have considered instruction-level fine-grained
parallelism, which offers novel analytical opportunities for
discovering the optimal degree of parallelization and min-
imizing data communication in multi-core platforms. In
this paper, we explore the instruction-level parallelism using
advanced graph partitioning techniques on the low level
virtual machine (LLVM) intermediate representation (IR)
(Lattner & Adve, 2004) graphs and cluster-to-core mapping
for optimizing the parallel execution of applications on mul-
ticores. The recent work (Xiao et al., 2019; 2017) studies a
similar problem and proposed an edge-cut approach via a
community-detection-inspired optimization framework to
partition dynamic dependency graphs and automatically par-
allelize the execution of applications while minimizing the
inter-core traffic overhead. Although this work achieved bet-
ter performance in the multi-core parallelism optimization
compared to other baseline methods (e.g., thread-based),
the graph partition approach in (Xiao et al., 2017) does
not consider some important structural properties of the
LLVM IR graphs, such as the power-law degree distribution.
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Figure 1: Overview of the Proposed Framework. We first pass programs into the structure and resource analyzer to construct LLVM graphs
that capture spatial and temporal data communication. Next, we propose a vertex-cut based graph partitioning framework for LLVM
graphs to obtain balanced clusters with minimized inter-cluster data communication. Finally, we schedule clusters onto a multi-core
non-uniform memory access (NUMA) platform.

This may lead to less-than-ideal graph partitions identified
by the optimization model. In this paper, we consider the
power-law degree distribution when designing a graph parti-
tion framework for LLVM graphs, and propose vertex-cut
strategies that partition graphs for better load balancing and
parallelism in multi-core systems.

Generally, there are three major challenges in designing
a vertex cut framework for LLVM IR graphs: (1) How to
formulate the goal of reducing data communication and op-
timal balanced workloads among multiple cores into the
vertex cut graph partitioning problem? (2) How to incorpo-
rate edge weights into the vertex cut optimization problem
(though most of the existing vertex cut methods are designed
for unweighted graphs)? However, the LLVM IR graphs
are naturally weighted graphs, where vertices and edges rep-
resent instructions and dynamic data dependencies among
the instructions, respectively. The edge weights encode the
estimated execution time for memory operations, which are
crucial for measuring the expected workloads for executing
instructions. (3) How to map the graph partitions (i.e., clus-
ters) generated by the vertex-cut approach to the system’s
processors at run-time.

Contributions To address these challenges, we propose
a general and flexible distributed graph-theoretic (ver-
tex cut) framework of LLVM IR graphs for optimal
load balancing and parallel execution of applications
on multi-core systems as shown in Fig. 1. The proposed
framework has an advantage in incorporating a power-law
degree distribution into graph partitioning and can achieve
extremely balanced partitions. Therefore, it is an ideal
framework for balanced workloads based on graph partition-
ing. More specifically, we introduce and formalize a new
problem, called the weight-balanced p-way vertex cut, by
incorporating edge weights into the optimization of vertex
cut-based graph partitioning for load balancing. In addition,
we propose novel greedy algorithms for solving this prob-
lem, and map the graph clusters to multi-core architectures.
Our contributions can be summarized as follows:

• We introduce a vertex cut-based framework for par-
titioning LLVM graphs, which reduces data commu-
nication and achieves optimally balanced workloads
amongst a set of cores.

Table 1: Summary of Notations
G Input LLVM graph
V The set of vertices in a graph G
E The set of edges in a graph G
W The weight matrix for graph G
M(e) The set of clusters that contain edge e
A(v) The set of clusters that contain vertex v
we The weight of edge e
α The power parameter for the power-law graphs
λ The edge weight imbalance factor

• We model each application as a graph by applying
static and dynamic compiler analysis to identify com-
putations and dependencies.

• We prove that the formulated optimization problem
obeys a submodular property enabling us to design
a greedy algorithm for the Weight-Balanced p-way
vertex cut problem with guaranteed optimality.

2 NOTATION & PRELIMINARIES

In this section, we introduce notations and provide back-
ground for some fundamental concepts used throughout this
paper. See Table 1 for a summary of notations.

Power-law Graphs Let G = (V,E) denote a graph,
where V is the set of vertices and E ⊆ V × V is the set
of edges in G. The graph G is a power-law graph if its de-
gree distribution obeys a power law (Adamic & Huberman,
2002):

P(d) ∝ d−α, (1)

where P(d) is the probability that a vertex has a degree
d and α is a positive constant exponent. The power-law
degree distribution means that most vertices in the graph
have few neighbors while very few vertices have a large
number of neighbors. The exponent α controls the ”skew-
ness” of the vertex degree distribution, where a higher α
implies a lower ratio of edges to vertices. Many real-world
graphs exhibit power-law degree distributions (e.g., social
networks). The LLVM graphs that we aim to analyze in
this paper are also power-law graphs and will be introduced
in Sections 3 and 4. Some examples of LLVM graphs
are shown in Fig. 3. The skewed degree distributions in
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(a) Sample Graph (b) Edge-Cut Strategy 1

(c) Edge-Cut Strategy 2 (d) Vertex-Cut Strategy
Figure 2: Illustrative Example of Edge Cut vs. Vertex Cut

power-law graphs challenge graph partitioning (Gonzalez
et al., 2012), especially for LLVM graphs with a goal of
balanced clusters and minimized data communication in
parallel computing.

Edge-Cut Given a graph G = (V,E), an edge-cut on
G is a partition of V into two subsets S and T by cutting
some edges in E, which results in two clusters with a set
of inter-cluster edges (u, v) ∈ E|u ∈ S, v ∈ T . Examples
of edge-cut based graph partitioning problems include the
max-flow min-cut problem (Dantzig & Fulkerson, 2003) in
flow graphs and community detection in social networks
(Bedi & Sharma, 2016). In parallel computing, calculations
can be considered as graphs where nodes represent a series
of computations and edges represent data dependencies.
Edge-cut based methods have also been studied in this area
for partitioning graphs into interconnected clusters to be
mapped onto parallel computers (Hendrickson & Kolda,
2000; Hendrickson & Leland, 1995a; Verbelen et al., 2013).
In this paper, we will also discuss the state-of-the-art edge-
cut based methods and use them as baselines for the optimal
parallelism and load balancing in multi-core systems.

Vertex-Cut A vertex-cut on G represents a partition of
E into two subsets S and T by cutting some vertices in
V . Whenever a vertex is cut, this vertex will be replicated,
and its replica along with a subset of adjacent edges are
placed into a different cluster. Instead of having inter-cluster
edges like an edge-cut does, vertex-cut partitions only have
an inter-cluster connection between each vertex that has
been cut and its replicas. Due to these characteristics, a
vertex-cut strategy can offer more optimal solutions for
graph partitioning tasks compared to an edge-cut strategy.

Fig. 2 illustrates the difference between edge-cut and vertex-
cut on a simple graph partitioning scenario, with the goal
of minimizing inter-cluster communication while balancing
the workloads (i.e., the number of edges) among clusters.
Since the vertex A in the graph has a high degree while the
other vertices have lower degrees, it is challenging for edge-
cut approaches to deal with the edges associated with A in
order to achieve low inter-cluster communication (i.e., cross-
cluster edges) and a good balance between clusters. Fig. 2(b)
shows an edge-cut strategy with low inter-cluster commu-
nication but a high imbalance between clusters, while the
strategy in Fig. 2(c) achieves a good balance but with more
inter-cluster communication cost. On the other hand, the
vertex-cut strategy in Fig. 2(d) perfectly addresses the issues
by cutting the vertex A, where the original A is assigned
to the cluster on the left, and a replica of A is assigned to
the cluster on the right. The connection between A and its
replica is the only communication cost between the two clus-
ters, and the two clusters are well balanced. These examples
demonstrate the advantage of vertex-cuts over edge-cuts on
a graph with skewed node degrees, and this motivates us to
propose a vertex-cut based graph partitioning framework on
power-law LLVM graphs to discover the optimal execution
and minimal data communication.

3 LLVM GRAPH CONSTRUCTION

We consider each application as an LLVM graph generated
from a dynamic trace. The dataflow representation of LLVM
graphs requires the advanced graph partitioning algorithms
discussed later to find balanced clusters in parallel comput-
ing. In this section, we discuss the workflow of LLVM graph
construction in three steps: (1) static IR generation via the
LLVM front-end from an input program; (2) dynamic IR
generation from static IR combined with instrumentation;
(3) LLVM graph construction via dependency analysis.

Definition 3.1. LetG = (V,E,W ) denote an LLVM graph,
where each node v ∈ V represents an LLVM IR instruction,
N = |V | is the number of nodes, each edge e = (u, v) ∈ E
represents the data dependency among two nodes, and the
corresponding edge weight wuv ∈W characterizes the data
dependency between node u and node v to guarantee the
strict program order.

The LLVM graph in Definition 3.1 captures the spatial and
temporal data communication, since the weight wuv mea-
sures the amount of time required to transfer data from node
u to node v during memory operations. Therefore, we could
measure the cost of data communication, which facilitates
us to propose an optimization model to partition the LLVM
graph into clusters while taking into account data transfer
among clusters.
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3.1 Static IR Generation

Instruction set architecture (ISA) dependent traces include
different characteristics and constraints for a specific ISA,
which cannot satisfy the fast-growing hardware specializa-
tion and ever-expanding workloads. Therefore, in parallel
computing, in order to have well-balanced workloads with
non-trivial properties and understand the ISA-independent
micro-structures, we first compile high-level programs into
static LLVM IR. LLVM is a compiler engine that makes pro-
gram analysis lifelong and transparent by introducing IR as
a common model for analysis, transformation, and synthesis
(Lattner & Adve, 2004). IR is an intermediate representa-
tion between high-level instructions such as Python/C and
low-level assembly. It ignores the low-level hardware details
while preserving the dataflow structure of programs.

3.2 Dynamic Trace Generation

Once the static IR code is generated, we instrument the code
to obtain information such as basic blocks and memory time.
Once static IR is instrumented, we use the LLVM back-
end to execute it and collect the execution order of basic
blocks and the amount of time for each memory operation.
Combined with the hash table, which can be indexed from
the execution order of basic blocks, we obtain dynamic IR
trace. See Appendices A.2 for an example.

3.3 LLVM Graph Construction

The dynamic IR trace captures the dataflow nature of high-
level programs. In order to understand the hidden commu-
nication structure of the trace and processes that can be
potentially be processed in parallel, we construct the LLVM
graph by analyzing the data and memory alias dependen-
cies. Data dependency analysis identifies source registers
and destination registers for each instruction and checks if
source registers of the current instruction match with desti-
nation registers of the prior ones. Alias analysis is used to
determine if two pointers used in-memory operations have
the same address. See Appendices A.3 for an example.

4 A GRAPH-THEORETIC FRAMEWORK

In this section, we introduce our vertex cut framework for
partitioning LLVM graphs to optimize the parallel execution
of applications in multi-core systems.

By investigating the degree distribution of the LLVM graphs
that we construct in Section 3 for some applications, we ob-
serve that these LLVM graphs are all power-law graphs,
such as the examples shown in Fig. 3 for the Dijkstra al-
gorithm and the fast Fourier transform (FFT) algorithm.
The skewed node degree distribution makes the graph parti-
tioning a challenging task on these power-law graphs. As

(a) Dijkstra (b) FFT
Figure 3: Examples of LLVM Graphs

discussed in Section 2, vertex-cut has some advantages over
edge-cut on graphs with skewed node degree distributions.
Existing works in graph partitioning for distributed graph
computing have also shown that vertex-cut methods can
achieve better performance in terms of data communication
and balance among the partitions than edge-cut methods
for power-law graphs (Gonzalez et al., 2012; Xie et al.,
2014). In (Gonzalez et al., 2012), a vertex-cut approach
called PowerGraph is proposed for solving a balanced p-
way vertex-cut problem, where the objective is to minimize
the average number of vertex replicas while keeping the
number of edges balanced among different clusters, so as to
minimize the data communication among different clusters
while balancing their workloads. In (Xie et al., 2014), a
degree-based vertex-cut method called Libra is proposed,
which has shown better performance than PowerGraph for
the balanced p-way vertex-cut task.

Although these existing vertex-cut methods have been
shown effective in graph partitioning for distributed graph
computing, they are designed for unweighted graphs, where
the goal of a balanced cut is to keep the number of edges bal-
anced on each cluster. However, LLVM graphs are weighted
graphs, where the weights represent the estimated execution
time for memory operations, and the goal of a balanced
cut is to keep the sum of edge weights in different clusters
balanced. Therefore, in this paper, we formulate the Weight
Balanced p-way Vertex Cut as a new problem and propose
a framework for solving this problem.

4.1 Weight-Balanced (W-B) p-way Vertex Cut

Given an LLVM IR graph G = (V,E,W ), our goal is
to reduce data communication among different cores (i.e.,
partitions/clusters) while achieving optimal balanced work-
loads (i.e., edge weights). We formalize the objective of the
weight-balanced p-way vertex-cut by assigning each edge
e ∈ E to a cluster M(e) ∈ {1, · · · , p}. Each vertex then
spans the set of clusters A(v) ⊆ {1, · · · , p} that contain its
adjacent edges. We define the objective as:

min
A

1

|V |
∑
v∈V
|A(v)| (2)

s.t. max
m

∑
e∈E,M(e)=m

we < λ
wavg|E|

p
(3)
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where we is the weight of edge e, wavg is the average edge
weight of graph G, and the imbalance factor λ ≥ 1 is a
small constant.

As previously discussed, the balanced p-way vertex cut for
unweighted graphs has been studied in some works in the
literature (Gonzalez et al., 2012; Xie et al., 2014). (Gon-
zalez et al., 2012) introduces PowerGraph and (Xie et al.,
2014) proposes Libra, both of which are state-of-the-art ap-
proaches for vertex cut on unweighted graphs. PowerGraph
(Gonzalez et al., 2012) first analyzes the randomized vertex
cut strategy, and proposes a greedy algorithm for the edge-
placement process of the vertex-cuts. In (Xie et al., 2014),
a degree-based approach, Libra, is proposed for vertex-cut
graph partition, which is based on PowerGraph but further
distinguishes the higher-degree and lower-degree vertices
during an edge placement to achieve better performance. In-
spired by PowerGraph and Libra, in the following sections,
we will first perform theoretical analysis on the random ver-
tex cut solution for the proposed weighted balanced vertex
cut problem and then provide greedy algorithms for it.

4.2 Theoretical Analysis

4.2.1 Random Weighted Vertex Cut

A simple way to perform vertex-cuts is to randomly assign
edges to clusters. Based on (Gonzalez et al., 2012), we
derive the expected normalized replication factor (Eq.( 2))
in random weighted vertex cut for the weight-balanced p-
way vertex cut task and obtain the following Theorem.

Theorem 1. A random weighted balanced p-way vertex cut
has an expected replication:

E[
1

|V |
∑
v∈V
|A(v)|] =

p

|V |
∑
v∈V

(1−E[(
(p− 1)

p
)D[v]]) (4)

where D[v] denotes the degree of vertex v. For a power-law
graph with exponent α, the expected replication is:

E[
1

|V |
∑
v∈V
|A(v)|] = p− p

h|V |(α)

|V |−1∑
d=1

(
p− 1

p
)dd−α (5)

where h|V |(α) =
∑|V |−1
d=1 d−α is the normalizing constant

of the power-law Zipf distribution.

A proof of Theorem 1 is provided in Appendix B.

We can improve the randomly weighted vertex cut with
greedy strategies, which assign the next edge onto the clus-
ter that minimizes the conditionally expected replication
factor. But before we discuss greedy-based algorithms for
the weighted balanced vertex cut, we first prove that the
objective function in Eq. (2) is submodular, and a greedy
algorithm can provide bounded optimality.

4.2.2 Submodularity of the Objective Function

Theorem 2. The optimization problem is NP-hard.

Theorem 3. The objective function (Eq. (2)) is submodular.

Theorem 4. The objective function (Eq. (2)) is monotonic.

See Appendix B for the proof of Theorems 2, 3, 4.

Theorem 5. Given a monotonic submodular function f , the
greedy maximization algorithm1 returns

f(Agreedy) ≥ (1− 1

e
) max
|A|<K

f(A) (6)

where K is the maximum number of possible assignments.
Therefore, even though the optimization problem is NP-
hard, algorithm 1 is designed to find an assignment which
provides a (1− 1/e) approximation of the optimal value.

(Krause & Golovin, 2014) proves Theorem 5.

4.3 Greedy Algorithms for W-B Vertex Cut

To solve the vertex cut optimization problem defined in Eq.
(2) via a greedy approach, we consider the task of placing
the (i+ 1)-th edge after having placed the previous i edges.
We define the objective based on the conditional expectation,
as shown below.

arg min
k

E
[∑
v∈V
|A(v)|

∣∣∣ Ai, A(ei+1) = k
]

(7)

where Ai is the assignment for the previous i edges.

In the following paragraphs, we propose four different
greedy solutions for the edge placement of the weight-
balanced vertex-cut. We call them Weighted PowerGraph,
Weight-Balanced PowerGraph, Weighted Libra, and Weight-
Balanced Libra, respectively.

Weighted PowerGraph The PowerGraph approach is
proposed in (Gonzalez et al., 2012) for unweighted ver-
tex cuts, which assigns edges to clusters while balancing
the number of edges assigned to each cluster. Inspired by
the greedy edge placement in PowerGraph and based on the
objective of the weighted vertex cut defined in Eq. (2), we
define the edge placement rules for our Weighted Power-
Graph greedy algorithm as follows. For an edge (u, v),

• Case 1: If A(u) ∩ A(v) 6= ∅, then assign the edge
to the least loaded cluster in A(u) ∩ A(v), where the
workload of each cluster refers to the total weights of
all the edges assigned to the cluster.

• Case 2: If A(u) ∩A(v) = ∅ and A(u) 6= ∅, A(v) 6= ∅,
then assign edge (u, v) to the least loaded cluster in

1We can easily convert minimization to maximization in this
problem by adding a negative sign to the function.
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A(l), where l is the vertex from u, v that has more
unassigned edges.

• Case 3: If one of A(u) and A(v) is not empty, then
assign the edge (u, v) to the least loaded cluster in the
non-empty set (i.e., A(u) ∪A(v)).

• Case 4: If A(u) = ∅ and A(v) = ∅, then assign (u, v)
to the least loaded one of the p clusters.

Weighted Libra Due to the power-law degree distribu-
tion in LLVM graphs, the edge weights associated with
high-degree vertices tend to accumulate in a single cluster if
these vertices are not cut and spanned over multiple clusters,
which can lead to workload imbalance. Moreover, cutting
the higher-degree vertices tends to save more communica-
tion cost between clusters compared to cutting lower-degree
vertices. The Libra unweighted vertex cut approach in (Xie
et al., 2014) first proposes a degree-based hashing strat-
egy to address such an issue for cutting power-law graphs,
where the higher-degree vertex associated with an edge will
be cut with priority if a vertex has to be cut in order to
place this edge. Inspired by the degree-based strategy in
Libra, we exploit the degree property of vertices during
edge placement. Based on Weighted PowerGraph and this
degree-based rule, we propose a greedy algorithm called
Weighted Libra, which has the following edge placement
rules: For an edge (u, v),

• Case 1: If A(u) ∩ A(v) 6= ∅, then assign the edge
to the least loaded cluster in A(u) ∩ A(v), where the
workload of each cluster refers to the total weights of
all the edges assigned to the cluster.

• Case 2: If A(u) ∩A(v) = ∅ and A(u) 6= ∅, A(v) 6= ∅,
then assign edge (u, v) to the least loaded cluster in
A(l), where l is either u or v whichever has the lower
degree.

• Case 3: If one of A(u) and A(v) is not empty, then
assign the edge (u, v) to the least loaded machine in
the non-empty set (i.e., A(u) ∪A(v)).

• Case 4: If A(u) = ∅ and A(v) = ∅, then assign (u, v)
to the least loaded one of the p clusters.

According to the edge placement rules of Weighted Pow-
erGraph and Weighted Libra, the load balancing among
clusters is considered by assigning edges to the least loaded
cluster under each case. However, this strategy cannot
guarantee the overall balance of the workload (i.e., total
edge weights) among different clusters or permit control of
the emphasis to put on the balance constraint. To address
this issue and further improve load balancing, we incorpo-
rate an explicit constraint on the balance of edge weights

among clusters into the greedy edge placement rules of the
Weighted PowerGraph and Weighted Libra, and have two
new greedy algorithms: Weight-Balanced PowerGraph and
Weight-Balanced Libra. Specifically, we incorporate the
constraint on the edge weight balance, which is formulated
in Eq. (3), into the greedy edge placement rules of the
Weighted PowerGraph and Weighted Libra. For cases 1-3
in both algorithms, before placing an edge to the target clus-
ter, we first check if the current sum of edge weights in a
target cluster is within the bound given by λwavg|E|

p , where
λ ≥ 1 is a constant. If it is, then we place the edge into
this cluster. Otherwise, we search for another cluster from
the remaining set that satisfies this condition as the target
cluster for the placement. By setting different values to λ,
we can allow different amounts of emphasis on the workload
balance. To illustrate the overall workflow of these greedy
algorithms, we summarize the Weighted Balanced Libra
greedy algorithm in Algorithm 1 as an example.

Algorithm 1 Weight-Balanced Libra: A Greedy Algorithm
for Vertex Cut Graph Partitioning

Input: Edge set E; edge weight matrix W ; vertex set V ; a set of clusters
C = {1, 2, · · · , p}; λ.
Output: The assignmentM(e) ∈ {1, 2, · · · , p} of each edge e.
Count the degree di for each vertex vi, ∀i ∈ {1, 2, · · · , |E|}
Compute the cluster weight sum bound b = λ

∑
e∈E we

p

for each e = (vi, vj) ∈ E do
ifA(vi) = ∅ andA(vj) = ∅ then
m = leastloaded(C)

else ifA(vi) 6= ∅ ∧ A(vj) = ∅ then
m = leastloaded(A(vi))
if load(m) ≥ b then
m = leastloaded(C)

end if
else ifA(vi) = ∅ ∧ A(vj) 6= ∅ then
m = leastloaded(A(vj))
if load(m) ≥ b then
m = leastloaded(C)

end if
else ifA(vi) ∩ A(vj) 6= ∅ then
m = leastloaded(A(vi) ∩ A(vj))
if load(m) ≥ b then
m = leastloaded(A(vi) ∪ A(vj))
if load(m) ≥ b then
m = leastloaded(C)

end if
end if

else
s = argminl {dl|l ∈ {i, j})
t = {vi, vj} − {s}
m = leastloaded(A(s))
if load(m) ≥ b then
m = leastloaded(A(t))
if load(m) ≥ b then
m = leastloaded(C)

end if
end if

end if
M(e)← m;A(vi)← m;A(vj)← m

end for

4.4 Discussions

Time Complexity According to the workflow of the
Weighted Balanced Libra algorithm as shown in Algo-
rithm 1, given a graph G = (V,E,W ), for each edge e
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in E, the algorithm retrieves the cluster with the least load
(i.e., total edge weights) either from the entire cluster set C
or from a subset ofC. For the former case (line 7, 11, 16, 23,
or 33 in Algorithm 1), it takesO(|C|) time, and for the latter
case, it takes O(|C1|) time (|C1| ≤ |C|) if the balance con-
straint is satisfied (line 9, 14, 19, 29), and otherwise it takes
O(|C1|+ |C2|), |C2| ≤ |C| (line 21, 31), or O(|C1|+ |C|)
(line 11, 16), orO(|C1|+|C2|+|C|) (line 23, 33). Note that
line 27 in the algorithm takesO(1). So in the worst case, the
algorithm takes O(3|C|) +O(1) = O(|C|) for placing one
edge. Therefore, the overall time complexity of Weighted
Balanced Libra algorithm is O(|E| × |C|). Based on the
edge placement rules introduced in Section 4.3, this time
complexity applies to the three other algorithms as well, al-
though the Weighted Libra and Weighted PowerGraph may
take relatively less time in practice compared to Weight-
Balanced PowerGraph and Weight-Balanced Libra, since
they do not have the weight-balanced constraint. There-
fore, they have the time complexity of O(|C|) or O(|C1|)
discussed above for placing one edge.

Edge Weight Imbalance Besides the replication factor
discussed in Section 4.2.1 as a goal of the optimization
model for the weight-balanced vertex cut problem, the edge
weight balance among different clusters is another key met-
ric for evaluating the performance, which determines the
load balance. As we discussed above in Section 4.3, the
degree-based hashing strategy introduced by Libra tends
to have more balanced cut results as the higher-degree ver-
tices have a higher priority to be cut than the lower-degree
vertices. This statement has also been proved theoretically
by (Xie et al., 2014), which shows that Libra can achieve a
lower edge imbalance than PowerGraph. By incorporating
this degree-based vertex cut rule, our proposed Weighted
Libra algorithm is expected to achieve a better load balanc-
ing (i.e., a lower edge weight imbalance) than the Weighted
PowerGraph algorithm. Furthermore, the proposed Weight-
Balanced PowerGraph and Weight-Balanced Libra allow
for a further improvement in the load balancing via incor-
porating a constraint for the edge weight imbalance by the
given bound λwavg|E|

p (λ ≥ 1). If we set λ = 1, these two
algorithms can guarantee near-ideal balanced vertex cut re-
sults, with an edge weight imbalance 1 + ε, where ε is a
small non-negative constant.

5 ARCHITECTURE AND MAPPING

NUMA Architecture. Uniform memory access (UMA) is
a shared memory architecture for processors running in par-
allel as shown in Figure 4. It develops a unified vision of the
shared physical memory, meaning that access time to a par-
ticular memory address is independent regardless of which
processor requests data from different memory banks. On
the contrary, NUMA allows memory access time dependent

Figure 4: UMA and NUMA Architectures. UMA is a shared
memory architecture with uniform memory access whereas NUMA
enables fast memory access for a processor to its local physical
memory and slow memory access to the rest of memory banks.

Table 2: System Configuration

CPU

Cores Out-of-order cores
Clock frequency 2.4 GHz
L1 private cache 64KB, 4-way associative

32-byte blocks
L2 shared cache 256KB, distributed
Memory 4 GB, 8 GB/s bandwidth

Network
Topology Mesh
Routing algorithm XY routing
Flow control Virtual channel flit-based

on the relative processor location. That is, a processor has
fast memory access time to its local memory and slow access
to the rest of memory. This non-uniformity enables poten-
tial fewer memory accesses with fast access time. Limiting
the number of memory accesses and fast memory accesses
provides the key to high performance computing. Therefore,
we decide to apply the NUMA architecture in the experi-
ments to fully reduce the amount of data communication
between processors and memories.

Memory-Centric Run-time Mapping. At run-time, pro-
cesses/clusters generated in Section 4 from each application
are mapped onto processors in a NUMA architecture to be
executed. We employ a memory-centric run-time mapping
approach for the mapping, which exploits and optimizes the
parallelism in clusters while considering data communica-
tion between clusters and resource utilization. For a detailed
description of the pipeline and algorithm for this run-time
mapping, please see Appendix E.

6 EVALUATIONS

In this section, we discuss the simulator configurations and
present experimental results to investigate the soundness of
the proposed methodology.

6.1 Simulation Configurations

We use gem5 (Binkert et al., 2011) to simulate a varying
number of out-of-order cores with the NUMA architecture.
Table 2 shows detailed simulation parameters. We consider
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the following applications from various benchmarks (Dorta
et al., 2005; Guthaus et al., 2001): FFT, Mandel, MD, Di-
jkstra, NN, Neuron, CNN, Strassen8 and Strassen16. For
more detailed descriptions of these benchmarks, see Table 8
in Appendix C. We generate LLVM IR graphs from these ap-
plications following the procedure introduced in Section 3.
For baseline comparisons, we consider four baseline meth-
ods for graph partitioning: (1) the work in (Xiao et al.,
2017) abbreviated as CompNet; (2) METIS (LaSalle et al.,
2015), which is an edge-cut method that implements various
multilevel algorithms by iteratively coarsening a graph, com-
puting a partition, and projecting the partition back to the
original graph; (3) the unweighted vertex-cut method Power-
Graph (PG) (Gonzalez et al., 2012); and (4) the unweighted
vertex-cut method Libra (Xie et al., 2014). We compare
these baselines with the proposed four greedy vertex-cut al-
gorithms: Weighted PowerGraph (W-PG), Weight-Balanced
PowerGraph (WB-PG), Weighted Libra (W-Libra), Weight-
Balanced Libra (WB-Libra).

6.2 Experimental Results

In this section, we evaluate the proposed methods and base-
lines on the LLVM graphs transformed from the benchmarks
listed in Table 8 for the proposed graph partitioning and
compare their performance in the graph partition quality
(in terms of replication factor and edge weight imbalance).
Next, we execute clusters generated from each method to
measure the overall execution time and data communication.
We also analyze the sensitivity of the parameter λ involved
in the constraint of load balancing to the execution time.

6.2.1 Replication Factor.

In Section 4.2.1, we have derived the theoretical expected
replication factor of the weighted vertex cut with random
edge placement, which is in fact a theoretical upper-bound
for the replication factor of the proposed greedy algorithms.
We now empirically evaluate the performance of the pro-
posed four greedy vertex cut algorithms in replication factor,
and compare the results with the theoretical upper-bound we
compute by Eq. (5). Fig. 5 shows the results on four graphs.
As we can see, the four greedy algorithms achieve com-
parable performance in the replication factor. All of their
replication factors are within the theoretical upper-bound
with a considerable gap, which indicates the superior advan-
tage of the greedy vertex-cut algorithms over the random
vertex cut strategy.

6.2.2 Edge Weight Imbalance.

As discussed in Section 4.4, edge weight imbalance is a
key metric for evaluating the performance of vertex-cuts in
load balancing among clusters. The edge weight imbalance
is defined by (maxm

∑
e∈E,M(e)=m we)/(

wavg|E|
p ), which

measures how much the most-loaded cluster deviates from
the expected average load between clusters. A good load-
balancing vertex-cut method should achieve an edge weight
imbalance close to 1, which indicates the absolute balance.
We evaluate the edge weight imbalance of all the six vertex
cut methods, where we set λ = 1 in the sum of weights in a
cluster (line 4 of Algorithm 1) for WB-PG and WB-Libra,
in order to obtain their optimal balance of edge weights
for comparisons with the other methods. Table 4 shows
the results from edge weight imbalance of the six methods
on all ten graphs. We observe from the table that, WB-
Libra achieves the best results in most of the graphs, except
for Dijkstra, Mandel, and Md, where WB-PG performs
the best. Both the two unweighted vertex cut methods, i.e.
PowerGraph and Libra, achieve worse results compared to
the four weighted vertex cut methods. This is mainly due
to the fact that, the unweighted vertex cut was designed to
balance the number of edges among clusters for unweighted
graphs and therefore they can not properly handle the load
balancing for weighted graphs. By comparing between WB-
PG and W-PG, and between WB-Libra and W-Libra, we can
see that the edge weight balance constraint we incorporate
into the weighted balanced algorithms is effective for further
improving the edge weight balance among clusters and is
able to push the balance to the near-ideal situation.

(a) FFT (b) Mandel

(c) Md (d) CNN

Figure 5: Replication Factor of the Proposed Four Greedy Algo-
rithms with Comparison to the Computed Theoretical Upper-bound
by Eq. (5)

6.2.3 Execution Time

Tables 5 and 6 show the execution time for 8 and 1024 clus-
ters, respectively. See Appendix D.1 for more experiments.
In general, the vertex-cut methods achieve a better perfor-
mance than edge-cut baselines CompNet and METIS. This
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Table 3: Statistics of Graph Datasets
Graph Dataset No. Nodes No. Edges power-law α Avg. Path Length

Dijkstra 248,959 291,112 2.29 136.4
FFT 109,295 143,183 2.21 194.56
K-means 98,592 119,112 2.24 479.4
Mandel 235,051 260,042 2.43 42.67
Md 1,799,353 2,361,213 2.17 524.61
NN 124,496 161,428 2.16 171.52
Neuron 57,883 73,431 2.20 179.25
CNN 573,694 758,712 2.13 824.37
Strassen8 36,831 46,756 2.21 21.22
Strassen16 197,827 254,392 2.20 123.94

Table 4: Edge Imbalance of the Vertex Cut Methods on Graphs
Datasets PG W-PG WB-PG Libra W-Libra WB-Libra
Dijkstra 1.00227 1.00092 1.00007 1.02136 1.00106 1.00010
FFT 1.00586 1.00831 1.00075 1.05030 1.00400 1.00057
K-means 1.00177 1.00469 1.00042 1.04566 1.00180 1.00035
Mandel 1.00730 1.00233 1.00008 1.00749 1.00171 1.00014
Md 1.00015 1.00007 1.00003 1.00791 1.00008 1.00003
NN 1.00187 1.00235 1.00028 1.03441 1.00106 1.00019
Neuron 1.00260 1.00487 1.00081 1.05738 1.00236 1.00045
CNN 1.00040 1.00035 1.00010 1.00956 1.00027 1.00008
Strassen8 1.01074 1.01307 1.00177 1.05036 1.00787 1.00123
Strassen16 1.00338 1.00352 1.00029 1.04206 1.00170 1.00028

verifies our expectation that the vertex-cut based graph parti-
tioning methods can work better than edge-cut methods for
power-law graphs. Among the six vertex-cut methods, the
proposed four methods (i.e., W-PG, WB-PG, W-Libra and
WB-Libra) outperform the two unweighted vertex-cut meth-
ods. This is reasonable since the unweighted vertex-cuts are
not able to handle the load balancing for weighted graphs, as
we discussed in Section 4.4, and the load imbalance among
clusters will lead to a longer overall execution time for the
applications, as the overall execution time depends on the
time for executing the cluster with the largest workload.
Among the four proposed methods, WB-Libra achieve the
best performance in most cases consistently for all differ-
ent numbers of clusters. This demonstrates the benefit of
using the degree-based vertex hashing strategy and the load
balancing constraint in the vertex-cuts. These results in
execution time indicate that the proposed vertex-cut based
graph partitioning framework is effective in load balancing
and parallelism optimization for multi-core systems and it
has superior performance than the state-of-the-art baselines.

6.2.4 Data Communication

Tables 7 shows the data communication of each application
for 8 clusters. See Appendix D.2 for more experiments.

Table 5: Overall Execution Time (/s) for 8 Clusters From Different
Algorithms in a Multi-core Platform

Datasets CompNet METIS PG W-PG WB-PG Libra W-Libra WB-Libra
Dijkstra 317.27 332.48 346.15 263.75 260.91 253.86 262.51 242.26
FFT 279.6 288.22 209.27 253.71 230.02 248.42 239.33 291.53
K-means 244.87 261.38 279.53 206.25 195.53 201.54 188.25 178.58
Mandel 341.35 373.28 265.15 289.74 257.12 277.31 256.49 245.82
Md 2568.72 2723.71 2822.47 2313.9 1821.68 2178.41 1824.95 1642.18
NN 351.23 376.93 354.32 311.74 256.41 297.59 278.24 253.89
Neuron 214.75 242.68 213.95 187.23 163.63 174.54 157.69 131.4
CNN 1568.59 1736.37 1454.88 1425.63 1221.53 1358.61 1315.78 1175.8
Strassen8 142.41 155.39 131.24 121.37 104.99 112.62 111.23 96.24
Strassen16 326.75 351.26 323.5 304.21 274.63 285.44 264.58 248.25

Table 6: Overall Execution Time (/s) for 1024 Clusters From
Different Algorithms in a Multi-core Platform

Datasets CompNet METIS PG W-PG WB-PG Libra W-Libra WB-Libra
Dijkstra 31.08 46.48 33.5 27.79 29.27 29.58 26.43 23.4
FFT 24.92 32.4 25.08 22.64 23.96 23.2 20.31 18.59
K-means 16.77 37.23 18.26 16.37 12.54 15.3 13.92 11.26
Mandel 23.48 41.37 15.8 19.81 14.52 17.47 14.43 12.6
Md 228.43 245.61 233.02 204.53 174.23 192.23 169.18 155.71
NN 33.44 52.36 34.92 29.35 25.48 29.84 27.9 23.22
Neuron 21.3 48.32 23.73 20.93 21.62 19.19 17.97 16.11
CNN 157.5 170.92 148.48 145.87 110.67 132.22 119.43 105.29
Strassen8 12.51 15.03 14.57 13.55 12.39 12.17 11.11 10.31
Strassen16 31.81 38.14 29.23 29.62 27.36 27.22 25.25 23.42

Table 7: Data Communication for 8 Clusters From Different Graph
Partitioning Algorithms

Datasets CompNet METIS PG W-PG WB-PG Libra W-Libra WB-Libra
Dijkstra 100% 142% 60% 46% 54% 50% 54% 57%
FFT 100% 156% 71% 53% 65% 56% 62% 65%
K-means 100% 135% 59% 41% 52% 46% 52% 55%
Mandel 100% 158% 48% 31% 41% 36% 42% 45%
Md 100% 160% 47% 33% 39% 36% 40% 44%
NN 100% 169% 63% 43% 55% 48% 53% 57%
Neuron 100% 137% 59% 42% 53% 47% 52% 56%
CNN 100% 192% 64% 50% 56% 53% 55% 58%
Strassen8 100% 171% 55% 43% 50% 46% 48% 52%
Strassen16 100% 193% 54% 42% 46% 45% 47% 50%

In general, all the vertex cut methods reduce more data
compared to the edge-cut methods (METIS and CompNet).
For example, according to Table 7, the WB-PG reduces the
data communication for 8-cores by an average of 48.9%
compared to CompNet over the 10 graphs, and WB-Libra
reduces it by an average of 46.1%. METIS fails to reduce
data communication compared to others. However, it is
interesting to note that METIS causes less than 120% for
the Mandelbrot application whereas the data communica-
tion is more than 130% for the rest of applications. It is
because Mandelbrot is an embarrassingly parallel appli-
cation where little effort is required to separate it into a
number of parallel clusters. However, traditional edge cut
algorithms such as CompNet and METIS still lead to a seri-
ously huge amount of data communication between clusters,
while vertex cut methods is able to maintain a much lower
communication cost. This is mainly because that the data
communication in edge-cut partitions comes from all the
inter-cluster edges, while there is no such communication
cost in vertex-cut partitions since there is no inter-cluster
edges and the only communication for the vertex-cut parti-
tions is the communication between the replicas of the cut
vertices across different clusters.

6.2.5 Parameter Sensitivity Analysis

Fig. 6 shows the execution time for several λ values in Eq.
(3) on three applications, i.e., NN, Neuron, and Strassen16.
λ controls the clusters balance. In WB-PG and WB-Libra
algorithms, we use λ to set a balance bound (line #4 in Algo-
rithm 1), and λ = 1 indicates an ideal balanced case. When
λ is large enough, WB-Libra and WB-PG reduce to W-Libra
and W-PG, respectively. To analyze the sensitivity of λ pa-
rameter to the execution time, we evaluate WB-Libra and
WB-PG with different λ values in the range of 1 to 1.0012
with a step size of 0.0001. The dotted blue line refers to
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(a) NN (b) Neuron (c) Strassen16

Figure 6: Execution Time With Different λ Values for WB-Libra and WB-PG Algorithms. Dotted lines indicate the execution time for
W-Libra and W-PG to which WB-Libra and WB-PG reduce, respectively, when λ becomes large enough.

the performance of W-PG and the dotted red line refers to
the performance of W-Libra, which can be treated as up-
per bound for WB-PG and WB-Libra, respectively. There
are times when the execution time of applications exceeds
the upper bound indicated by the dotted lines because of
frequent synchronization such as fetching data from mem-
ory and flushing dirty data into memory. In general, the
trend is going up, indicating that increasing λ causes the
performance degradation. It is recommended to set λ = 1
in WB-Libra and WB-PG to improve the execution time.

7 RELATED WORK

Parallel computing enables the continued growth of complex
applications (Asanovic et al., 2006; 2009). Most existing
work (Murray et al., 2013; Yu et al., 2008; Murray et al.,
2011) exploits the coarse-grained parallelism of the dataflow
graphs where it is common to represent computations as
nodes and data dependencies among them as edges. The
work in (Murray et al., 2013) proposes a new computa-
tional model, timely dataflow, and captures opportunities
for parallelism across different algorithms. Timely dataflow
combines dataflow graphs with timestamps to allow vertices
to send and receive logically timestamped messages along
directed edges for data-parallel computation in a distributed
cluster. (Yu et al., 2008) proposes DryadLINQ, a system
for general-purpose data-parallel computation. The system
architecture incorporates the dataflow graph representation
of jobs with a centralized job manager to schedule jobs on
clustered computers. (Murray et al., 2011) introduces CIEL,
a universal execution engine for distributed dataflow pro-
grams. It coordinates the distributed execution of a set of
data-parallel tasks and dynamically builds the DAG as tasks
execute. Others develop different edge-cut graph partition-
ing algorithms in parallel computing such as spectral graph
theory (Hendrickson & Leland, 1995a), hypergraph models
(Hendrickson & Kolda, 2000; Devine et al., 2006), and a
multi-level algorithm (Hendrickson & Leland, 1995b). Few
(Xiao et al., 2017; 2018) exploit the fine-grained instruction
parallelism in high-level programs and propose commu-
nity detection inspired optimization models to benefit from

the underlying hardware such as multi-core platforms and
processing-in-memory architectures.
Related works in vertex cut are mainly from the distributed
graph computing field, where vertex-cuts are used to parti-
tion large power-law graphs for optimizing the distributed
execution of real applications such as PageRank. The Pow-
erGraph (Gonzalez et al., 2012) and Libra (Xie et al., 2014)
discussed in previous sections are two state-of-the-art works
in this field. Some other relevant works include (Jain et al.,
2013), (Gonzalez et al., 2014), and (Chen et al., 2019).

8 CONCLUSION

In this paper, we explore IR instruction-level parallelism via
graph partitioning on universal LLVM IR graphs and cluster-
to-core mapping for automatic parallelization in multi-core
systems. We propose a vertex cut based framework on
LLVM IR graphs for load balancing and parallel optimiza-
tion of application execution in multi-core systems. To-
wards solving this problem, we developed Weight-Balanced
p-way Vertex Cut-inspired greedy algorithms. Our simu-
lation results demonstrate the superior performance of the
proposed framework for load balancing and multi-core exe-
cution speed-up compared to the state-of-the-art baselines.
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APPENDIX

A. LLVM GRAPH CONSTRUCTION

A.1 Static IR Generation

We generate LLVM static IR instructions by applying the
front-end compiler clang, as shown in Fig. 8.

A.2 Dynamic Trace Generation

Once the static IR code is generated, we instrument the code
to obtain information such as basic blocks and memory time.
First, we use a hash table to keep track of IR instructions
within each basic block. For example, in Fig. 8, instructions
from ”%1 = alloca i32*, align 8” up to ”br label %5” should
be hashed into the index 1 which represents the first basic
block. Second, at the beginning of each basic block, we
instrument a printf function to record the execution order
of blocks. Fig. 8 shows the full instrumentation of printf
statements in blue. Last, we use the time stamp counter rdtsc
and the printf statements to measure the amount of time for
each memory operation (time = aftermem−beforemem).
Instructions in red in Fig. 8 show this instrumentation for
the first two memory operations. Specifically, we insert
rdtsc before and after each memory operation and calculate
the difference as the amount of execution time. Once static
IR is instrumented, we use the LLVM back-end to execute
it and collect the execution order of basic blocks and the
amount of time for each memory operation. Combined with
the hash table, which can be indexed from the execution
order of basic blocks, we obtain dynamic IR trace as shown
in Fig. 8.

A.3 LLVM Graph Construction

We construct the LLVM graph by analyzing the data and
memory alias dependencies. For example, as shown in
Fig. 8, the sixth instruction ”store i32* %a, i32** %1, align
8” has the source register %1 which depends on the desti-
nation register of the first instruction ”%1 = alloca i32*,
align 8”. The corresponding LLVM graph manifests this
dependency by inserting a directed edge from node 1 to
node 6.

B. PROOF OF THEOREMS

Theorem 1. A random weighted balanced p-way vertex cut
has an expected replication:

E[ 1

|V |
∑
v∈V

|A(v)|] = p

|V |
∑
v∈V

(1− E[( (p− 1)

p
)D[v]]) (8)

where D[v] denotes the degree of vertex v. For a power-law

graph with exponent α, the expected replication is:

E[
1

|V |
∑
v∈V
|A(v)|] = p− p

h|V |(α)

|V |−1∑
d=1

(
p− 1

p
)dd−α (9)

where h|V |(α) =
∑|V |−1
d=1 d−α is the normalizing constant

of the power-law Zipf distribution.

According to linearity of expectation, we have:

E[
1

|V |
∑
v∈V
|A(v)|] =

1

|V |
∑
v∈V

E[|A(v)|] (10)

where E[|A(v)|] is the expected replication number of a
single vertex v.

Assume vertex v has a degree D[v], then the expected repli-
cation of v can be computed by the process of assigning the
D[v] edges that are adjacent to v. Let Xi denote the event
that vertex v has at least one of its edges on cluster i, then
the expectation E[Xi] is:

E[Xi] = 1−P(v has no edges on cluster i)

= 1− (1− 1

p
)D[v]

(11)

Then, the expected replication factor for vertex v is:

E[|A(v)|] =

p∑
i=1

E[Xi] = p(1− (1− 1

p
)D[v]) (12)

In the power-law graph, D[v] can be treated as a Zipf ran-
dom variable, therefore Eq.(12) can be further written as:

E[|A(v)|] = p(1− E[(
(p− 1)

p
)D[v]]) (13)

Then:

E[
1

|V |
∑
v∈V
|A(v)|] =

p

|V |
∑
v∈V

(1− E[(
(p− 1)

p
)D[v]])

(14)

In the power-law graph G, the probability of a vertex de-
gree being d is P(d) = d−α/h|V |(α), where h|V |(α) =∑|V |−1
d=1 d−α is the normalizing constant of the power-law

Zipf distribution. Then,

E[(
(p− 1)

p
)D[v]] =

1

h|V |(α)

|V |−1∑
d=1

(1− 1

p
)dd−α (15)

By plugging Eq.(15) into Eq.(8), we have:

E[
1

|V |
∑
v∈V
|A(v)|] = p− p

h|V |(α)

|V |−1∑
d=1

(
p− 1

p
)dd−α

(16)

Theorem 2. The optimization problem is NP-hard.
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Figure 7: Workflow of LLVM Graph Construction. Each program is first compiled to static IR instructions via the LLVM front-end, which
is next translated into dynamic IR trace via the LLVM back-end, combined with instrumentation to obtain information such as memory
timing and the sequence of the execution order of basic blocks. Last, we perform dependency analysis to construct a graph based on the
dynamic trace where nodes denote IR instructions and edges represent dependencies.

Proof. K-balanced graph partitioning (Andreev & Racke,
2006) divides a graph into k equal sized clusters while
minimizing the capacity of edges cut, which is NP-hard. It
reduces to the optimization problem by having a unit weight
for each edge in a graph to be cut.

Theorem 3. The objective function (Eq. (2)) is submodular.

Proof. Given an LLVM IR graph G = (V,E,W ), define
two assignment sets X,Y = {A(v1), A(v2), ...,
A(v|V |)} ⊆ Ω where for any node v, A(v) ⊆ {1, · · · , p}
and Ω is the solution space of the problem. We define f(X)
as the objective function defined in Eq. (2).
If X ∩ Y = ∅, then

f(X ∩ Y ) + f(X ∪ Y )

=
1

|V |
∑
v∈V
|X(v) + Y (v)|+��

�*0
f(∅)

=
1

|V |
∑
v∈V
|X(v)|+ 1

|V |
∑
v∈V
|Y (v)|

= f(X) + f(Y )

(17)

If X ∩ Y = Sc where Sc is a set of the common elements,
then

f(X ∩ Y ) + f(X ∪ Y )

=
1

|V |
∑
v∈V
{|X(v)|+ |Y (v)| − |Sc(v)|+ |Sc(v)|}

=
1

|V |
∑
v∈V
|X(v)|+ 1

|V |
∑
v∈V
|Y (v)|

= f(X) + f(Y )

(18)

Therefore, by combining Eq. (17) and Eq. (18), we can infer
that the objective function is submodular as for any two sets
X,Y ⊆ Ω, f(X) + f(Y ) = f(X ∩ Y ) + f(X ∪ Y ).

Theorem 4. The objective function in the Eq. (2) is mono-
tonic.

Proof. Given an LLVM IR graph G = (V,E,W ), we de-
fine an assignment set A = {v1, v2, ..., v|V |} ⊆ Ω and an

arbitrary assignment A′ = vk ∪A.

f(A ∪ vk) =
1

|V |
∑
v∈V
|A′(v)|

=
1

|V |
∑
v∈V
{|A(v)|+ |vk(v)|}

=
1

|V |
∑
v∈V
|A(v)|+ 1

|V |
∑
v∈V
|vk(v)|

= f(A) + f(vk)

(19)

Therefore, f(A ∪ vk)− f(A) ≥ 0.

C. DESCRIPTION OF BENCHMARKS

Table 8 provides the detailed descriptions of the application
benchmarks used in the experiments.

D. EXPERIMENTAL RESULTS

D.1 Execution Time

Fig. 9 shows the execution time of each application for
different graph partitioning algorithms with various cluster
numbers.

D.2 Data Communication

Table 9 lists the data communication of each application for
the different graph partitioning algorithms for 1024 clusters.

Fig. 10 shows data communication of each application for
the graph partitioning algorithms with different cluster num-
bers. As shown in the figure, the general trend of data
communication from 8 clusters up to 1024 clusters is it
first goes down and up again at 128 clusters. The trend
of data communication going down is mainly due to the
efficient parallelism while minimizing data communication.
However, as the number of clusters increases beyond 128
clusters, synchronization starts to take over the impact of
data communication because processes are synchronized to
allow only one process enter the critical section to modify
the shared data structures in main memory. Nevertheless,
the least data communication overhead in these cases is still
from the proposed vertex-cut algorithms.
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Figure 8: Example of LLVM Graph Construction. This is an example of a graph constructed from a C program followed by the workflow
in Fig. 7. One thing to note is that in instrumented static IR, instructions in blue keep track of basic blocks whereas instructions in red
measure time for memory operations. We only show partial instrumentation for memory time measurement.

E. MEMORY-CENTRIC RUN-TIME MAPPING

At run-time, processes/clusters generated in Section 4 from
each application are mapped onto processors in a NUMA
architecture in order to be executed. Depending on the map-
ping (e.g., A process has to fetch data from the farthest
memory bank.), data communication is a performance bot-
tleneck. The goal is to improve the amortized time when
slow accesses occur only once in a while and fast local ac-
cesses happen frequently.
Therefore, without fully observing the structure of clusters
with corresponding physical memories, performance would
degrade due to these reasons: (1) Waiting for cache update:
The multi-core platforms require the cache coherence proto-
col to have consistent data over private caches. A process
later mapped to a different core may increase the time spent
for the cache coherence protocol to fetch a cache line from
the previous core. (2) Block memory operations between
IOs and memory: Block memory operations in IOs consti-
tute a large overhead in the program execution because a

large amount of data are referenced and transferred between
caches and main memory banks. (3) Core utilization: In
an extreme case, processes may be mapped only onto one
core to exploit cache temporal and spatial locality. However,
the rest cores remain idle for a long time. Therefore, core
utilization is another factor for efficient parallelism in multi-
core systems.
In order to improve performance, the run-time mapping
should exploit and optimize the parallelism in clusters while
considering data communication between clusters and re-
source utilization. Figure 11 shows three important factors
to help design a memory-centric run-time mapping.
1. Clusters which reference the same data structures can

be mapped onto one core to prevent the time spent on cache
coherence protocols and reduce the number of block opera-
tions.
2. Clusters which communicate with each other can be
mapped to adjacent processors to improve the amortized
time by reducing the number of times on fetching data from
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Table 8: Summary and Description of Benchmarks

Benchmark Description Input Size Source

Dijkstra Find the shortest path 50 nodes MiBench
FFT Compute fast Fourier transform A vector of size 1024 OmpSCR
K-means Partition data into k clusters 128 2D tuples Self-collected
Mandel Calculate Mandelbrot set 4092 points OmpSCR
MD Simulate molecular dynamics 512 particles OmpSCR
NN Neural networks Three hidden fully connected layers Self-collected
Neuron A list of neurons with the ReLU function 64 Neurons Self-collected
CNN Convolutional neural networks Conv-Pool-Conv-Pool-FC Self-collected
Strassen8 Strassen’s matrix multiplication Matrices of size 64 Self-collected
Strassen16 Strassen’s matrix multiplication Matrices of size 256 Self-collected

Table 9: Data Communication for 1024 Clusters From Different Graph Partitioning Algorithms
Datasets CompNet METIS PG W-PG WB-PG Libra W-Libra WB-Libra
Dijkstra 100% 142% 53% 34% 47% 39% 46% 47%
FFT 100% 163% 55% 42% 50% 43% 46% 49%
K-means 100% 132% 47% 31% 42% 32% 39% 43%
Mandel 100% 117% 33% 18% 28% 19% 23% 27%
Md 100% 156% 41% 25% 35% 29% 31% 35%
NN 100% 176% 52% 35% 44% 39% 45% 47%
Neuron 100% 148% 38% 27% 30% 31% 33% 35%
CNN 100% 183% 63% 44% 55% 49% 55% 57%
Strassen8 100% 145% 52% 35% 44% 38% 42% 46%
Strassen16 100% 166% 53% 38% 48% 41% 45% 48%

the farthest processor on a NUMA architecture.
3. Clusters which are independent of each other can be
mapped to different regions of a multi-core platform (ar-
chitecture decomposition) to reduce the number of sharing
paths of messages.
Therefore, the memory-centric run-time mapping algorithm
as shown in Algorithm 2 takes as inputs the clusters, their
interactions, and data communication and schedules a map-
ping from clusters to processors with the objective of im-
proving application performance. The uttermost important
criterion for a run-time mapping is the small time complex-
ity. Therefore, we propose a greedy algorithm to achieve
high performance with the time complexity of O(P ) where
P is the number of schedulable clusters. In the algorithm,
we first check whether a cluster is ready to schedule, and
keep track of all clusters with which this cluster communi-
cates. Next, based on the factor 3, the architecture decompo-
sition is performed to make sure that independent clusters
are mapped onto faraway processors to distribute workloads
and traffic evenly on hardware communication substrate in
a multi-core platform. Then, we calculate the execution
time for two clusters with the shared memory to be mapped
onto the same processor and different ones, respectively. A
mapping of the current cluster is decided based on factors 1
and 3. Mapping clusters with the shared memory onto the
same processor could reduce the large overhead for block
operations, but at the same time the parallelism may suffer
if too many clusters are mapped to a single processor. There-
fore, we set an upper threshold of the number of clusters to
be mapped to a processor. In the evaluation, the threshold is
set to be 4.

Algorithm 2 Memory-Centric Run-Time Mapping
1: INPUT: Clusters and data communication
2: OUTPUT: A mapping from clusters to the architecture
3: Runqueue RQ = ∅
4: for cluster in clist do
5: if cluster→status = SCHEDULABLE then
6: if C = ClusterFromMem(cluster→m) != ∅ then
7: cluster→p = C // Factor 1
8: end if
9: if C = ClusterComm(cluster) != ∅ then

10: cluster→ipc = C // Factor 2
11: else
12: cluster→ipc = ∅ // Factor 3
13: end if
14: RQ.push(cluster)
15: end if
16: end for
17: Regions = ArchitectureDecomposition()
18: LastCluster = NULL
19: repeat
20: cluster = RQ.pop()
21: if ClusterFromMem(cluster→m)→core ==

LastCluster→core then
22: // Decide on mapping clusters onto the same processor
23: if LastCluster→core→num ≤ threshold then
24: cluster→core = cluster→p // Factor 1
25: LastCluster→core→num++
26: else
27: cluster→core = DiffRegion(cluster→core)
28: end if
29: else if cluster→ipc != ∅ then
30: cluster→core = Nearby(cluster→ipc→core)
31: else
32: cluster→core = DiffRegion(cluster→ipc→core)
33: end if
34: LastCluster = cluster
35: until RQ is empty
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(a) 8 clusters (b) 16 clusters

(c) 32 clusters (d) 64 clusters

(e) 128 clusters (f) 256 clusters

(g) 512 clusters (h) 1024 clusters

Figure 9: Application Performance From Different Graph Partitioning Algorithms on a Multi-core System
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(a) 8 clusters (b) 16 clusters

(c) 32 clusters (d)

(e) 128 clusters (f) 256 clusters

(g) 512 clusters (h) 1024 clusters

Figure 10: Data Communication Cost From Different Graph Partitioning Algorithms in a Multi-core Platform
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Figure 11: Memory-Centric Run-Time Mapping, which considers memory hierarchy and data communication.
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