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ABSTRACT

Automated neural architecture search (NAS) methods have been demonstrated as a powerful tool to facilitate
neural architecture design. However, the broad applicability of NAS has been restrained due to the difficulty
of designing task-specific search spaces and the necessity and verbosity to implement every NAS component
from scratch when switching to another search space. In this work, we propose ModularNAS, a framework that
implements essential components of NAS in a modularized and unified manner. It enables automatic search space
generation for customized use cases while reusing predefined search strategies, with little extra work needed for
each case. We conduct extensive experiments to verify the improved model performance on various tasks by
reusing supported NAS components over customized search spaces. We have also shown that targeting existing
architectures, ModularNAS can find superior ones concerning accuracy and deployment efficiency, such as latency
and FLOPS. The source code of our framework can be found at https://github.com/huawei-noah/
vega/tree/master/vega/algorithms/nas/modnas.

1 INTRODUCTION

Deep learning models often require extensive manual design
to achieve high accuracy and efficiency for specific tasks.
Recent progress in neural architecture search (NAS) has
discovered architectures with superior performance over
handcrafted ones in various tasks (Cai et al., 2019; Yang
et al., 2019; Liu et al., 2019a; 2020).

Significant efforts have been made to improve the efficiency
of NAS. Early approaches (Zoph & Le, 2016; Tan et al.,
2018) train each sampled architecture independently from
scratch, which is computationally prohibitive when search-
ing over large datasets. Recent methods (Pham et al., 2018;
Liu et al., 2019b; Li et al., 2019; Yang et al., 2019) adopt
weight sharing strategies which are much more feasible
computationally and achieve competitive accuracy. Other
efficient methods include network morphism (Chen et al.,
2016; Yang et al., 2018; Cai et al., 2018a) and performance
prediction (Baker et al., 2017; 2018).
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Despite the effectiveness of the existing NAS methods, the
current implementations of these methods are often case-
specific. Early NAS methods can be formulated as hyperpa-
rameter optimization at the cost of efficiency. However, effi-
cient NAS methods, including weight sharing and network
morphism, require access to runtime network weights and
graph topology, thus relying on architecture-specific code
to work. Consequently, their implementations intertwine
with the specific search space, resulting in considerable en-
gineering work for adapting a method to new search space.
This is highly non-automatic, and the broad application of
NAS in user-defined tasks has been heavily restrained due
to the verbosity of designing architecture-specific search
space and implementing the NAS workflow from scratch.

Therefore, the situation calls for a code framework that pro-
vides a common interface to NAS methods with different
strategies and formulations, such that their implementations
become search space agnostic under the framework. More-
over, the framework should provide an easy way to define
the search space for different use cases.

To provide a fundamental basis in designing a common
interface for various NAS methods, we propose a new for-
mulation of the architecture search process that breaks down
an extended range of well-recognized NAS methods into
combinations of the fundamental components, with empha-
sis on the transformation of architecture states (e.g., weights
of evaluated networks), which usually takes form in weight
sharing (Wu et al., 2019; Guo et al., 2019) and network mor-
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phism (Cai et al., 2018a; Yu & Huang, 2019). Based on such
a formulation, we build ModularNAS, an automated neural
architecture search framework that implements the state-of-
the-art efficient NAS methods as a combination of reusable
components (e.g., search algorithm, network transformation,
evaluation strategy) with unified interfaces, enabling easy
integration with different search strategies with simplicity
and flexibility. Our framework provides easy-to-use util-
ities that convert fixed architecture given by the user to
customized search space in runtime, facilitating the design
and use of efficient NAS methods for user-defined tasks in
just a few lines of code.

Our contributions can be summarized as follows:

* We design a user-friendly NAS framework called Modu-
larNAS, based on our proposal for a unified formulation
of NAS. This framework supports a wide range of pop-
ular NAS methods with different paradigms (such as
black-box optimization, weight sharing, and network
morphism).

* We improve the implementation reusability of essen-
tial NAS components by decoupling the search spaces,
optimization algorithms, network transformations, and
evaluation strategies while unifying the interactions be-
tween these components through an event mechanism,
enabling easy integration of different NAS methods.

* We automate the generation of task-specific search space
by dynamically replacing modules of a given network
with modularized search space components such as dif-
ferent neural operators or dynamic network width and
depth.

* We conduct comprehensive experiments to demonstrate
that ModularNAS can be efficiently utilized to carry
out architecture search for various deep learning appli-
cations, including image classification, speech recog-
nition and recommender systems, improving the per-
formance of given architectures in each task without
re-implementing the components used.

2 METHODOLOGY
2.1 Classical NAS Formulation

Early architecture search methods can be formulated as a
hyperparameter optimization problem with a large search
space (Zoph & Le, 2016). A controller samples a child
network (sub-net) in each step, which is trained from
scratch and evaluated to obtain the performance as the
controller’s reward signal, without adopting any efficient
strategy in architecture evaluation. Such methods are very
time-consuming, often requiring hundreds of GPU hours to
converge.

Table 1. Overview of efficient strategies in NAS

Efficient strategy References
(Zoph & Le, 2016)
None (Real et al., 2018)

(Tan et al., 2018)
(Pham et al., 2018)
(Guo et al., 2019)
(Yang et al., 2019)
(Cai et al., 2018a)
(Cai et al., 2018b)
(Liu et al., 2019b)
(Xie et al., 2019)
(Cai et al., 2019)
(Yu & Huang, 2019)
(Guo et al., 2019)
(Cai et al., 2020)

One-shot (discrete)

Network morphism (path)

One-shot (softmax sum)
One-shot (gumbel sum)
One-shot (binarized)

Network morphism (elastic)

Several weight sharing methods are proposed to speedup
architecture evaluation, where a one-shot network (super-
net) that contains all candidate paths is trained. A child
network is obtained by selecting the corresponding paths
in the one-shot model, controlled by extra parameters that
are either discrete (Pham et al., 2018; Guo et al., 2019) or
differentiable (Liu et al., 2019b; Cai et al., 2019).

In other efficient NAS methods, a child network inherits its
weights from the parent model, through network transfor-
mations that retain the weights of the parent model, while
modifying its architecture. Typical transformations include
adding/removing graph nodes (Cai et al., 2018a;b) and
changing the depth/width of the network (Chen et al., 2016;
Yang et al., 2018; Cai et al., 2020). Table 1 summarizes
various efficient strategies and related works.

2.2 A Unified Formulation of NAS

We observe that most efficient NAS methods use the inter-
mediate architecture states (e.g., network weights, graph
topology) in a search process. For example, weight sharing
methods reuse the weights of common nodes in the one-shot
model. If we leave out the parts of a NAS method that re-
quire access to the architecture states, the remaining parts
become architecture-independent and can be used in arbi-
trary search spaces. Therefore, we can divide NAS methods
into separate functional components.

Now we present a new formulation of architecture search
procedure that unifies most well-recognized NAS methods,
including weight sharing (Liu et al., 2019b) and network
morphism (Chen et al., 2016; Yang et al., 2018; Cai et al.,
2020). To illustrate the idea, we first define the following no-
tations representing the essential elements in a NAS process,
as displayed in Table 2.

We divide the variables involved in a NAS process into three
fundamental types: the architecture parameter o represents
the encoding of all possible architectures in the search space;
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Figure 1. Comparison of NAS formulations. Rectangles denote components, and hexagons denote variables.

Table 2. Notations for the unified formulation of NAS.

Notation Description

A the architecture parameter space

1% the architecture state space (e.g., model
weights and graph topology)

R the architecture metrics space (e.g.,
model accuracy and latency)

aeA a set of parameter values that encode an
architecture

reR the metrics values of an architecture

veV intermediate architecture states in a NAS
process

w:V—=V state optimizer: update the arch. states
(e.g., train the model)

n: V=R state evaluator: evaluate the arch. states
(e.g, validate the model)

Q: AxRw+— A parameter optimizer: update the archi-
tecture parameters

0: VXAV state transformer: alter the arch. states
according to the updated «

a €A the initial architecture parameter

vo €V the initial architecture state

HCVY the set of final architectures, defines the

stopping criterion

v stands for the states generated in a search process for ar-
chitecture updating and evaluating, such as network weights
and topology; the metrics r indicate the estimated perfor-
mance scores of the candidate architecture.

We then decompose the operators of a NAS process into four
components that function separately: the search optimizer
Q) optimizes the architecture parameters; the state optimizer
w updates the architecture states; the state evaluator 1 eval-
uates the architecture metrics by using the updated states;
the state transformer function § modifies the architecture
states as controlled by the parameters. The unified formu-
lation of the architecture search process is summarized in
Algorithm 1.

A critical insight in our formulation is that architecture
states serve as the intermediate information between search
optimization and architecture evaluation, which is used in

Algorithm 1 Unified Architecture Search Process

Input: initial architecture parameters and states o, vo
Output: best parameter searched o™

a,V < o, Vo

while v ¢ H do

v 4 w(v) > Update arch. states
r < n(v) > Evaluate arch. metrics
RECORD(«, 1) > Save visited arch. and metrics
a <+ Qa,7) > Optimizer samples new params.
v <+ (v, @) > Transform arch. based on «

return o with the best metrics r*

Figure 2. Pseudo-code for the unified architecture process. In each
loop step, a new set of architecture parameters « is sampled by
optimizer (), used by state transformer § to modify the architecture
state v and obtain the desired architecture. The transformed state
is then updated (trained) and evaluated by w and 7). The evaluated
metrics r is used to update the optimizer and sample the next set
of parameters.

architecture transformation for mapping the sampled param-
eters to the corresponding architectures for evaluation.

Despite its simplicity, the unified formulation can cover a
full spectrum of search algorithms, including the subnet,
supernet, and morphism based algorithms, through different
instantiations and combinations of essential elements, as
illustrated in Figure 1. In the following part, we elaborate on
the realization of several typical types of search algorithms
in our framework. The formulations of more NAS methods
under our framework are presented in Appendix A.

Subnet based search. Subnet based methods view the
architecture search as an optimization problem over a dis-
crete parameter space and retrain each candidate architecture
from scratch before evaluation (Zoph & Le, 2016; Tan et al.,
2018; Real et al., 2018; Wang et al., 2018). Therefore, the
state transformer function § constructs the child architecture
according to the architecture parameters regardless of pre-
vious architectures, i.e., §(v,«) = CONSTRUCT(«). The
state optimizer w fully trains the architecture and the state
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evaluator 7 evaluates the metrics used by the optimization
function € to update the architecture parameters.

Supernet based search. For methods that share weights
between child networks with common nodes in a supernet
that comprise all paths (Liu et al., 2019b; Bender et al., 2018;
Cai et al., 2019; Xie et al., 2019; Wu et al., 2019; Liu et al.,
2018; Li et al., 2019; Guo et al., 2019; Pham et al., 2018),
the & function selects the corresponding paths specified by .
The w and 7 trains and evaluates the supernet, respectively.
The 2 updates the parameters using the gradients or reward
signals derived from the metrics.

Network morphism. We identify some proposed search
processes as somewhere between the subnet based search
and supernet based search, which do not train each sub-
net from scratch or train a supernet but partially reuse
the weights of the current architecture through function-
preserving network transformations (Chen et al., 2016; Cai
et al., 2018a;b; Yang et al., 2018; Stamoulis et al., 2019;
Guo et al., 2019; Yu & Huang, 2019; Cai et al., 2020). In
this case, the ¢ function transforms the network accord-
ing to the architecture parameters, typically by altering the
computational graph topology and node attributes.

3 MODULARNAS: FRAMEWORK DESIGN
AND DYNAMICS

Following the unified formulation, we design and implement
ModularNAS with simplicity, modularity, and reusability
in mind. Specifically, we introduce a new programming
paradigm for defining the architecture search space, en-
abling the automatic generation and reuse of the search
space. To support complex NAS methods such as network
morphism, we implement the architecture transformation
functionality that binds with the generated search space and
is automatically invoked in the search routine.

3.1 Design Overview

We first declare the components and interfaces of the pro-
posed framework in alignment with the unified NAS formu-
lation. Then we specify the search routine in the framework
that invokes these components using standard interfaces,
which enables seamless switching between NAS methods
and search spaces. The search routine of the framework is
illustrated in Figure 3.

Parameter space. The Parameter space is the set of all ar-
chitecture parameters, which corresponds to 4 in the above
formulation. An architecture parameter is a named dimen-
sion of values, which corresponds to a.

Optimizer. The Optimizer defines the search algorithm
that tries to find the optimal set of architecture parameters.
It uses the architecture metrics provided by the Estimator to

update its states and sample new parameters, as described
in 2.

Estimator. Analogous to w and 7, the Estimator defines
the estimation strategy for updating the architecture and
evaluating its metrics, such as training the model specified
by the parameters and measuring its performance. Besides,
the Estimator also schedules the search process, controls
the interaction with the Optimizer, and records information
such as metrics of explored architectures.

Construct routine. The Construct routine declares new ar-
chitecture parameters and defines their mappings to the can-
didate architectures during the generation of search space.
It provides several ways to generate the parameter space A
and architecture state space V, either from scratch, prede-
fined backbone architectures, or based on previous search
results.

Transform routine. The Transform routine modifies the
architecture according to the parameter values and its current
states via method-specific handler functions. It corresponds
to ¢ in the formulation.

The Optimizer draws a new set of parameter values from
the Parameter Space according to its algorithm in each step.
The Transform routine alters the current architecture to the
one encoded by the updated values. The Estimator evaluates
the architecture with specific performance metrics. The
Optimizer uses the evaluation metrics to guide its direction.

We refer the reader to Appendix C for details on the inter-
faces of the framework components, and Appendix B for
the standard framework routines.

3.2 Automatic Search Space Generation

ModularNAS supports automatically generating the search
space from customized architecture by replacing the Stub
modules (inserted as placeholders) with actual modules spec-
ified in the candidate set. By using Stub modules as the
anchor points in the architecture, the Construct routine in-
stantiates and combines the Architecture candidates with
the user-defined architecture to assemble the desired search
space.

Stub module. The Stub module is a placeholder module in
the user-defined architecture. It saves the hyperparameters
and arguments required to build the original network module
in its position, such as the shape of input and output data,
and strides. The information is used in the Construct routine
to determine the correct form of candidate modules.

For architecture with undecided modules to be searched,
instead of binding the candidate modules with the archi-
tecture immediately, we replace the original modules with
Stub modules, which will be converted to the desired set
of candidate modules automatically through Construct and
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Figure 3. Illustration of previous NAS methods and the unified search routine in ModularNAS. In each cycle of the unified routine, the
Optimizer samples parameter values which are used in the Transform routine to alter the architecture states based on previous states.
The Estimator computes the architecture performance metrics which are used by the Optimizer to decide future search steps. The best
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Figure 4. Examples of search space generation using the Stub mod-
ule and architecture candidates. The original module in the archi-
tecture (Module) is replaced with a Stub module. It is then con-
verted to one of the possible candidate modules: Primitives, Mixed
Operators, the original module, Elastic Modules with dynamic
transformations, and Layers with possibly more Stub modules.

Module

Transform routine. By introducing the Stub module, we se-
mantically separate the search space specifications relevant
to the macro architecture, and those determined only by the
search methods and architecture candidates.

Architecture candidates. In architecture search setups,
the candidate set often consists of basic network operators
and repeating building blocks, and may contain overlapping
elements between search scenarios. To reduce the redundant
definition of these candidates and reuse them across use
cases, we define some frequently used network modules
as standard architecture candidates, including basic neural
operators like convolution and network building blocks like
the directed acyclic graph (DAG) (Liu et al., 2019b).

An architecture candidate can be a neural operator, a mixed
operator, a layer with more Stub modules, a group of mod-
ules with dynamic width and depth, or the original network
module, as shown in Figure 4. Detailed definitions and
descriptions of the architecture candidates can be found in
Appendix D.

Default Construct routine. For many search methods,
a default Construct routine is used to generate the search
space. It iterates the Stub modules defined earlier in the
macro architecture, substitutes each with candidate mod-
ules, and assigns an architecture parameter representing the
choice of candidate architectures, with additional handler
functions that control architecture transformation if required.
The resulting architecture parameter space is an abstraction
of the architecture search space, i.e., the set of all possible ar-
chitectures. The mapping between the parameter space and
architecture space is appropriately defined and carried out
in the Transform routine. Details on the default Construct
routine can be found in Appendix B.

3.3 Architecture Transformation

To begin the search process, the Optimizer samples a new
set of the architecture parameters from the generated search
space in the previous subsection. The architecture transfor-
mation takes place upon parameter updates, which alters the
current network’s weights or topology. While early NAS
methods simply define this behavior as the complete recon-
struction of the architecture, new methods propose more
complex transformations such as weight sharing, weight
inheritance, and network morphism.
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Figure 5. Example of transformation routine for the OFA (Cai et al.,
2020) network morphism strategy. The Optimizer samples new
parameters specifying the width and depth of the network. The
Event Manager receives parameter update event and invokes the
corresponding handler functions to transform the network blocks
to target widths and depths.

Transform handler. We notice that transformations are
often local to the mutable parts of the architecture. For exam-
ple, the weight inheritance technique applies to each shared
computation graph node of the child architectures separately.
Therefore, we implement the Transform functionality as in-
vocations of algorithm-specific functions called handlers
that hook onto each architecture parameter.

Transform routine. The Transform routine works by trig-
gering handler functions defined in the Construct step with
an event-based mechanism. When the value of a parameter
is updated, a parameter update event is emitted, triggering
the handler functions that watch this event, which carry out
the architecture transformations. Figure 5 shows an instance
of Transform routine implementing the network transforma-
tions specified in OFA (Cai et al., 2020), where updating
architecture parameters representing the network depth and
width triggers the handlers that transform the current net-
work to the desired dimensions. Details on the Transform
routine are presented in Appendix B.

Formally, let p; be an architecture parameter with name n;,
and Hy, is the handler function that listens on the condition
cy, that is triggered by the update event u; of parameter
p;. When the value of p; changes from v; to v, then u; is
dispatched, invoking Hj, with argument p; and v}. Apart
from watching for a single update, the handler can also be
triggered by updates of multiple parameters. This enables
global transformation of the architecture states, such as re-
initializing the network weights which is the default setting
in some methods. For example, a handler that listens on any
of several parameters updates is triggered by the condition
¢ = (u; V u; V uy), and the condition that triggers upon all
updates is ¢ = (u; A uj A ug).

3.4 Architecture estimation

Once the network is obtained through transformation, the
Estimator may call a user-defined Trainer to train and eval-

uate the network according to the evaluation strategy. The
Estimator then computes the Metrics that reflect the archi-
tecture’s desired property, such as performance, latency, and
energy consumption. The values of the Metrics may fur-
ther be used in a Criterion, which computes the loss w.r.t.
the architecture parameters if they are differentiable. De-
tails on the Metrics and Criterion modules can be found in
Appendix E and Appendix F, respectively.

3.5 Additional features

We implement additional functionalities using standard
framework interfaces to improve the flexibility and scal-
ability of ModularNAS.

Hyperparameter tuning. We implement the hyperparame-
ter tuning process using the same interface as in the architec-
ture search process. Hyperparameters can be configurations
of framework routines or arguments of arbitrary external
programs. The Estimator in a tuning process evaluates the
parameters by running the target process and takes its output
as metrics.

Process Pipeline. We allow chaining search, training, and
hyperparameter tuning processes to form an pipeline. Each
process in the pipeline may depend on the outputs of other
processes. A scheduler executes the processes in topological
order of their dependencies. Pipelines may be nested, with
some sub-processes being pipelines themselves.

Distributed search support. We implement distributed
support for discrete NAS methods, where the main Estima-
tor distributes the architecture evaluation tasks to multiple
remote Estimators and collects the results for the Optimizer.

Hardware-aware NAS support. To measure the hardware
performance such as latency and energy consumption, we
implement a pipeline of hardware performance measure-
ment as a chain of architecture Metrics. A typical example
of pipeline is illustrated in Figure 6.

Export
Metrics

Transform

Hardware

CPU
GPU

Profiling
Metrics

mCPU
mNPU

> Perf
— Predictor

Figure 6. llustration of hardware performance measurement
pipeline. The model specified by the current architecture states
is exported for inference on the target hardware to measure its
computing properties (Tan et al., 2018). Alternatively, a perfor-
mance predictor (Wu et al., 2019) may be used to approximate the
hardware metrics. The measured data is returned to the Estimator
as Metrics results.

Profiling
Stats.

Data
Metrics

Estimator
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4 EXAMPLE SEARCH SPACE

To help illustrate the proposed framework’s usability and
modularity, we show an example code of search setup that
utilizes the framework implementation components. The
backbone architecture is defined using PyTorch (Paszke
et al., 2019). Suppose we want to find the optimal kernel
size of a convolution layer in a ConvNet from the range
of {3,5, 7}. First, we replace the convolution with a Stub
module (called Slot in the framework API), while keeping
all the initial arguments.

1 # op = Conv2d(chn_in, chn_out, stride)
2 op = Slot(chn_in, chn_out, stride)

YAML config:
mixed_op:

6 primitives:
7 mmm

W

['NC3"',

1 # op = Conv2d(chn_in, chn_out, stride)

2 op = Slot(chn_in, chn_out, stride)

3 def handler(v):

| op.set_entity(Conv2d(chn_in, chn_out, stride,
kernel_size=v))

Figure 9. Example code for using the mixed operator.

and starts the search routine. Switching between different
components is done by simply changing the configuration.
Figure 10 shows a typical example of a search configuration.

5 p = Categorical([3, 5, 7], on_update=handler)

Figure 7. Example code for simple search space definition.

In our framework, there are two basic ways to support this
setup. The simplest way is to replace the Stub module with
convolutions of different kernel sizes on each parameter
update, as shown in line 4 of the example code in Figure 7.

from modnas.registry.arch_space import build
# op = Conv2d(chn_in, chn_out, stride)
op = Slot(chn_in, chn_out, stride)
def handler (v) :

op.set_entity (build(v))
6 p = Categorical(['NC3', 'NC5',
handler)

(S RV R

'NC7'], on_update=

I data:

2 type: ImageNet

3 estim:

4 train:

5 type: DefaultEstim
6 epochs: 120

7 search:

8 type: SubNetEstim
9 epochs: 1000

10 trainer:

11 default:

12 type: ImageClsTrainer
13 optim:

14 type: RandomSearchOptim
15 mixed_op:

16 primitives:
17 model:

18 type: MobileNetV2
19 args:

20 num_classes: 1000

['NC3', 'NC5', 'NC7']

Figure 8. Example code for predefined candidate set.

Another solution is to use the predefined candidate sets in
the framework. The framework contains out-of-the-box can-
didate architectures such as operator primitives, layers, and
several mixed operators described in several NAS literature.
The example code is presented in Figure 8. We use identi-
fiers to refer to the registered architecture candidates, where
“NC3” stands for regular convolution with 3x3 kernel.

When using mixed operators, the transform handler is no
longer required as the mixed operators select the correct
candidates in the model’s forward pass. The explicit dec-
laration of architecture parameter is also omitted since it
is already defined within each mixed operator. This makes
the search space definition even more straightforward, with
only the declaration of Stub modules present, as shown in
Figure 9. The default Construct behavior converts the Stub
modules to mixed operators with specified candidates.

Once the search space is defined, a search procedure can be
set up from a YAML configuration file containing the set-
tings for all NAS components used in the search. A wrapper
function initializes each component from its configuration

Figure 10. Example YAML configuration file for a search pro-
cedure, where the random search is applied on the Mo-
bileNetV2 (Sandler et al., 2018) search space using SPOS (Guo
et al., 2019) estimation strategy (training hyperparameters are omit-
ted for brevity). The evolution algorithm can be used instead by
changing the value “RandomSearchOptim” to “EvolutionOptim”.

S EVALUATIONS

This section evaluates the modularized NAS implementa-
tions, hardware efficiency support, and framework usability
in ModularNAS through comprehensive experiments.

5.1 Experiments on Modularized NAS Methods

To showcase the ability to reuse the implementations of
architecture search space, search algorithm, and evaluation
strategies using ModularNAS, we present a series of exper-
iments on combinations of several search spaces, search
algorithms, estimation strategies, and datasets. An extended
list of combinations and results can be found in Appendix H.

Image classification task. We select several image clas-
sification datasets such as CIFAR-10 (Krizhevsky, 2009),
CIFAR-100 (Krizhevsky, 2009), and ImageNet (Deng et al.,
2009) as benchmark datasets.
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Table 3. Search results on the image classification task.

Dataset ? rch.— Top-I Search Method
pace (%)
97.20 DARTS (Liu et al., 2019b)
1 97.03 Proxyless-G (Cai et al., 2019)
Cl0 Celll 9689 SNAS (Xie et al., 2019)
97.45 StacNAS (Li et al., 2019)
79.38 DARTS
80.79 DARTS (one-level)
79.96 Proxyless-G
Cell  80.29 Proxyless-GU?
80.76 SNAS
81.36 SNAS (bi-level)
C100 83.25 StacNAS
72.64 Original
71.91 DARTS
72.02 DARTS (one-level)
MbV2 7226 Proxyless-G
72.45 Proxyless-GU
72.32 CARS (Yang et al.,
2019)+Random
73.24 SPOS (Guo et al.,
2019)+Random
MbV2  72.49 Original
74.25 Baseline
75.61 Proxyless-G
75.62 Proxyless-GU
MbV2-L? 75.16 DARTS
ImgNet 75.75 DARTS(one-level)
74.93 SPOS (Guo et al., 2019) +
Random
75.00  SPOS + RE (Real et al., 2018)
73.58 Random*
76.97 Original
76.78 DARTS (one-level)
Res-50  77.09 DARTS
76.74 Proxyless-G
76.71 Proxyless-GU

The search space follows DARTS (Liu et al., 2019b) CIFAR-10 settings.

1
2 Uniformly sampling candidate paths in the model forward pass.

3 The search space follows ProxylessNAS (Cai et al., 2019) ImageNet settings.
4

Averaged results from 8 architectures sampled from the search space.

Voice recognition task. We use a customized voice recog-
nition dataset containing extracted voiceprint features of
human audio samples recorded in different scenarios. The
task is to classify each voiceprint sample into three cate-
gories based on the speaker’s characteristics.

Recommendation task. We choose Avazu!, a Click-
Through Rate (CTR) prediction challenge on Kaggle, as
the recommendation task.

NAS Benchmarks. We evaluate several discrete search
algorithms on NAS benchmark datasets such as NAS-
Bench101 (Ying et al., 2019), which contains all architec-
tures’ evaluation metrics in a fixed search space.

"https://www.kaggle.com/c/avazu-ctr-prediction

Table 4. Search results on the voice recognition task.

Arch. Top-1

Space (%) Search Method

Res-34 96.58

Res-40 96.90 Original

Pym-34 (Han 96.94
etal., 2017)

97.11 DARTS
97.05 Proxyless-G

Res-34 96.99 SPOS+RE
96.87 CARS+RE

Table 5. Search results on the recommendation task.

Arch.

S AUC Search Method
pace
DeepFM (Guo 0.7833 .
etal., 2017) Original
DCN (Wang 0.7823
et al., 2017)
0.7832 Random'
Multi-branch 0.7862  Subnet (Zoph & Le, 2016)
+ Random
0.7836 DARTS
0.7823 Proxyless-G

! Averaged results of 6 architectures sampled from the search space.

Search space. For the image classification task, apart from
the cell-based search space frequently used in various NAS
literature (Zoph & Le, 2016; Liu et al., 2019b; Xie et al.,
2019), we also use the ResNet50 (He et al., 2016) and Mo-
bileNetV2 (Sandler et al., 2018) as the macro architecture
to generate the search spaces. For MobileNetV2 architec-
ture, we follow ProxylessNAS (Cai et al., 2019) and search
for kernel size and expansion ratio of the convolutions in
each residual block. For the ResNet search space, the candi-
date set is defined as convolutions with kernel size ranging
from {3, 5, 7}. For the voice recognition task, ResNet-34 is
used as the macro architecture, and variants of ResNet basic
blocks are chosen as candidates. We use a multi-branch
network for the recommendation task, and search for fea-
ture interaction layers, including inner product (Qu et al.,
2019), outer product, and MLPs. Detailed descriptions of

Table 6. Search results on the NASBench101 dataset.

Top-1 (%) Search Method
94 .47 NRE (Real et al., 2017)
94.47 RE (Real et al., 2018)
94.23 XGBoost (Chen & Guestrin, 2016) +

SA (Pincus, 1970)

94.18 MLP (Pedregosa et al., 2011) + SA
93.95 Linear (Pedregosa et al., 2011) + SA
94.11 XGBoost + Random Sampling
93.85 Random
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the search spaces can be found in Appendix G.

Search algorithms. We select several well-recognized
gradient-based and discrete search algorithms for reproduc-
ing and benchmarking. RE refers to Regularized Evolu-
tion (Real et al., 2018), and NRE refers to normal evolu-
tion (Real et al., 2017). SA stands for Simulated Anneal-
ing (Pincus, 1970) for finding the optimum in the surrogate
models, which can be Gradient Boosting Decision Tree (XG-
Boost) (Chen & Guestrin, 2016), Multi-layer perceptron
(MLP) (Pedregosa et al., 2011) and Linear regression (Pe-
dregosa et al., 2011), respectively. RS refers to random
search. Additional descriptions of supported discrete search
algorithms can be located in Appendix G.3.

Evaluation strategies. A subset of training data (50000
samples for ImageNet, 20% for CIFAR and other tasks) is
held out as the validation set for search algorithms that em-
ploy bi-level optimization. A default one-shot training strat-
egy is used for gradient-based algorithms where network
weights and architecture parameters are trained alternatively
between data batches. For discrete algorithms, different ar-
chitecture evaluation strategies are used. In SPOS (Guo
et al., 2019), child architectures are sampled uniformly
and trained to share the weights of common modules. In
CARS (Yang et al., 2019), the training and searching of child
architectures alternate in each step. Details on more sup-
ported evaluation strategies are presented in Appendix G.4.

Results. We summarize the search experiments results in
Table 3, Table 4, Table 5, and Table 6, showing the perfor-
mance of optimized architectures with the search strategies
used. For each task and search space, the evaluated search
strategies find architectures that surpass the original or ran-
domly selected ones. Several insights are: (a) on search
algorithms: Gradient-based algorithms using one-level opti-
mization perform better than their bi-level counterparts. Ge-
netic algorithms outperform other discrete algorithms by a
large margin. (b) on evaluation methods: The one-shot train-
ing does well in estimating architecture performance using
the least training time, while SPOS allows running multiple
searches with one-time training. (c) on search spaces: Large
convolution kernels contribute to performance boost in Mo-
bileNetV2 search space while the ResNet architectures are
not sensitive to the kernel size.

Our framework enables efficient and consistent analysis on
novel combinations of optimization strategies which might
be neglected in previous works. For example, by replacing
the sampling strategy in ProxylessNAS with uniform sam-
pling, ProxylessNAS-GU achieves higher accuracy in CI-
FAR100 experiments compared to ProxylessNAS by 0.2%-
0.3% in multiple search spaces. On the other hand, our
framework can be used to find the best performing strategy
given search space and task. For example, the ResNet-50
search space favors DARTS as search algorithm.

5.2 Experiments on Pareto Optimal Search

Apart from searching for one architecture with the best ac-
curacy, we also explored Pareto optimal architecture search
with multi-objective discrete search algorithms, such as
genetic algorithms or even random search. We show the fea-
sibility of finding the best architecture for multiple deploy-
ment scenarios on any given search space by using multiple
non-dominating Metrics as objectives for the Optimizer.

Experiment Details. We use the SPOS evaluation method
to estimate the MobileNetV2 architecture performance on
the ImageNet dataset where 10% of the training data is held
out as the validation set. The latency Metrics are used for
each deployment platform, which measures and predicts the
latency on the target device. 5000 architectures are sampled
for each combination of Metrics.

Results. We compare the curves of the Pareto fronts in each
setting and their accuracy/efficiency trade-off on the target
hardware platform, as presented in Figure 11. The conclu-
sion can be derived that the FLOPs metrics help find more
efficient architectures on multiple platforms with compara-
ble performance. On the other hand, the hardware-specific
latency objective contributes to further improvements to the
Pareto fronts of the corresponding scenario.

5.3 Evaluation on Framework Usability

We evaluate the usability of several NAS frameworks in
terms of performing search on user-defined tasks.

Experiment settings. The voice recognition task in previ-
ous evaluations is selected as the target task, which includes
a customized search space based on ResNet-34 (He et al.,
2016) and user-defined data loading, training, and evaluating
procedures based on PyTorch (Paszke et al., 2019). We use
the interfaces provided in several NAS frameworks to imple-
ment the same NAS setups, including search space, search
strategy and procedure, and compare the typical source lines
of code (in Python) needed to run NAS procedures using
each framework. We select three search setups represent-
ing some commonly used NAS methods: Setup A adopts
random search strategy while trains each architecture from
scratch (Zoph & Le, 2016). Setup B trains a supernet using
ProxylessNAS (Cai et al., 2019) method. Setup C applies
random search with network transformations modifying the
network depth and width (Cai et al., 2020).

Results. The evaluation results are summarized in Table 7.
DeepArchitect (Negrinho et al., 2019) implements subnet-
based search via a search space description language but
fails to support supernet and other efficient search methods.
NNI (Microsoft, 2019) requires manually binding the ar-
chitecture candidates with the network mutables, and use
different interfaces in NAS methods that requires adaptation.
The ModularNAS framework reduces the amount of work
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Figure 11. Results on Pareto optimal search using multiple Metrics as objectives. Compared to a single architecture with the best accuracy,
we find a curve of architectures that improves the trade-off between performance and efficiency in different deployment scenarios.

Table 7. Evaluation results on framework usability.

#LOC
Search ~ Setup Setup Setup
Framework Space! A? B3 ct
(None) N/A 150 200 > 500
DeepAurchitect 50 20 N/A N/A
NNI 30 15 15 200
ModularNAS | < 10 0 0 25
1 Search space implementation using framework interface.
2 Random search with each subnet trained independently (Zoph & Le, 2016).
3 Train a super network with the ProxylessNAS method (Cai et al., 2019).
4

Search for network depth and width as in OFA (Cai et al., 2020).

required to define a search space on a customized macro
architecture using automatic search space generation. No
adaptation is needed to switch to different setups since NAS
components are modularized and interchangeable.

6 RELATED WORK

Neural Architecture Search. As pointed out in (Elsken
et al., 2019), there are three distinct components of the
NAS methods: the search space design, the search algo-
rithm, and the evaluation strategy. Different realizations of
these three components compose the current NAS literature.
For example, using the cell-based search space, the aging
evolution and retraining of candidate architecture give the
AmoebaNet (Real et al., 2018). As mentioned above, most
of the current NAS methods utilize speedup techniques like
weight sharing for computational efficiency. Although effi-
cient in execution, these strategies do not have a shared code
base. Thus, they are often specific to their use cases, hinder-
ing their applications on customized cases, motivating us to
develop a NAS framework that overcomes this difficulty.

NAS Frameworks. Several works propose frameworks
that try to generalize architecture search implementations
to employ them on customized search space. DeepArchi-

tect (Negrinho et al., 2019) describes the search space as
a dependency graph of hyperparameters. However, it only
serves as a general search space programming language and
is entirely agnostic about the details on architecture evalua-
tion and transformation. NNI (Microsoft, 2019) proposes
to define mutable regions in an architecture. While it sup-
ports efficient evaluation strategies like weight sharing, it
achieves that in an ad-hoc and inconsistent way, with archi-
tecture parameters treated as weights in some cases (Liu
et al., 2019b) and hyperparameters (Pham et al., 2018) in
others. Moreover, it does not reuse architecture candidates
and still fails to provide unified interfaces for evaluation,
resulting in code redundancy and reimplementation.

7 CONCLUSION

We present ModularNAS, an architecture search framework
that enables modularization and reuse of NAS solutions,
reducing the amount of work for building NAS pipeline on
customized tasks to few lines of code. With a well-defined
unified formulation of existing NAS methods and automatic
search space generation, different combinations of optimiz-
ing and evaluation strategies applied to customized architec-
tures are made tractable using our framework. The flexibility
and reusability of ModularNAS is verified through extensive
experiments with multiple tasks and strategies.

For future works, we plan to (1) incorporate more search
spaces used in other deep learning tasks, (2) integrate more
variants of efficient NAS methods, (3) support deployment
for more search scenarios such as federated learning, where
architecture evaluation and optimization can be done on
edge devices and data centers separately.
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A  UNIFIED FORMULATION EXPLAINED
A.1 Relation to RL

We note that the unified NAS process resembles the agent-
environment loop in Reinforcement Learning literature. The
optimization function 2 acts as the agent and the architec-
ture space as the environment. The transition function §
defines the state transition of the environment. The eval-
uation function 1 computes the architecture metrics in R,
which serve as the reward of the agent. The environment
can be stateless if no intermediate reward is available for
the agent.

A.2 Formulation of NAS methods

We express several types of NAS and other architecture
refining methods using the unified NAS formulation.

Predictor based. For methods that speed up the evaluation
of architectures through the use of architecture performance
prediction or extrapolation(Baker et al., 2018; Luo et al.,
2018), or a lookup table of all evaluated architectures(Ying
et al., 2019; Dong & Yang, 2020), the architecture states no
longer represent the actual network model. Instead, we as-
sign v as the internal representation of current architecture
in the predictor or the LUT, and 7 as the predictor func-
tion that returns performance of architecture by calling the
predictor or looking up the records.

Model compression & pruning. The NAS process is
closely related to the model compression and pruning pro-
cess. Several methods propose iterative modification and
retraining of the target network model(He et al., 2018; Han
et al., 2016; Ashok et al., 2018; Yang et al., 2018), which
naturally fit our formulation. In such cases, .4 stands for the
action space of operations, the transformation step J carries
out the specific operation such as pruning or compression,
and the update step w and evaluate step 7 fine-tunes the
modified architecture states and evaluates the rewards for
the operation, respectively.

Search space transition. In some search space designs(Jin
et al., 2019; Negrinho & Gordon, 2017), some architec-
ture parameters are dependent on other parameters, and the
search space is spontaneously transformed according to as-
signed parameters before reaching the terminal state. In
this case, the search space transformation is defined through
transition functions that map a search space to smaller ones.

In this work, we do not explicitly define the transition of
search space. We define the transition of architecture states
as triggered by parameter updates in the terminal search
space only, which does not affect the universality of our
formulation since the transformation of architectures only
depends on the values of final architecture parameters rather
than their dimensions. To support sequential decisions in

search algorithms, we provide an interface to iterate through
unresolved architecture parameters in the current search
space until all parameters have been assigned values.

B ROUTINES

We present the detailed description of standard routines used
in the ModularNAS framework, namely the Search routine,
Construct routine, and the Transform routine. We explain
the Estimator step and Optimizer step in the next section.

Search routine. A complete search run begins with the
generation of search space via Construct routine and ini-
tialization of the architecture states and parameters. Then
the search process is carried out through interactions of the
Estimator step, Optimizer step, and Transform routine in
each cycle.

Construct routine. We define the default behavior of the
Construct routine as converting each Stub module in the
backbone into an actual module specified by the candidate
set. The corresponding architecture parameters are added to
the Parameter Space. Alternatively, a customized Construct
routine may be used without using the Stub modules.

Transform routine. The Transform routine carries out
architecture transformation through handler functions. It
creates an update event for each updated architecture pa-
rameter. Then it polls the handler function triggers to find
matching triggering conditions. Finally, the corresponding
handler functions are invoked with the updated parameters,
and the Transform routine ends. Note that conditions that
cover more update events have higher priorities over ones
with less triggering events. Thus global transformations will
override the local ones if triggered at the same time.

C PROGRAMMING INTERFACE

We describe the interfaces and behaviors for each modu-
lar component in the ModularNAS framework. We refer
the reader to https://modularnas.readthedocs.
io/ for detailed documentation.

C.1 Parameter Space

The architecture parameter space provides access to the
architecture parameters, such as searching by name, modi-
fying values, insertion, deletion, and iteration.

An architecture parameter has some basic properties: its
name as the unique identifier in the parameter space, and its
data type that determines the type of its value.

Categorical parameter. A Categorical parameter contains
unique identifier strings as parameter values, often used in
discrete algorithms.
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Algorithm 2 Search routine in ModularNAS
Input: Backbone B, Stubs S, Candidate sets C'
Output: best architecture parameter P*

: V, A, H,T < CONSTRUCT(B, S, C)

: v < INITIALIZEARCHSTATES(V)

: p < INITIALIZEARCHPARAMS(A)

: while not EXITCRITERION(n) do

n,r <— ESTIMATOR.STEP(n)
RECORD(p, 1)

p < OPTIMIZER.STEP(p, r, A)

v <= TRANSFORM(v, p, H,T)
return parameter p* with best metrics r*

P RN RPN

Algorithm 3 Construct routine

Algorithm 4 Transform routine

Input: Backbone B, Stubs S, Candidates C
Output: V, A, H' T
VA HT <+
for s; in S do
m;, V; < DEFINEMODULE(s;, B, C;)
A;, h;,t; < DEFINEPARAM(s;, B, C};)
V«VxV
A+ AxA;
H+ HU {hz}
T+ TU {ti}

SUBSTITUTE(s;, m;)
return V, A, H,T

Input: v,a, H,T
Output: new architecture states v’

v={v;}

a={a;}

H = {hy}

T = {ty}

U < {u; = True} for o; in
v —

for hj in PRIORITYORDER(H) do
if t,(U) is True then
v hg(a,v")
return v’

Figure 12. Standard routines in ModularNAS framework. Top: unified Search routine for NAS process. Left: Construct routine for
generating search space. Right: Transform routine for modifying architecture states according to the updated architecture parameter

values.

Tensor parameter. A Tensor parameter contains a tensor
with a given shape and data type that can be differentiable,
often used in gradient-based algorithms.

Numerical parameter. A Numerical parameter contains
a number in float point or integer type as its value, used in
Bayesian optimizations and hyperparameter tuning space.

C.2 Optimizer

The Optimizer provides two interfaces: NEXT proposes the
next set of parameter values to be evaluated, and STEP up-
dates the Optimizer states according to the last parameter
values and the Metrics results in the Estimator. See Fig-
ure 13 for examples of search algorithms implemented as
Optimizer modules.

Discrete algorithms. We show an example of Evolu-
tion(Real et al., 2017) search algorithm to represent search
algorithms that work on discrete parameters. At initial-
ization, the population is filled with random architecture
parameter values with no metrics. The NEXT function re-

turns the next set of parameter values that have not been
evaluated. In STEP function, the evaluated parameters are
added to the population queue. Once all the individuals
are evaluated, the algorithm produces the next generation
through a sequence of genetic operations such as Survival,
Selection, Crossover, and Mutation.

Gradient-based algorithms. In gradient-based algorithms,
the Estimator provides the results of the Criterion modules,
which are backward propagated to obtain the gradient of the
architecture parameters. The tensor optimizer specified in
the gradient-based Optimizer will update the architecture
parameters according to the gradients.

C.3 Estimator

Once the architecture is obtained through transformation,
the Estimator updates its states and uses Metrics compo-
nents to compute the desired property of the architecture,
such as performance, latency, and energy consumption. The
estimation strategy decides how the Estimator update the
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Algorithm 5 Evolution Optimizer

Algorithm 6 DARTS Optimizer

1: P«

2: function INITIALIZE(V)

3: P < INITIALIZEPOPULATION(/V)
4: function NEXT

5 return first « for (o, 0)) in P

6: function STEP(c, 1)

7 Add (a,7) to P

8 if all «; in P have metrics r; then
9 while || P|| < N do

10: P < SURVIVAL(P)
11: P < SELECTION(P)
12: P < CROSSOVER(P)
13: P < MUTATION(P)

1: function INITIALIZE(n)

2: Initialize tensor optimizer
3: function NEXT

4: for «; in current o do

5: copy «; to graph node
6: return o

7: function STEP(c, 1)

8: Virtual step

9: Compute loss L

10: Compute grad g of o
11: Compute hessian [
122 gi+gi—E&H;
13: Tensor optimizer step

Figure 13. Example of Optimizer implementations. Left: Optimizer that employs an Evolution(Real et al., 2017) algorithm. Right:
Optimizer that implements DARTS(Liu et al., 2019b) algorithm, where a virtual training step and second-order approximation is applied.

architecture states. A Criterion module may use the Metrics
results to compute the gradient of the architecture param-
eters in gradient-based methods. Details on the Metrics
and Criterion modules can be found in Appendix E and
Appendix F, respectively.

D ARCHITECTURE CANDIDATES

The backbone models and candidate architectures are de-
coupled and registered as shared components which can
be reused in different experiment settings, including some
frequently used neural operators such as convolutions, and
building blocks such as residual blocks. The correct config-
uration for each candidate module, such as input and output
data shape, can be retrieved from the stub modules defined
in the backbone architecture, which contain the same con-
figuration used to construct the original modules.

Primitive. We define the primitive to be any architecture
module that does not include stub modules or candidate
modules and can be determined by the input and output
data sizes. Given the primitive type, the Construct func-
tion will choose the correct primitive to construct using the
information stored in the stub module.

Mixed Operator. A mixed operator contains a list of candi-
date operations. The output of a mixed operator is computed
using the output of some number of the candidate operations.
We implement the mixed operator as a network module that
can be converted from Stub provided with a list of primi-
tives.

Layer. A layer is a primitive that can have stubs as its
submodules. The framework supports chaining several con-
structor functions that hierarchically convert each Stub to a

layer of primitives. Some predefined layers include Direct
Acyclic Graph(Liu et al., 2019b) layer, Tree layer(Cai et al.,
2019), and Multi-branch(Szegedy et al., 2015) layer.

Elastic Spatial & Sequential Group. The Elastic Spatial
Group is a group of Transform handlers that support dynami-
cally changing the width (channels) of architecture modules
during runtime. On the other hand, the Elastic Sequential
Group changes the depth of the network model by skipping
some nodes in the computation graph. The target width and
depth can be determined by architecture parameters, making
them accessible to the Optimizer.

An Elastic Spatial Group modifies the number of channels
of a single hidden layer (feature map). It manages two kinds
of layers: fan-out layers, to which the hidden layer is the
output, and fan-in layers, to which the hidden layer is the
input. When setting some channels of the hidden layer as
active ones, the group temporarily reduces the dimensions
of the weights in the fan-out and fan-in layers, so that they
behave like the same layer with inactive channels reduced.
Given the target number of channels, the index of the active
channels can be determined in several ways. These include
using extra parameters as attention, L1-norm of fan-in layer
weights, or affine parameters in middle normalization layers.

An Elastic Sequential Group takes several groups of net-
work modules and temporarily replaces some with identity
operations, resulting in reduced network depth.

E METRICS

A Metric module computes a property of the architecture
during Estimator evaluation. Metrics provide an interface
named COMPUTE, which evaluates the properties of a given
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target. Metrics can be nested, where outer Metrics collect
the results of the inner Metrics on multiple modules or
objects as inputs.

E.1 Traversal Metrics

One of the essential metrics is the traversal metrics, which
iterate over all modules in the architecture and collects the
properties of each module by calling the internal metrics.

E.2 Computational Metrics

We implement a profiling utility that measures several com-
putational properties of network networks, including FLOPs,
memory access, parameters count, at the graph node level.
We then import these functionalities in ModularNAS as
internal Metrics that operate on individual modules in a
network model.

E.3 Hardware Metrics

Some properties of the architecture are related to the hard-
ware where it is deployed, such as latency and energy con-
sumption. To measure such properties, we implement a
pipeline of hardware performance measurement via a chain
of Metrics.

Export Metrics. The export Metrics converts and saves
the current architecture in the form supported by the tar-
get hardware. It also makes use of commonly used model
formats like ONNX(Bai et al., 2019).

Profiling Metrics. The profiling Metrics runs the converted
architecture on the target device(Tan et al., 2018) and returns
its runtime performance statistics.

Data Metrics. The data Metrics collect the performance
data to provide the correct results for different inquiries. It
can also use data sources like lookup tables and hardware
performance predictors(Cai et al., 2019; Wu et al., 2019) or
simulators.

F CRITERION

The Criterion module computes the loss function of the
network model using the input data, model output, and the
architecture states, such as the results of some Metrics. Dur-
ing training, the loss can be computed through a sequence
of multiple criterion components, with each Criterion tak-
ing the input data pair, the model output, and the previous
Criterion output as its input. Criterion modules may also be
nested.

Task-specific Criterion. We register task-specific loss
functions as primary Criterion modules, such as cross-
entropy loss and mean-squared error loss. This type of
Criterion comes as the first in a Criterion sequence. Thus

they only require the input data and model output.

Aggregate Criterion. The aggregate criterion takes a value
from a Metrics and put it together with the loss value of the
previous Criterion. Methods of aggregation include addition,
multiplication, and multiplication by the logarithmic.

Special Criterion. Some criterion manipulates the inputs
before computing the loss value. For example, we imple-
ment the MixUp(Zhang et al., 2018) as a Criterion that
mixes one data pair with another. We also implement the
Knowledge Distillation(Hinton et al., 2015) as a Criterion
that uses the logits of a teacher model as ground truth.

G DETAILS ON EXPERIMENT SETTINGS
G.1 Search Space Settings

Cell-based. Following DARTS(Liu et al., 2019b), the cell-
based search space consists of 8 stacked convolutional cells,
each containing seven nodes and 14 edges. Reduction cells
are located at the 1/3 and 2/3 of the network depth. The
architecture parameters represent the choice for each edge
in normal and reduce cells, which sums to a total of 28
architecture parameters in the search space. The initial
number of channels in supernet is 16 and is increased to 32
in final architecture. The number of cells is also increased
to 20. The set of candidate operations is kept the same
as in previous works, where operators are arranged in the
ReLU-Conv-BN order.

MobileNetV2 backbone. For MobileNetV2(Sandler et al.,
2018) backbone, we follow ProxylessNAS(Cai et al., 2019)
settings and replace the convolutions of every residual block
as Stub modules to search between convolutions of different
kernel size (3, 5, 7) and expansion ratio (1, 3, 6). We insert
zero operation in the candidate set to represent a reduction
in network depth. We exclude the first residual block from
the search space.

MobileNetV2-Elastic. We provide another search space
based on MobileNetV2(Sandler et al., 2018) backbone with
elastic width and depth. We use the Elastic Spatial Group
transformations on the output feature map of the depthwise
convolution in every residual block and search between
expansion ratios (1, 3, 6). We use the Elastic Sequential
Group transformation on each bottleneck stage and search
for different repetitions of blocks (1, 2, 3, 4). We exclude
the first residual block from the search space. We fix the
kernel size at 3x3 for all depth-wise convolutions.

ResNet backbone. For ResNet(He et al., 2016) backbone,
we replace all the 3x3 convolutions in each residual block
as Stub modules, and we define the candidate set as con-
volutions with kernel size ranging from 3, 5, and 7. We
include depthwise-separable convolutions(Chollet, 2017) in
an extended candidate set.
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CTR model. We design a Xception(Chollet, 2017) like
multi-branch feature interaction network as the base model
for CTR prediction task. For intermediate layers, we se-
lect implicit feature interactions as candidates which pro-
duce output with the same shape as the input. For exam-
ples, inner product (IP), Hadamard product (HP), and cross
product (OP) with linear resize layers, MLP, Cross layer in
DCN(Wang et al., 2017), and CIN layer in xDeepFM(Lian
et al., 2018). The branch outputs are summed to obtain the
prediction.

G.2 Training Settings

Cell-based on CIFAR-10/100. For the supernet in
cell-based search space, we followed training settings in
DARTS(Liu et al., 2019b). The weight parameters are op-
timized using SGD, with initial learning rate 0.025 with
cosine annealing schedule(Loshchilov & Hutter, 2017), mo-
mentum 0.9, weight decay 3e-5, and gradient clipping 0.5.
The batch size is set to 64. For the final architecture training,
we set the training batch size to 96 with Cutout(Devries &
Taylor, 2017) of size 16, and train for 600 epochs using
the auxiliary loss of ratio 0.4, and DropPath(Larsson et al.,
2017) of rate 0.2.

MobileNetV2 on ImageNet. For the MobileNetV?2 back-
bone, we set the base batch size to 256, and use SGD opti-
mizer with learning rate 0.05 (annealed to zero with cosine
schedule), Nesterov momentum 0.9, and weight decay 4e-5.
We train the final architecture for 150 epochs with label
smoothing. We linearly scale the batch size and learning
rate to 8 Tesla V100 GPUs in parallel.

CTR model on Avazu. For the CTR prediction model, we
follow common training settings and use Adam(Kingma
& Ba, 2015) optimizer with learning rate set to 0.001 and
decaying exponentially at the rate of 0.85. The model is
trained for one data epoch.

G.3 Search Algorithm Settings

DARTS. For DARTS(Liu et al., 2019b) search algorithm,
we use Adam(Kingma & Ba, 2015) as optimizer for tensor
architecture parameters, with learning rate 3e-4, momen-
tum (0.5,0.999) and weight decay 0.001. We disable the
unrolling step and second-order approximation in one-level
optimization cases. We set the search epochs to 50 for
bi-level settings, and 80 for one-level settings.

ProxylessNAS. For ProxylessNAS(Cai et al., 2019) algo-
rithm, we use Adam as parameter optimizer with learning
rate 0.006, momentum (0,0.999) and zero weight decay.
We sample two candidate paths for each choice block in the
search step and rescale the architecture parameters after the
update.

SNAS. For SNAS(Xie et al., 2019) algorithm, we use the

same optimizer settings as in DARTS, and set the initial
annealing temperature to 5.0, with exponential annealing
rate 7.5e-5 per mini-batch data, or 4.5e-2 per epoch.

Genetic Algorithms. We implement an evolution algo-
rithm(Real et al., 2017) with typical settings. We set the
population size to 100, with the number of elimination set
to 1, the number of selection set to 10, mutation probability
set to 0.01. We set two parents and one offspring for each
crossover operation. We also implement Regularized Evolu-
tion(Real et al., 2018) that eliminates the oldest individuals.

SMBO methods. We implemented SMBO algorithms
where an Acquire method finds the global maximum in
the performance prediction model trained from history data
in search process. We use Simulated Annealing(Pincus,
1970) and random sampling as acquire methods. For pre-
diction models, we use GBDT methods in XGBoost(Chen
& Guestrin, 2016) and linear models like MLP and Linear
regression in Scikit-learn library(Pedregosa et al., 2011).

Bayesian optimization. We use Bayesian optimizations
in hyperparameter tuning process. Specifically, we use the
Gaussian Process estimator provided in the Scikit-optimize
library(Head et al., 2018).

G.4 Evaluation Strategy Settings

SPOS strategy. The single-path one-shot (SPOS) strat-
egy(Guo et al., 2019) trains each child architecture sampled
from a uniform distribution in the training process. In the
search process, each child architecture inherits weights from
shared nodes and is evaluated without retraining. We per-
form batch normalization sanitization for each architecture,
i.e., we use training data to recalculate the moving average
and variance of BN layers to restore the distributions of
intermediate feature maps. We set the training epochs to
1000 for ImageNet experiments, and 800 for CIFAR10/100
experiments.

CARS strategy. The training process in CARS(Yang et al.,
2019) alternates with the architecture search process, where
architectures sampled in each search step are trained for sev-
eral epochs before evaluation. We use the same Estimator
component to implement the CARS and SPOS strategy, ex-
cept the number of training epochs for sampled architectures
is zero in the CARS strategy. We apply uniform warm-up
training before the search stage.

PS strategy. The progressive shrinking (PS) strategy pro-
posed in Once for All(Cai et al., 2020) arranges architectures
according to the model size, such as width and depth. Then
the sampling and training are carried out in descending or-
der, from larger networks to smaller ones nested within.
We follow OFA settings and reorder the convolution param-
eters in channel dimension according to the L1 norm in
each training stage, while we disable the knowledge distil-
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lation(Hinton et al., 2015) in our experiments. We employ
BN sanitization for each child network during the search
process. This strategy is only used in architecture space
featured with elastic transformations such as dynamic width
and depth.

H ADDITIONAL EXPERIMENT RESULTS
H.1 Evaluation on Search Time Penalty

Our framework achieves modularity of the search space
through procedural search space generation and event-
triggered network transformation in Construct and Trans-
form steps, which results in extra network structures and
function calls and may increase search time.

We measure the training and inference time of networks
generated from Constructors and found no significant differ-
ence between networks specified by fixed code of the same
functionality. As a result, the search time remain mostly
the same regardless of using the framework or not. On the
other hand, the evaluation step specified by the user-defined
trainer consumes most of the time in a search procedure.
Thus, no significant search time penalty is introduced by
framework modularity.

H.2 Experiments on Additional Datasets

We migrate the MobileNetV2 backbone experiments to
more image classification datasets to verify the general ef-
fectiveness of the search algorithms on different tasks.

Dataset details. Tiny-ImageNet-200 is a downsampled
subset of the ILSVRC2012 dataset(Deng et al., 2009), which
contains 200 selected image classes, with 500 training sam-
ples and 50 validation samples for each class. The images
are downsampled to 64x64. Alternatively, We randomly
select 100 classes with 800 original training images each
to form the ImageNet-Sub-100 dataset. The images are
cropped to 224x224 in the search process.

Experiment details. We use the MobileNetV2 search
space settings in ProxylessNAS(Cai et al., 2019). We use
the same Optimizer and Estimator settings as in ImageNet
experiments. For SPOS(Guo et al., 2019) strategy, we sam-
pled 5k architectures for each search algorithm except the
last random search run, with 20k architectures sampled.

Results. We summarize the final validation results of found
architectures in Table 8. We further evaluate the effective-
ness of architecture estimation through proxy dataset by
select the best architectures found on each dataset and train
them on the full ILSVRC2012 dataset. The results are
reported in Table 9. Compared to the downsampled Tiny-
ImageNet-200 dataset, the ImageNet-Sub-100 dataset with
full resolution and fewer classes serves as a better proxy for
finding architectures with higher performance.

H.3 Experiments on Elastic Groups

We validate the implementation of Elastic Groups by using
them to build a search space that contains architectures of
different width and depth. We then use various combina-
tions of Optimizers and Estimators to search for the best
architecture. See MobileNetV2-Elastic in Appendix G.1 for
the search space definitions.

Results. We summarize the results in Table 10. We con-
clude that search algorithms prefer larger architectures with
PS evaluation strategy than with SPOS strategy, which
shows the effectiveness of PS in preserving the accuracies
of larger subnets. However, this search space contains archi-
tectures mostly smaller than the original models. Without
the use of knowledge distillation(Hinton et al., 2015), child
architectures are always inferior to the baseline model.

H.4 Visualization of Gradient-based algorithms

We visualize the variation of differentiable architecture pa-
rameters in each training epoch using several supported
gradient-based algorithms: DARTS(Liu et al., 2019b),
SNAS(Xie et al., 2019), and ProxylessNAS-G(Cai et al.,
2019).

Experiment settings. We use the same Cell-based search
space settings as in DARTS(Liu et al., 2019b). For valida-
tion data size, we hold out 50% of training data for DARTS
and SNAS(bi-level) algorithms, 20% for ProxylessNAS-G,
and none for one-level cases.

Results. We plot the last one of the 28 tensor parame-
ters, which encode the choice of candidates in normal and
reduction cells. As shown in Figure 14, different search
algorithms exhibits different update patterns of architec-
ture parameters. Specifically, the Proxyless-G algorithm
introduces randomness compared to DARTS and SNAS al-
gorithms due to binarized paths in training and searching
steps. Besides, search algorithms with bi-level and one-level
settings show diverse update trajectories.
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Figure 14. Visualization of architecture parameter update trajectories for each candidate path in the last choice block of the cell-based
search space. Top: DARTS(Liu et al., 2019b), DARTS (one-level). Middle: SNAS(Xie et al., 2019). SNAS (bi-level). Bottom:
ProxylessNAS-G(Cai et al., 2019), ProxylessNAS-GU (uniformly sampling paths in forward pass).
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Table 8. MobileNetV2 backbone results on additional datasets

Top-1 Params Search cost
Dataset (%) M) Search Method (GPU hrs)
63.01 3.66 Baseline
. 63.77 3.668 SPOS+Random 100425
Tiny-TmageNet-200  ¢3 g6 3.673 SPOS+RE 100425
63.32 3.489 SPOS+NRE 100+25
64.48 3.287 SPOS-+Random (20k) 100+100
80.88 3.532 Baseline
80.22 3.716 DARTS (one-level) 200
ImageNet-Sub-100 ¢y 'y¢ 3.172 DARTS 150
81.52 3.801 Proxyless-G 50
81.80 3.723 Proxyless-GU 50

Table 9. Transfered search results on ILSVRC2012 dataset

Top-1 Params Search cost
Dataset (%) M) Search Method (GPU hrs)
Tiny-ImgNet-200 74.73 4311 SPOS+Random (20k) 100+100
ImageNet-Sub-100 75.38 4.876 Proxyless-GU 50
Table 10. Elastic MobileNetV2 results on CIFAR100
Arch. Space Top-1 (%) Params Search Method Time
M) (hours)
73.46 3.532 Baseline
70.47 1.982 SPOS+Random 24+8
MbV2-E 71.51 1.531 SPOS+RE 2448
71.39 2.104 SPOS+MLP 24+8
71.28 2.515 PS+Random 36+8
72.07 2.503 PS+RE 36+8
71.17 2.742 PS+MLP 36+8




