
LARQ COMPUTE ENGINE: DESIGN, BENCHMARK, AND DEPLOY
STATE-OF-THE-ART BINARIZED NEURAL NETWORKS

Tom Bannink * 1 Arash Bakthiari * 2 Adam Hillier * 1 Lukas Geiger * 1 Tim de Bruin 1 Leon Overweel 1

Jelmer Neeven 1 Koen Helwegen 1

ABSTRACT
We introduce Larq Compute Engine (LCE), a state-of-the-art Binarized Neural Network (BNN) inference engine,
and use this framework to investigate several important questions about the efficiency of BNNs and to design a new
leading BNN architecture. LCE provides highly optimized implementations of binary operations and accelerates
binary convolutions by 8.5 − 18.5× compared to their full-precision counterparts on Pixel 1 phones. LCE’s
integration with Larq and a sophisticated MLIR-based converter allow users to move smoothly from training
to deployment. By extending TensorFlow and TensorFlow Lite, LCE supports models which combine binary
and full-precision layers, and can be easily integrated into existing applications. Using LCE, we analyze the
performance of existing BNN computer vision architectures and develop QuickNet, a simple, easy-to-reproduce
BNN that outperforms existing binary networks in terms of latency and accuracy on ImageNet. Furthermore, we
investigate the impact of full-precision shortcuts and the relationship between number of multiply-accumulate
operations and model latency. We are convinced that empirical performance should drive BNN architecture design
and hope this work will facilitate others to design, benchmark and deploy binary models.

1 INTRODUCTION AND MOTIVATION

There are many advantages in moving deep-learning-based
computer vision computation from cloud datacenters to
edge devices, including lower networking requirements,
improved end-user privacy and real-time responses. In Bi-
narized Neural Networks (BNNs) a significant proportion
of weights and activations are restricted to the binary val-
ues, usually {−1,+1}. This considerably reduces model
size and enables extremely efficient inference using XOR
and POPCOUNT operations for binary multiplication and
accumulation (Courbariaux & Bengio, 2016).

Although BNNs have the potential to make deep learning
applications radically more efficient, in practice floating
point or 8-bit quantized networks still dominate deep learn-
ing models in production. We see three key reasons for this.
First, training BNNs is challenging due to the gradient mis-
match problem and the need for optimizing discrete weights.
Second, there is a lack of integrated software tooling that
can be used to rapidly develop and deploy BNNs. Third,
support for BNNs on existing hardware varies, and realizing

*Equal contribution 1Plumerai Research. {tom, adamh, lukas,
tim, leon, jelmer, koen}@plumerai.com 2Work done while at
Plumerai Research. a.bakhtiari@tum.de. Correspondence to:
Koen Helwegen <koen@plumerai.com>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

the full potential of binarization requires custom hardware.
In this work we focus on the second issue.

Deep learning inference frameworks like TensorFlow Lite
(Google, 2017) have proven essential to the field of deep
learning, both for research and for commercial development.
These frameworks enable model development guided by
direct performance measurements and quickly move from
research to production. Although several BNN inference
engines have been introduced, such as BMXNet (Yang et al.,
2017), DaBNN (Zhang et al., 2019), and Riptide (Fromm
et al., 2020), BNN research papers still tend to focus on
operation counts and often lack empirical benchmarks.

In this paper, we introduce Larq Compute Engine (LCE),
a state-of-the-art inference engine for Binarized Neural
Networks. We built LCE with researcher ease-of-use as
a top priority, and by integrating with the TensorFlow Keras
(Abadi et al., 2015; Chollet, 2015) and Larq (Geiger &
Team, 2020) ecosystems, we provide an end-to-end pipeline
for training, benchmarking, and deploying BNNs. LCE
includes a TensorFlow model graph converter and highly-
optimized binarized custom operators for the TensorFlow
Lite runtime (Google, 2017). LCE primarily targets 64-bit
ARM devices, which includes all modern Android devices
and the Raspberry Pi 3 and 4. We show that LCE is faster
than existing inference engines for both individual convo-
lutions and complete models, through benchmarks on the
Pixel 1 Android phone and Raspberry Pi Model 4B board.

Larq Compute Engine

We also demonstrate the power of our integrated approach
by providing real-world latency benchmarks for seven major
BNNs from the literature and by introducing QuickNet, a
new BNN model that uses a straightforward architecture and
simple single-stage training method to achieve state-of-the-
art performance. Finally, we use LCE to investigate several
empirical questions about the design of BNN architectures:
(a) What are major latency bottlenecks for BNNs from the
literature? (b) What is the latency effect of different kinds of
shortcut connections? and (c) How well do MACs correlate
with real-world latency?

We hope that by introducing Larq Compute Engine we pro-
vide the BNN research community with a versatile tool for
designing, benchmarking, and deploying binarized models.
LCE is an actively-developed open-source project, available
on GitHub at larq/compute-engine.

2 BACKGROUND AND RELATED WORK

2.1 Efficient network design

While accuracy has been the primary goal of much deep
learning computer vision research, model efficiency has
been an increasingly important topic as DNNs have become
larger and their usage has expanded. Particularly the poten-
tial for mobile and edge applications has given rise to an
increasing focus on efficient network design over the past
few years.

Initially, efforts were made to optimize network architec-
tures for theoretical computational efficiency metrics. Ian-
dola et al. (2016) used point-wise convolutions with squeeze
and expand modules to reduce the number of network pa-
rameters. To reduce the number of operations in the net-
work, MobileNets used depthwise separable convolutions
(Howard et al., 2017), inverted residuals, and linear bottle-
necks (Sandler et al., 2018). Grouped convolutions similarly
helped reduce the number of operations with acceptable ac-
curacy losses (Zhang et al., 2018; Huang et al., 2018).

More recently, state-of-the-art results have been obtained
through architecture searches (Howard et al., 2019; Tan
et al., 2019; Cai et al., 2020). Crucially, these searches
optimize for the trade-off between accuracy and measured
quantities such as inference time or energy usage.

Besides these efforts to develop more efficient architectures,
there has been a lot of work on making existing networks
more efficient through pruning (Han et al., 2015; 2016) and
quantization (Zhu et al., 2017; Wang et al., 2019). In this
paper we focus on the extreme case of the latter: Binarized
Neural Networks (BNNs) with 1-bit weights and activations
(Courbariaux & Bengio, 2016; Rastegari et al., 2016).

2.2 Binarized neural networks

Initial attempts of binarizing existing networks resulted in
large accuracy drops on all but the most simple tasks (Raste-
gari et al., 2016; Phan et al., 2020). This motivated a host
of more advanced training procedures for binarized net-
works (Courbariaux et al., 2015; Zhou et al., 2016; Peters &
Welling, 2018; Alizadeh et al., 2019; Helwegen et al., 2019;
Martı́nez et al., 2020; He et al., 2020), as well as changes
to network architectures to make them more amenable to
binarization and minimize accuracy degradation.

Some of these changes focused on more closely approximat-
ing higher bit-width networks. One approach has been to
add full-precision scaling factors to the binarized weights
in order to minimize the `2 distance from the correspond-
ing full-precision weights (Rastegari et al., 2016; Bulat &
Tzimiropoulos, 2019; Martı́nez et al., 2020); another has
been to use a combination of multiple binarized branches
to approximate individual weights (Lin et al., 2017) or net-
work blocks (Zhuang et al., 2019). Zhu et al. (2019) used
an ensemble of BNNs, reducing accuracy loss at the cost of
increased binary computation. Additional residual shortcut
connections for improved information flow have been found
to be crucial for training more accurate BNN models (Liu
et al., 2018; Bethge et al., 2019).

Recent BNN works have closed the gap with some of the
popular higher bit-width architectures such as MobileNetv1
using custom network designs (Bethge et al., 2020) or by
making these architectures more amenable to binarization
through novel nonlinearities and training procedures (Liu
et al., 2020). Neural Architecture Search has also recently
been applied to BNNs (Shen et al., 2019; Bulat et al., 2020;
Kim et al., 2020). However, while these recent works have
made impressive gains in theoretical metrics, they lack eval-
uation on real hardware. This pursuit of higher accuracy can
lead to network designs that might look good on paper, but
are hard to implement efficiently (Fromm et al., 2020). We
therefore argue to optimize for measured quantities such as
inference time, and introduce the tools required to do so.

2.3 Existing frameworks for BNN inference

There are several existing solutions for BNN inference that
use XOR and POPCOUNT operations to accelerate binary
multiplication and accumulation. Here we provide a brief
overview of the various frameworks and compare Larq Com-
pute Engine to the most competitive solutions in Section 4.

BMXNet (Yang et al., 2017) is a BNN framework that
extends MXNet (Chen et al., 2015), a general-purpose
neural network training and inference library. BMXNet
implements a 2D binarized convolution operation with
im2col and a binary GEMM (GEneral Matrix Multipli-
cation) kernel, written in C++, using XOR operators and

https://github.com/larq/compute-engine

Larq Compute Engine

builtinpopcount compiler intrinsics. By building
on top of an existing framework BMXNet achieves broad
model support without having to implement core full-
precision neural network operators from scratch. For a large
batch size of 200, on Intel x86-64 CPUs with a hardware
popcount instruction, BMXNet claims a 13× speed-up for
their 2D binarized convolution compared to a floating point
implementation with ATLAS CBLAS (Whaley & Petitet,
2005). However, the C++ binary GEMM kernel compiles
to machine code that is significantly slower than what can
be achieved with optimised assembly kernels.

DaBNN (Zhang et al., 2019) is a stand-alone library for
BNN inference on ARM devices. Like BMXNet, DaBNN
implements 2D binarized convolutions with im2col and a
binary GEMM kernel, written in hand-tuned 64-bit ARM
assembly. DaBNN reports a 8 − 10× speed-up for their
2D binarized convolution compared to a floating point im-
plementation. It is very common for BNNs to include full-
precision operators, such as in the first and last layers (Raste-
gari et al., 2016). As DaBNN doesn’t extend an existing
inference framework or runtime, all supported operators
must be implemented from scratch and optimised for the tar-
get platform, which limits the space of model architectures
that are supported. This approach maximises flexibility of
implementation but significantly increases development cost
and limits available features; for example, multi-threaded
inference, depthwise floating point convolutions, image up-
and down-sampling, as well as lower level mathematical
operations like srqt, min, max or sigmoid are not supported.

TVM (Chen et al., 2018) is a compiler stack for deploying
deep learning workloads on a diverse range of hardware
back-ends. Instead of using hand-tuned optimised kernels
for each operator on each target platform, the project aims
to automatically generate fast kernels for running a specific
model on a specific device. Built on TVM, Riptide (Fromm
et al., 2020) is an end-to-end system for optimised BNN
training and inference. Models are trained with Tensor-
Flow, and the TVM TensorFlow graph converter is modified
to add support for converting binarized operators such as
2D binarized convolutions. Riptide then extends TVM’s
code-generation to generate efficient kernels for these bi-
narized operators targeting 32-bit ARM CPUs. Overall,
Riptide reports a 4× to 12× speed-up of their BNN models
compared to a floating-point implementation. A key focus
is on reducing the overhead of intermediate ‘glue’ layers
that commonly lie between pairs of binarized convolutions.
Riptide replaces these layers (weight scaling, batch normal-
isation, and binary re-quantization) with a “fused binary
glue operation” that, for example, replaces floating point
multiplication by approximate scaling with a power-of-two
integer shift. The fused binary glue an effective method,
though it cannot be applied when there is a residual connec-
tion between the two binarized convolutions, as is common

LCE Operations TFLite Runtime

TFLite Model

TF
 G

ra
p

h

LCE ConverterLarq

TFLite Operations

MLIR / TFLite

Converter

TensorFlow

Keras

Figure 1. Larq Compute Engine workflow from training to deploy-
ment built on-top of the TensorFlow software stack (orange) from
training (top), to deployment (bottom).

in recent BNN literature (Liu et al., 2018; Martı́nez et al.,
2020; Bethge et al., 2020). The TVM compilation process
means that Riptide has minimal runtime overhead, and will
give good performance for a wide range of possible opera-
tors, but—as we show in Section 4—the generated kernels
do not perform as well as hand-optimized assembly kernels.

3 LARQ COMPUTE ENGINE

We present Larq Compute Engine (LCE), an open-source
BNN inference engine that outperforms existing BNN in-
ference solutions. A high-level overview of the workflow
from research to production is shown in Figure 1. LCE
extends TensorFlow Lite (Google, 2017), which allows us
to take advantage of the existing high-performance runtime
and infrastructure for model conversion, benchmarking, and
deployment. This makes it to easy adopt LCE in existing
production applications. Together with BNN training library
Larq (Geiger & Team, 2020) and the LCE converter, this
forms an end-to-end solution for training, benchmarking
and deploying BNNs. State-of-the-art models available in
Larq Zoo, an open-source collection of BNNs, can be
deployed directly with LCE.

3.1 Conversion to inference model

Usability is key to enable effective use of Larq Compute
Engine for researchers exploring novel architecture designs.
After building and training models with Larq (Geiger &
Team, 2020), users must be able to easily convert their
trained network to a TFLite model file that can be executed
by our extended TFLite runtime. We achieve this by intro-
ducing a custom converter using the MLIR (Lattner et al.,
2020) compiler infrastructure, allowing us to reuse most

https://docs.larq.dev/zoo/

Larq Compute Engine

of the existing TFLite conversion passes (Liu, 2019). This
results in full support of all TFLite models and enables veri-
fication of the correctness of graph transformations applied
during the conversion.

Larq, the Keras (Chollet, 2015)-based BNN training library,
constructs a TensorFlow graph that emulates the BNN using
floating point operations to approximate gradients during
training. The main purpose of the converter is to transform
this training graph into the TFLite model format for infer-
ence and replace the emulated binarized convolutions with
truly binary, highly optimized LCE operations.

This infrastructure allows LCE to also handle weight scal-
ing factors as used in Rastegari et al. (2016) and Liu et al.
(2018), to fuse threshold-based activation functions as well
as channel-wise multipliers and biases—commonly used
by batch normalization (Ioffe & Szegedy, 2015)—into the
preceding binarized convolution, and to support custom
padding formats for faster inference as described in Section
3.2. These graph transformations are crucial for efficient
inference as the overhead of full-precision channel-wise
operations can become significant when full-precision con-
volutions are replaced with binary ones.

The MLIR compiler framework makes it straightforward
to add more complicated graph optimisations, too. For ex-
ample, if the output of one binarized convolution is passed
through a threshold-based activation function and a batch
normalization, and is then consumed by a second binarized
convolution (without being used for a residual connection),
there is no need to perform full-precision arithmetic or ma-
terialize the full-precision values at all. Instead, the direct
accumulator output of the first convolution can be thresh-
olded against pre-computed values to yield the binary input
to the second convolution. The LCE converter performs
these kinds of advanced optimizations automatically, with-
out changes to training code or instruction from the user.

The final model conversion step, after the graph optimization
passes, is binary weight compression. In the Larq model
graph used for training, the binary weights are stored as
float values, but in the LCE model file a single bit is used
for each weight value, which reduces the size of the binary
weights by a factor of 32.

The converter is available to download as part of the prebuilt
larq-compute-engine PyPI package and exposes the
model conversion functionality via a single API endpoint.

3.2 Operator implementations

Efficient binarized convolutions require not only a fast
multiply-and-accumulation loop, but also careful design
choices regarding padding, operator fusion, and more. In
this section we will cover these topics and discuss some
implementation details of the LCE operators.

LceQuantize

The binarized layers in LCE expect bitpacked input and are
therefore preceded by an LceQuantize operator, which
binarizes its input activations by extracting the sign bits1.
Mathematically, a 0 valued bit represents a real value of
1.0 while 1 represents a real value of −1.0. For optimal
memory access patterns, the number of channels is padded
up to a multiple of 322. At this point, the activation tensor
is 32× smaller than float input would be, and 8× smaller
than 8-bit quantized input. When the output of a binarized
layer is directly used by another binarized layer (and is not
required in higher precision, e.g. in a shortcut) then the first
binarized layer can directly output bitpacked activations,
eliminating this extra LceQuantize operation.

LceBConv2d

The primary binarized operator in LCE is a 2D binarized
convolution, LceBConv2d. It accepts bitpacked input
activations—for example, the output of a LceQuantize
operator—and can write full-precision output or bitpacked
output. The optimized implementation of LceBConv2d
has three stages: first, a standard im2col procedure is used
to rearrange the input activations in memory and reduce the
convolution computation to a binary matrix multiplication;
second, an optimized BGEMM kernel (Binary GEneral
Matrix Multiplication) is used to perform the binary mul-
tiplication of the inputs with the weights and accumulate
the results into 16-bit integers; and finally, an output-type-
specific output transformation is applied which incorpo-
rates the fused channel-wise operators (see Section 3.1) and
writes the final result to the output array.

For padded convolutions, which are very common, the
im2col procedure fills the padded locations with zeros. As
per the specification of the LceQuantize operator, these
correspond to +1.0 values of the original input. We refer
to this as one-padding to distinguish it from the default
zero-padding in TensorFlow. Although LCE supports zero-
padded binarized convolutions, this requires an extra correc-
tion step and is therefore slower. Larq provides the option
to train binarized layers with one-padding; as we show in
Section 5.1, using one-padding rather than zero-padding is
not an impediment to training state-of-the-art BNNs.

The BGEMM kernel is implemented on top of the Ruy
framework (Google, 2020), which is the GEMM library
developed for use in TensorFlow Lite. This allows us to
leverage optimization techniques available in Ruy such as
tiling to maximize the number of cache hits, weight packing

1For completeness, LCE includes a LceDequantize opera-
tor which converts bitpacked data back into ±1-valued float data.

2Common binarized networks already have multiples of 32
channels in all their binarized layers, so in practice no padding is
performed.

Larq Compute Engine

Table 1. An analysis of the computational cost of performing float, 8-bit, and binary multiply and accumulate (MAC) operations using
Neon SIMD instructions on the ARM Cortex-A76 CPU. In the float and 8-bit case, there exist specialized instructions that perform a fused
multiplication and accumulation into 32-bit registers. Conversely, in the binary case no such fused instruction exists and so each step must
be performed separately: eor for multiplication, cnt for 8-bit accumulation, and addp / uadalp for combining 8-bit results into 16-bit
results. In the LCE BGEMM kernel we perform 1024 binary MACs using 24 instructions, which takes 13 cycles, or equivalently just over
78 MACs per cycle. Instruction throughput figures are sourced from the Cortex-A76 Software Optimization Guide (Arm Limited., 2019).
Throughput figures are theoretical sustained maximums which assume optimal instruction scheduling without CPU pipeline stalls and do
not account for potential latency from loading data into registers.

Precision MAC instruction sequence Throughput (instructions / cycle) Throughput (MACs / cycle)

Float fmla 2 8

8-bit sdot 2 32

Binary
eor
cnt

addp / uadalp

2
1

2 / 1
78

to optimize memory access patterns, and multi-threading
parallelization. At the core of the BGEMM kernel is 64-
bit ARM assembly code that loads data (bitpacked weights
and activations) from memory into CPU registers and per-
forms the binary multiplication and accumulation operations
(MACs). The code is optimized to maximize the use of
the available vector register space so as to reduce weight-
reloading from memory, and to reduce the frequency of
CPU pipeline stalls according to the ARM Cortex-A Soft-
ware Optimization Guide (Arm Limited., 2019). Loading
binary data into registers is no different from loading float
or 8-bit data; however, float and 8-bit MACs often benefit
from dedicated CPU instructions which on current hard-
ware platforms aren’t available for binary MACs, which is
why binarization speedups of 32× or 64× are unrealistic.
Table 1 shows how float, 8-bit, and binary MACs can be
implemented using Neon SIMD instructions and compares
the theoretical maximum MAC throughputs. The speed of
the binarized convolution also depends on how efficient the
CPU cache can be used, which is where binarized layers
have an advantage. For example, the weights of a binarized
convolution with 256 filters of size 3 × 3 acting on 256
input channels take up 72 KiB of space which often fits
entirely in the L2 cache, unlike the float or 8-bit equivalents.
In Section 4 we present real world benchmarks of these
implementations.

As discussed in Section 3.1, when writing full-precision
output LceBConv2d supports a fused activation function
and per-channel full-precision multiplier and bias. For full-
precision convolutions, the fused multiplication can be per-
formed “for free” because the multiplier values can be di-
rectly folded into the convolution weights and bias. For
a binarized convolution with binary weights this is not an
option, and so LceBConv2d has two extra inputs for per-
channel full-precision values to be used as the multiplier
and bias. These fused operations are performed directly

on the BGEMM accumulator values, before they are writ-
ten to memory, which avoids the extra read and write that
would occur without operator fusing. Conversely, when
writing bitpacked output the BGEMM accumulator values
are compared with thresholds pre-computed in the converter
to decide whether each output value is a one or zero bit.

LceBMaxPool2d

Networks that contain a full-precision MaxPool layer di-
rectly followed by a binarized convolution layer can be
optimized by binarizing the activations before the MaxPool
layer instead, since max(sign(X)) = sign(max(X)). The
LCE converter recognizes this pattern automatically and
emits the LceBMaxPool2d operator. It acts on data bit-
packed by the LceQuantize operator and simply takes
the bitwise AND to efficiently compute the binary maxpool.

4 BENCHMARKS

In this section we present various performance results mea-
sured using Larq Compute Engine. The measurements were
taken on a Pixel 1 phone as well as a Raspberry Pi Model
4B with a 64-bit OS (Ubuntu LTS 20.04). The main text
shows only the Pixel 1 benchmarks unless stated otherwise;
the equivalent Raspberry Pi 4B numbers can be found in
the appendix along with additional benchmarks on a Pixel
5 phone. All non-binary operators use the TensorFlow Lite
implementation without modifications, and all TensorFlow
Lite delegates are disabled.

4.1 The latency impact of binarizing convolutions

We first investigate the impact of binarization on individual
convolutional layers. As an example we consider the four
main convolutions that appear in ResNet18, a network ar-
chitecture that has inspired numerous BNN designs. The

Larq Compute Engine

0

5

10

15

20

P
ix

e
l
1
 l
a
te

n
c
y
 (

m
s
)

A B C D

Float (TFLite) 8-bit (TFLite) Binary (LCE)

Figure 2. The impact of binarization on latency of convolutional
layers with 3×3 kernels. We compare the latency of binarized
convolutions to their equivalent 32-bit floating point or 8-bit integer
versions for commonly used dimensions. In terms of height ×
width × in channels × out channels the convolutions are (A)
56×56×64×64; (B) 28×28×128×128; (C) 14×14×256×256;
(D) 7×7×512×512. Compared to floating point, we observe
binary speedups of between 12× for (A) and over 17× for (D).
Compared to 8-bit, we observe speedups of between 9× and 12×.

latencies of binarized versions of these are compared to
their full-precision counterparts in Figure 2. We also bench-
mark 8-bit quantized versions of these convolutions, as near-
lossless 8-bit quantization of networks like ResNet is now
commonplace.

We see a large speedup across all four layers. Binarization
reduces latency by 12− 17× compared to the floating-point
implementation, with the largest performance gains being
in the layers with the most channels.

In Section 3.2, we explained that on the ARMv8-A plat-
form, the CPU instructions performing the binary MACs,
allowed for a theoretical throughput of 78 binary MACs per
clock cycle compared to 32 8-bit MACs or 8 float MACs, if
we completely ignore memory reads and other operations.
These theoretical numbers would suggest a 9.75× speedup
over float and a 2.43× speedup over 8-bit convolutions.
Memory reads, on the other hand, would be 32× and 8×
faster, respectively. The actual speedup factors, as shown in
Figure 2, turn out to be higher than these theoretical MAC
throughput numbers. This can be attributed to memory reads
and better cache efficiency for binarized layers.

Moving beyond a handful of examples, we next investigate
a large space of convolutions of different dimensions. Chan-
nels range from {32, 64, 96, 128, 160, 256}; input width and
height range from {8, 16, 32, 64}, and kernel sizes are 3×3
or 5×5. All included convolutions preserve the dimensions
of the activation tensor, i.e. they have a stride of one, use
equal padding and the number of input and output channels

1.0e+51.0e+6 1.0e+7 1.0e+8 1.0e+9

MACs

0.001

0.01

0.1

1

10

100

1,000

P
ix

e
l
1
 l
a
te

n
c
y
 (

m
s
)

Float (TFLite) 8-bit (TFLite) Binary (LCE)

Figure 3. The relationship between MACs and latency for a large
range of convolutions in binary, int8 and 32-bit floating point. Each
convolution is a dot in the figure, while the dotted lines are least-
square linear regressions between the MACs and latencies. Note
that we use a log-log scale. We see an approximately linear rela-
tionship between MACs and latency in each precision, especially
for larger dimensions. However, we also see substantial deviations
from this linear relationship even for medium-sized convolutions.
The input and output activations all have the same dimensions.
Channels range from {32, 64, 96, 128, 160, 256}; input width and
height range from {8, 16, 32, 64} and kernel sizes are 3 or 5.

are the same. The number of MAC operations in the investi-
gated blocks range from roughly 0.6 million to 6.5 million,
and the floating point latency on a Pixel 1 ranges from 0.01
ms to over 850 ms.

The results are shown in Figure 3. We see that there is an
approximately linear relationship between the number of
MACs and latency for all three precisions. However, we
also immediately see substantial deviations from this linear
relationship. It is clear there is not a uniform speedup even
when we constrain ourselves to 2D convolutions. These
discrepancies can be caused by the overhead of bitpacking,
im2col, and other operations which do not scale with MACs.

Although there is no universal speedup, we can give an ap-
proximate range of the efficiency gain one can expect from
binarization on a Pixel 1. We can look at the speedup for
each convolution benchmarked in Figure 3 individually and
look at the range and the mean of these speedups. Arguably,
speeding up larger convolutions is more important and so
we also take a weighted mean, where speedups are weighted
by the full-precision latency of the block. The results are
summarized in Table 2.

It should be noted that this speedup is highly platform-
dependent and may be very different on hardware platforms
with different designs, instructions, or inference frameworks.

Larq Compute Engine

Table 2. Speedup of binarized convolutions on Pixel 1 with LCE,
compared to 8-bit integer or floating point precision with Ten-
sorFlow Lite. We determine this speedup for a large range of
individual convolutions and provide the mean, latency-weighted
mean and overall range.

Precision Mean Weighted mean Range

1 vs. 32 15.0× 15.1× 8.5–18.5×
1 vs. 8 10.8× 11.6× 6.1–13.4×

4.2 Comparison to other BNN inference frameworks

Figure 4 shows the latencies for the same binarized convo-
lutions as in Figure 2 but now measured with the different
inference frameworks introduced in Section 2.3. The ker-
nel dimensions were chosen to match the sizes used in the
BiRealNet architecture and the benchmarks presented in
Zhang et al. (2019). These numbers were only measured on
a Raspberry Pi 4B and not on a Pixel 1 phone because not all
frameworks allowed deployment on the latter. Furthermore,
Table 3 compares measurements of the overall latencies of
BiRealNet, BinaryAlexNet and QuickNet (see Section 5.1)
across different frameworks (Liu et al., 2018; Hubara et al.,
2016). LCE significantly outperforms the other frameworks
in the full model benchmarks and shows a clear performance
improvement for single binarized convolutions for all kernel
sizes except (A), where DaBNN is slightly faster due to its
specialized implementation for this kernel size. LCE does
not achieve the optimal performance in this setting since its
im2col implementation performs optimally when height ×
width × in channels is a multiple of 128.

0

1

2

3

4

R
a
s
p

b
e
rr

y
 P

i
4
B

 l
a
te

n
c
y
 (

m
s
)

A B C D

TVM DaBNN LCE

Figure 4. Comparison of the performance of LCE versus DaBNN
and TVM on representative convolutions. The dimensions of the
convolutions are the same as in Figure 2.

3The architecture was slightly modified compared to Hubara
et al. (2016) to match the model used in Fromm et al. (2020).

Table 3. Comparison of full model latencies of LCE versus
DaBNN and TVM measured in ms on a Raspberry Pi 4B. For
a fair comparison, measurements excluding the first full precision
block are shown in parentheses, as it dominates the inference time
in some cases.

Library BinaryAlexNet3 BiRealNet QuickNet

DaBNN unsupported 119.8 (58.8) unsupported
TVM 647.8 (30.3) 862.9 (212.5) 245.5 (222.5)
LCE 36.7 (13.7) 87.0 (42.1) 52.1 (46.0)

5 DESIGNING BNNS USING LCE
In this section we leverage LCE to design accurate and
efficient BNNs and to analyse performance characteristics
of commonly used binarized models in literature.

5.1 QuickNet: a simple, state-of-the-art BNN

The ability to evaluate on-device latency allows us to design
novel architectures that are guaranteed to deliver on the
desired accuracy-latency tradeoff. While this opens up many
possibilities, including neural architecture search and large-
scale hyperparameter tuning to discover novel architectures,
in the following we strive for simplicity and aim to develop
an efficient network architecture that is easy to train from
scratch without the need for complex multi-stage training
procedures and can serve as a baseline for future research.

Our architecture follows previous work (Liu et al., 2018;
Martı́nez et al., 2020; Bethge et al., 2019) and uses four
blocks i ∈ 0, 1, 2, 3, each consisting of Ni binary 3×3
convolutions with filter size ki and residual connections
over each layer. All binarized layers use one-padding (see
Section 3.2) and ReLU activations (Glorot et al., 2011),
and are followed by a batch normalization layer (Ioffe &
Szegedy, 2015). Transition blocks between each residual
section halve the spatial resolution and increase the filter
count. After the final residual block, global average pooling
and a full-precision fully connected layer are used to map
to the 1000 classes used by ImageNet (Deng et al., 2009).

Using the detailed operation level profiling of LCE, we can
analyse similar models and clearly identify bottlenecks in
the network structure. The performance profiles of Bina-
ryDenseNet28 and RealToBinaryNet (Bethge et al., 2019;
Martı́nez et al., 2020) in Figure 5 clearly show the large
impact of the first layer and other non-binary operations.

To improve the efficiency of the full-precision first layer
while retaining competitive accuracy, we use a small 3×3
convolution with 16 filters and a depthwise separable convo-
lution to increasing the feature size and decrease the spatial
resolution from 224×224 to 56×56 using striding as shown
in Figure 6a. The transition block (see Figure 6b) consists
of a 3×3 antialiased max pooling (Zhang, 2019)—which

Larq Compute Engine

0 10 20 30 40 50 60 70 80 90

Pixel 1 latency (ms)

BDN

R2B

QNL

High-precision layers Other Binary layers

Figure 5. Breakdown of execution latencies stacked with respect
to the layer number for three models: BinaryDensent28 (BDN),
RealToBinaryNet (R2B) and QuickNet Large (QNL). This clearly
shows the non-negligible runtime impact of non-binary operations
in BinaryDenseNet and RealToBinaryNet as well as the significant
impact of the first layer in those networks. QuickNet greatly im-
proves in both of these areas resulting in a more efficient network.

224 × 224 × 3

112 × 112 × 16

56 × 56 × 16

Conv2D
filter〈16 × 3 × 3 × 3〉

Relu

DepthwiseConv2D
filter〈1 × 3 × 3 × 16〉

Conv2D
filter〈k × 1 × 1 × 16〉0

(a) First convolutional block

h × w × ki

h × w × ki

h/2 × w/2 × ki

Add

MaxPool2D

DepthwiseConv2D
weights〈1 × 3 × 3 × k 〉

Conv2D
filter〈k × 1 × 1 × k 〉

i

ii+1

(b) Transition block

Figure 6. Full precision blocks in QuickNet, used for spatial down-
sampling of (a) the input and (b) the feature map of block i.

can be efficiently implemented by a max pooling layer and a
strided depthwise convolution with a fixed blurring kernel—
followed by a 1×1 full-precision convolutions with ki+1

filters to increase the feature size.

We train 3 models on the ImageNet dataset (Deng et al.,
2009) for different latency targets and adjust the number of
layers and filters according to Table 4. The networks are
trained from scratch for 600 epochs on 4 NVIDIA V100
GPUs with a batch size of 2048 using the Adam optimizer
(Kingma & Ba, 2015) with initial learning rate 0.01 and the
straight-through estimator (Hubara et al., 2016) for binary
weights and stochastic gradient descent with momentum 0.9
and learning rate of 0.1 for full-precision variables. We use
a linear warmup over 5 epochs for both learning rates up to
their initial value and decay to zero during training using a
cosine schedule. Training images are preprocessed accord-
ing to Tan & Le (2019) without AutoAugment (Cubuk et al.,

0 20 40 60 80 100 120

Pixel 1 latency (ms, single thread)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Im
a
g

e
N

e
t

v
a
li
d

a
ti

o
n

 a
c
c
u

ra
c
y

QuickNet

RealToBinaryNet

BinaryDenseNet

MeliusNet22

BinaryResNetE18

BiRealNet

XNORNet

BinaryAlexNet

model

5

10

15

20

model size (MiB)

Figure 7. Latency and accuracy for various popular BNN model
architectures on the ImageNet dataset.

2019) except for the largest model which slightly benefited
from the additional augmentation. Table 4 lists the training
and validation accuracies for all three models.

Next we analyze the performance of QuickNet and compare
against various popular binary architectures from the litera-
ture. Reference implementations and pretrained weights for
all models discussed in this section are available in Larq
Zoo. Although efficiency is a key motivation behind the
development of binary architectures and algorithms, most
of the original papers do not measure on-device latency and
instead resort to indirect measurements such as number of
MACs and binary operations.

Figure 7 shows the accuracies and latencies of QuickNet
compared to various models from previous works (Liu
et al., 2018; Hubara et al., 2016; Bethge et al., 2019; 2020;
Martı́nez et al., 2020; Rastegari et al., 2016). We see
that since the early AlexNet-based architectures, accura-
cies have improved substantially while memory footprints
have markedly decreased. We can also observe that BiRe-
alNet, RealToBinaryNet and QuickNet in particular have
moved the pareto-front significantly forward, while other
architectures such as BinaryDenseNet and MeliusNet have
not fundamentally altered the landscape but rather trade
higher accuracy against a worse latency.

Table 4. Number of layers per block N and number of filters k
used in the QuickNet models and their top-1 ImageNet accuracies.

N k train (%) eval (%)

(4, 4, 4, 4) (32, 64, 256, 512) 59.9 59.4
(4, 4, 4, 4) (64, 128, 256, 512) 64.3 63.3
(6, 8, 12, 6) (64, 128, 256, 512) 59.1 66.9

https://docs.larq.dev/zoo/
https://docs.larq.dev/zoo/

Larq Compute Engine

LceBconv2d

LceQuantize

LceBconv2d

Add

AveragePool2D

Conv2D

LceQuantize

LceBconv2d

Add

Figure 8. Overview of the different block types that are compared
in Figure 9. Left: no shortcuts, input and output assumed to
be binary. Middle: shortcut in a regular block. Right: shortcut
in a downsampling layer, with a channel-doubling full-precision
pointwise convolution in the shortcut.

5.2 How do shortcuts affect BNN inference speed?

Since their introduction in Liu et al. (2018), full-precision
shortcuts have been pervasive in BNN architectures due to
the large improvement in accuracy they provide. Such short-
cuts enable the preservation of full-precision information
in the forward pass and may facilitate training by carrying
non-distorted gradient signals during the backward pass.
They are very attractive in theoretical metrics, as they do
not increase memory footprint or the number of MACs.

However, they do impact the implementation of binarized
networks. Whereas element-wise operations in a completely
binarized architecture such as Binary AlexNet (Hubara et al.,
2016) can be replaced with a single binarization function,
full-precision shortcuts require normal evaluation of the
transformations associated to batch normalization and acti-
vation functions. Existing work such as Fromm et al. (2020)
emphasize the benefits of binarizing all intermediate acti-
vations. The question of their actual impact on latency is
therefore of great practical significance.

To quantify the impact of full-precision shortcuts on latency,
we perform latency measurements of different type of net-
work blocks, as depicted in Figure 8. For the full-precision
blocks, this only introduces an additional Add operation.
For binarized operations, on the other hand, the shortcut
introduces an Add but also forces the previous layer to
write full-precision output rather than bitpacked data which
means that the input activations of a subsequent binarized
convolution need to be bitpacked separately, as indicated by
the LceQuantize layer in the diagram. Nevertheless, as
we can see in Figure 9, the speed-ups remain roughly equiv-
alent to that of binarized convolutions without shortcuts,
and their absolute impact of latency is small. Furthermore,
Table 5 shows a breakdown of the contribution that each
operator makes to overall latency of the QuickNet model,
which makes it clear that the extra cost of binarized residual
blocks comes from the full-precision Add rather than the

Block

0.0

0.5

1.0

1.5

2.0

P
ix

e
l
1
 l
a
te

n
c
y
 (

m
s
)

1 5 6 9 10 13 14

A B C A B C A B C A B C A B C A B C A B C

Binary layers Other High-precision layers

Figure 9. We compare three versions of a binarized ResNet18: (A)
with shortcuts in every block; (B) with shortcuts in the regular
blocks only; and (C) with no shortcuts anywhere. Repeated layers
as well as the full-precision first and last layer are not shown.
We see that the latency impact of shortcuts is small for regular
blocks. Unsurprisingly, for downsampling blocks which contain
an additional full-precision pointwise convolution, the cost of the
additional pointwise convolution is substantial.

more complex output transformation or extra bitpacking.
These results suggest that at least on this type of hardware,
the use of full-precision shortcuts really does drastically
improve the pareto-front for BNNs.

5.3 Are MACs a useful proxy-metric for latency?

MACs are still commonly used to estimate the efficiency
of models despite numerous warnings stating they are an
unreliable guide when searching for efficient model designs
(Wang et al., 2019; Tan et al., 2019; Ma et al., 2018). This
question is even more complicated in the case of BNNs be-
cause in order to come up with a scalar metric it is necessary
to assume a fixed relative performance between binarized
and full-precision operations. The factor 64 or values close
to it is often used in the literature, based on the theoretical
argument that the complexity of multiplication grows with
the square of the precision (Liu et al., 2018). Some papers

Table 5. Operation latency in QuickNet as a proportion of total
latency, measured on a Raspberry Pi 4B. We split LceBConv2d
into the main accumulation loop (binary multiplication and accu-
mulation) and the output transformation (integer-to-float conver-
sion, fused activation function, and fused batch normalization).

Operator Latency (%)

LceQuantize 3.52
LceBConv2d (accumulation loop) 53.41
LceBConv2d (output transformation) 3.68
Full precision Conv2D 20.15
Full precision Add 9.55
All other full precision 9.69

Larq Compute Engine

100,000,000 700,000,000

eMACs @ 15

0

20

40

60

80

100

120

140

P
ix

e
l
1
 l
a
te

n
c
y
 (

m
s
)

QuickNet

RealToBinaryNet

BinaryDenseNet

MeliusNet22

BinaryResNetE18

BiRealNet

XNORNet

BinaryAlexNet

family

Figure 10. The relationship between MACs and latency for the
BNNs in Larq Zoo. Here we assume a scaling of 15 binary
MACs per full-precision MAC—the combined number is referred
to as eMACs to indicate the assumed equivalence. We see MACs
as a useful metric for comparing models with a similar design, but
not when comparing entirely different architectures.

use the factor 58 (Zhu et al., 2019; Munagala et al., 2020)
based on the results in Rastegari et al. (2016), but this work
provides no details about absolute latencies or whether any
optimizations where used in the baseline benchmarks.

To get better insight into the usefullness of MACs in esti-
mating model performance, we compare MACs and latency
for the models in Larq Zoo. Based on the results in sec-
tion 4.1, we assume 15 binary MACs are equivalent to one
floating point MAC. The results are shown in Figure 10. We
see that within models of the same family (e.g. QuickNets,
BinaryDenseNets) MACs can be a reasonable proxy for la-
tency. However, when comparing different model designs
the relationship breaks down. For example, BinaryAlexNet
is almost 2× slower than models with the same number
of MACs, while matching the latency of models with over
3× the number of MACs. These observations confirm that
MACs have limited value when exploring new types of
model designs, and cannot substitute empirical benchmarks
of latency or other key performance metrics.

6 CONCLUSION

This paper introduces Larq Compute Engine, a state-of-
the-art inference engine for Binarized Neural Networks.
Built on top of TensorFlow and TensorFlow Lite, LCE and
Larq provide an end-to-end solution for training BNNs and
benchmarking them on mobile devices. The highly opti-
mized BGEMM kernels in LCE provide speedups of 8.5×
to 18.5× on Pixel 1 phones, while a MLIR-based converter
handles the mapping from training graph to inference model,
taking care of converting the emulated binary operations
used during training to true binarized operations and the
management of bitpacking and activation precision through-
out the network. This brings the software infrastructure
for deploying BNNs to the same level as the infrastructure
for higher precision models provided by TensorFlow and

TensorFlow Lite, thus resolving one of the key obstacles to
wide-scale usage of BNNs.

With LCE in place, we have been able to investigate several
questions with practical importance to the development of
BNNs. First, we have identified latency bottlenecks in ex-
isting network designs and shown that full-precision parts
of architectures are often a major component of the overall
latency of the models. Using these insights we have been
able to design QuickNet—a simple, easy to reproduce bi-
nary architecture that outperforms existing binarized model
in terms of accuracy and latency while using a larger frac-
tion of binarized operations. Second, we have looked in
more detail at the impact of full-precision shortcuts on la-
tency, a topic of some controversy in the literature. We have
demonstrated that although shortcuts bring some overhead
in terms of latency the additional overhead is marginal and
well worth the accuracy gains provided by these shortcuts.
Third, we have investigated the value of MACs in designing
new architectures and we have confirmed the number of
MAC is a poor predictor for latency when comparing highly
divergent architecture designs.

We are very excited about the future of binarized models—
we see numerous opportunities and hope that LCE will
facilitate further progress in the field. While QuickNet is
a state-of-the-art binarized model, it is only a first step in
the measurement-driven design of neural networks. On
the architecture side, it has now become possible to unify
the emerging field of binarized neural architecture search
with the hardware-in-the-loop based approaches that have
generated so much progress for full-precision models. We
also note we have not focused on training methods here,
and we expect QuickNet can improve further by applying
more sophisticated methods such as knowledge distillation.
Above all, we hope that by providing a software framework
that is high quality, easy to use and fully integrated, we
will lower the barrier to experimentation with entirely novel
designs and algorithms.

Finally, we want to note that hardware is a crucial com-
ponent in the road towards efficient deep learning, and de-
ployment to 64-bit ARM devices such as mobile phones
is only a first step for bringing BNNs to the real world.
As we discussed, most existing hardware platforms come
with specialized support for full-precision or 8-bit matrix
multiplication, such as vectorized MAC instructions, with-
out providing the binarized counterpart of such operations.
There is an opportunity for further large performance im-
provements through customized hardware for BNNs.

ACKNOWLEDGEMENTS

We are grateful to all contributors to Larq Compute Engine
and the Larq Ecosystem.

Larq Compute Engine

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Alizadeh, M., Fernández-Marqués, J., Lane, N. D., and
Gal, Y. An empirical study of binary neural networks’
optimisation. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=rJfUCoR5KX.

Arm Limited. Arm Cortex-A76 Software Optimization
Guide, 2019. URL https://developer.arm.
com/documentation/swog307215/a/.

Bethge, J., Yang, H., Bornstein, M., and Meinel, C. Back
to simplicity: How to train accurate bnns from scratch?
CoRR, abs/1906.08637, 2019. URL https://arxiv.
org/abs/1906.08637.

Bethge, J., Bartz, C., Yang, H., Chen, Y., and Meinel,
C. Meliusnet: Can binary neural networks achieve
mobilenet-level accuracy? CoRR, abs/2001.05936, 2020.
URL https://arxiv.org/abs/2001.05936.

Bulat, A. and Tzimiropoulos, G. Xnor-net++: Improved
binary neural networks. In 30th British Machine
Vision Conference 2019, BMVC 2019, Cardiff, UK,
September 9-12, 2019, pp. 62. BMVA Press, 2019.
URL https://bmvc2019.org/wp-content/
uploads/papers/0121-paper.pdf.

Bulat, A., Martı́nez, B., and Tzimiropoulos, G. BATS:
binary architecture search. CoRR, abs/2003.01711, 2020.
URL https://arxiv.org/abs/2003.01711.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-
for-all: Train one network and specialize it for efficient
deployment. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=HylxE1HKwS.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible
and efficient machine learning library for heterogeneous

distributed systems. CoRR, abs/1512.01274, 2015. URL
http://arxiv.org/abs/1512.01274.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E. Q., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin,
C., and Krishnamurthy, A. TVM: an automated end-to-
end optimizing compiler for deep learning. In Arpaci-
Dusseau, A. C. and Voelker, G. (eds.), 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October
8-10, 2018, pp. 578–594. USENIX Association, 2018.
URL https://www.usenix.org/conference/
osdi18/presentation/chen.

Chollet, F. Keras. https://keras.io, 2015.

Courbariaux, M. and Bengio, Y. Binarynet: Training deep
neural networks with weights and activations constrained
to +1 or -1. CoRR, abs/1602.02830, 2016. URL http:
//arxiv.org/abs/1602.02830.

Courbariaux, M., Bengio, Y., and David, J. Binarycon-
nect: Training deep neural networks with binary
weights during propagations. In Cortes, C., Lawrence,
N. D., Lee, D. D., Sugiyama, M., and Garnett, R.
(eds.), Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pp. 3123–3131, 2015.
URL http://papers.nips.cc/paper/5647-
binaryconnect-training-deep-neural-
networks-with-binary-weights-during-
propagations.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation strategies
from data. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pp. 113–123. Computer Vision Founda-
tion / IEEE, 2019. doi: 10.1109/CVPR.2019.00020. URL
http://openaccess.thecvf.com/content_
CVPR_2019/html/Cubuk_AutoAugment_
Learning_Augmentation_Strategies_
From_Data_CVPR_2019_paper.html.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F.
Imagenet: A large-scale hierarchical image database. In
2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June
2009, Miami, Florida, USA, pp. 248–255. IEEE Com-
puter Society, 2009. doi: 10.1109/CVPR.2009.5206848.
URL https://doi.org/10.1109/CVPR.2009.
5206848.

Fromm, J., Cowan, M., Philipose, M., Ceze, L., and Patel,
S. N. Riptide: Fast end-to-end binarized neural networks.
In Dhillon, I. S., Papailiopoulos, D. S., and Sze, V. (eds.),

https://www.tensorflow.org/
https://openreview.net/forum?id=rJfUCoR5KX
https://openreview.net/forum?id=rJfUCoR5KX
https://developer.arm.com/documentation/swog307215/a/
https://developer.arm.com/documentation/swog307215/a/
https://arxiv.org/abs/1906.08637
https://arxiv.org/abs/1906.08637
https://arxiv.org/abs/2001.05936
https://bmvc2019.org/wp-content/uploads/papers/0121-paper.pdf
https://bmvc2019.org/wp-content/uploads/papers/0121-paper.pdf
https://arxiv.org/abs/2003.01711
https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=HylxE1HKwS
http://arxiv.org/abs/1512.01274
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://keras.io
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848

Larq Compute Engine

Proceedings of Machine Learning and Systems 2020, ML-
Sys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org,
2020. URL https://proceedings.mlsys.org/
book/312.pdf.

Geiger, L. and Team, P. Larq: An open-source library for
training binarized neural networks. Journal of Open
Source Software, 5(45):1746, 2020. doi: 10.21105/
joss.01746. URL https://doi.org/10.21105/
joss.01746.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rectifier
neural networks. In Gordon, G. J., Dunson, D. B., and
Dudı́k, M. (eds.), Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statis-
tics, AISTATS 2011, Fort Lauderdale, USA, April 11-13,
2011, volume 15 of JMLR Proceedings, pp. 315–323.
JMLR.org, 2011. URL http://proceedings.mlr.
press/v15/glorot11a/glorot11a.pdf.

Google. TensorFlow Lite, 2017. URL https://www.
tensorflow.org/lite.

Google. The RUY matrix multiplication library, 2020. URL
https://github.com/google/ruy/.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning
both weights and connections for efficient neural
network. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada, pp. 1135–1143, 2015. URL http:
//papers.nips.cc/paper/5784-learning-
both-weights-and-connections-for-
efficient-neural-network.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In Bengio, Y. and Le-
Cun, Y. (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1510.00149.

He, X., Mo, Z., Cheng, K., Xu, W., Hu, Q., Wang, P., Liu,
Q., and Cheng, J. ProxyBNN: Learning binarized neural
networks via proxy matrices. In Vedaldi, A., Bischof,
H., Brox, T., and Frahm, J. (eds.), Computer Vision -
ECCV 2020 - 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part III, volume 12348
of Lecture Notes in Computer Science, pp. 223–241.
Springer, 2020. doi: 10.1007/978-3-030-58580-8\ 14.
URL https://doi.org/10.1007/978-3-030-
58580-8_14.

Helwegen, K., Widdicombe, J., Geiger, L., Liu, Z.,
Cheng, K., and Nusselder, R. Latent weights do
not exist: Rethinking binarized neural network
optimization. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
8-14 December 2019, Vancouver, BC, Canada, pp.
7531–7542, 2019. URL http://papers.nips.
cc/paper/8971-latent-weights-do-not-
exist-rethinking-binarized-neural-
network-optimization.

Howard, A., Pang, R., Adam, H., Le, Q. V., Sandler, M.,
Chen, B., Wang, W., Chen, L., Tan, M., Chu, G., Va-
sudevan, V., and Zhu, Y. Searching for mobilenetv3.
In 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), Oc-
tober 27 - November 2, 2019, pp. 1314–1324. IEEE,
2019. doi: 10.1109/ICCV.2019.00140. URL https:
//doi.org/10.1109/ICCV.2019.00140.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017. URL http:
//arxiv.org/abs/1704.04861.

Huang, G., Liu, S., van der Maaten, L., and Wein-
berger, K. Q. Condensenet: An efficient densenet
using learned group convolutions. In 2018 IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pp. 2752–2761. IEEE Computer Soci-
ety, 2018. doi: 10.1109/CVPR.2018.00291. URL
http://openaccess.thecvf.com/content_
cvpr_2018/html/Huang_CondenseNet_An_
Efficient_CVPR_2018_paper.html.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R.,
and Bengio, Y. Binarized neural networks. In Lee,
D. D., Sugiyama, M., von Luxburg, U., Guyon, I.,
and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, Decem-
ber 5-10, 2016, Barcelona, Spain, pp. 4107–4115,
2016. URL http://papers.nips.cc/paper/
6573-binarized-neural-networks.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model
size. CoRR, abs/1602.07360, 2016. URL http://
arxiv.org/abs/1602.07360.

https://proceedings.mlsys.org/book/312.pdf
https://proceedings.mlsys.org/book/312.pdf
https://doi.org/10.21105/joss.01746
https://doi.org/10.21105/joss.01746
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://github.com/google/ruy/
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network
http://arxiv.org/abs/1510.00149
https://doi.org/10.1007/978-3-030-58580-8_14
https://doi.org/10.1007/978-3-030-58580-8_14
http://papers.nips.cc/paper/8971-latent-weights-do-not-exist-rethinking-binarized-neural-network-optimization
http://papers.nips.cc/paper/8971-latent-weights-do-not-exist-rethinking-binarized-neural-network-optimization
http://papers.nips.cc/paper/8971-latent-weights-do-not-exist-rethinking-binarized-neural-network-optimization
http://papers.nips.cc/paper/8971-latent-weights-do-not-exist-rethinking-binarized-neural-network-optimization
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/ICCV.2019.00140
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.html
http://papers.nips.cc/paper/6573-binarized-neural-networks
http://papers.nips.cc/paper/6573-binarized-neural-networks
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360

Larq Compute Engine

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Bach, F. R. and Blei, D. M. (eds.), Proceedings of
the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, volume 37 of
JMLR Workshop and Conference Proceedings, pp. 448–
456. JMLR.org, 2015. URL http://proceedings.
mlr.press/v37/ioffe15.html.

Kim, D., Singh, K. P., and Choi, J. Learning architectures
for binary networks. In Vedaldi, A., Bischof, H., Brox,
T., and Frahm, J. (eds.), Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XII, volume 12357 of Lecture
Notes in Computer Science, pp. 575–591. Springer, 2020.
doi: 10.1007/978-3-030-58610-2 34. URL https://
doi.org/10.1007/978-3-030-58610-2_34.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Lattner, C., Pienaar, J. A., Amini, M., Bondhugula, U., Rid-
dle, R., Cohen, A., Shpeisman, T., Davis, A., Vasilache,
N., and Zinenko, O. MLIR: A compiler infrastructure for
the end of Moore’s law. CoRR, abs/2002.11054, 2020.
URL https://arxiv.org/abs/2002.11054.

Lin, X., Zhao, C., and Pan, W. Towards accurate binary
convolutional neural network. In Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pp.
345–353, 2017. URL http://papers.nips.cc/
paper/6638-towards-accurate-binary-
convolutional-neural-network.

Liu, F. Building TensorFlow converter tools with MLIR,
2019. URL https://drive.google.com/file/
d/1ZCLTiEm5cVON34JrnUTvm5XdhjYz3DXV.

Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., and Cheng,
K. Bi-real net: Enhancing the performance of 1-bit
cnns with improved representational capability and ad-
vanced training algorithm. In Ferrari, V., Hebert, M.,
Sminchisescu, C., and Weiss, Y. (eds.), Computer Vision
– ECCV 2018, pp. 747–763, Cham, 2018. Springer In-
ternational Publishing. ISBN 978-3-030-01267-0. doi:
10.1007/978-3-030-01267-0 44.

Liu, Z., Shen, Z., Savvides, M., and Cheng, K. Reactnet:
Towards precise binary neural network with generalized

activation functions. CoRR, abs/2003.03488, 2020. URL
https://arxiv.org/abs/2003.03488.

Ma, N., Zhang, X., Zheng, H. T., and Sun, J. Shufflenet V2:
Practical guidelines for efficient cnn architecture design.
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 11218 LNCS:122–138, 2018. ISSN
16113349. doi: 10.1007/978-3-030-01264-9 8.

Martı́nez, B., Yang, J., Bulat, A., and Tzimiropoulos, G.
Training binary neural networks with real-to-binary con-
volutions. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=BJg4NgBKvH.

Munagala, S. A., Prabhu, A., and Namboodiri, A. M. Stq-
nets: Unifying network binarization and structured prun-
ing. In 31st British Machine Vision Conference 2020,
BMVC 2020, Virtual Event, UK, September 7-10, 2020.
BMVA Press, 2020. URL https://www.bmvc2020-
conference.com/assets/papers/0113.pdf.

Peters, J. W. T. and Welling, M. Probabilistic binary neural
networks. CoRR, abs/1809.03368, 2018. URL http:
//arxiv.org/abs/1809.03368.

Phan, H., Huynh, D., He, Y., Savvides, M., and Shen,
Z. Mobinet: A mobile binary network for image
classification. In IEEE Winter Conference on Appli-
cations of Computer Vision, WACV 2020, Snowmass
Village, CO, USA, March 1-5, 2020, pp. 3442–3451.
IEEE, 2020. doi: 10.1109/WACV45572.2020.9093444.
URL https://doi.org/10.1109/WACV45572.
2020.9093444.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
Xnor-net: Imagenet classification using binary convolu-
tional neural networks. In Leibe, B., Matas, J., Sebe, N.,
and Welling, M. (eds.), Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV, volume 9908
of Lecture Notes in Computer Science, pp. 525–542.
Springer, 2016. doi: 10.1007/978-3-319-46493-0 32.
URL https://doi.org/10.1007/978-3-319-
46493-0_32.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and
Chen, L. Mobilenetv2: Inverted residuals and linear bot-
tlenecks. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pp. 4510–4520. IEEE Computer
Society, 2018. doi: 10.1109/CVPR.2018.00474. URL
http://openaccess.thecvf.com/content_
cvpr_2018/html/Sandler_MobileNetV2_

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1007/978-3-030-58610-2_34
https://doi.org/10.1007/978-3-030-58610-2_34
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2002.11054
http://papers.nips.cc/paper/6638-towards-accurate-binary-convolutional-neural-network
http://papers.nips.cc/paper/6638-towards-accurate-binary-convolutional-neural-network
http://papers.nips.cc/paper/6638-towards-accurate-binary-convolutional-neural-network
https://drive.google.com/file/d/1ZCLTiEm5cVON34JrnUTvm5XdhjYz3DXV
https://drive.google.com/file/d/1ZCLTiEm5cVON34JrnUTvm5XdhjYz3DXV
https://arxiv.org/abs/2003.03488
https://openreview.net/forum?id=BJg4NgBKvH
https://openreview.net/forum?id=BJg4NgBKvH
https://www.bmvc2020-conference.com/assets/papers/0113.pdf
https://www.bmvc2020-conference.com/assets/papers/0113.pdf
http://arxiv.org/abs/1809.03368
http://arxiv.org/abs/1809.03368
https://doi.org/10.1109/WACV45572.2020.9093444
https://doi.org/10.1109/WACV45572.2020.9093444
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html

Larq Compute Engine

Inverted_Residuals_CVPR_2018_paper.
html.

Shen, M., Han, K., Xu, C., and Wang, Y. Searching for
accurate binary neural architectures. In 2019 IEEE/CVF
International Conference on Computer Vision Workshops,
ICCV Workshops 2019, Seoul, Korea (South), October
27-28, 2019, pp. 2041–2044. IEEE, 2019. doi: 10.1109/
ICCVW.2019.00256. URL https://doi.org/10.
1109/ICCVW.2019.00256.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model
scaling for convolutional neural networks. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning
Research, pp. 6105–6114. PMLR, 2019. URL http://
proceedings.mlr.press/v97/tan19a.html.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. Mnasnet: Platform-aware
neural architecture search for mobile. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, pp. 2820–2828. Computer Vision Foundation /
IEEE, 2019. doi: 10.1109/CVPR.2019.00293. URL
http://openaccess.thecvf.com/content_
CVPR_2019/html/Tan_MnasNet_Platform-
Aware_Neural_Architecture_Search_for_
Mobile_CVPR_2019_paper.html.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S.
HAQ: hardware-aware automated quantization
with mixed precision. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pp.
8612–8620. Computer Vision Foundation / IEEE,
2019. doi: 10.1109/CVPR.2019.00881. URL
http://openaccess.thecvf.com/content_
CVPR_2019/html/Wang_HAQ_Hardware-
Aware_Automated_Quantization_With_
Mixed_Precision_CVPR_2019_paper.html.

Whaley, R. C. and Petitet, A. Minimizing development and
maintenance costs in supporting persistently optimized
BLAS. Software: Practice and Experience, 35(2):101–
121, February 2005.

Yang, H., Fritzsche, M., Bartz, C., and Meinel, C. Bmxnet:
An open-source binary neural network implementation
based on mxnet. In Liu, Q., Lienhart, R., Wang, H.,
Chen, S. K., Boll, S., Chen, Y. P., Friedland, G., Li,
J., and Yan, S. (eds.), Proceedings of the 2017 ACM
on Multimedia Conference, MM 2017, Mountain View,
CA, USA, October 23-27, 2017, pp. 1209–1212. ACM,

2017. doi: 10.1145/3123266.3129393. URL https:
//doi.org/10.1145/3123266.3129393.

Zhang, J., Pan, Y., Yao, T., Zhao, H., and Mei, T. dabnn:
A super fast inference framework for binary neural net-
works on ARM devices. In Amsaleg, L., Huet, B.,
Larson, M. A., Gravier, G., Hung, H., Ngo, C., and
Ooi, W. T. (eds.), Proceedings of the 27th ACM Inter-
national Conference on Multimedia, MM 2019, Nice,
France, October 21-25, 2019, pp. 2272–2275. ACM,
2019. doi: 10.1145/3343031.3350534. URL https:
//doi.org/10.1145/3343031.3350534.

Zhang, R. Making convolutional networks shift-invariant
again. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pp. 7324–7334. PMLR,
2019. URL http://proceedings.mlr.press/
v97/zhang19a.html.

Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile
devices. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pp. 6848–6856. IEEE Computer
Society, 2018. doi: 10.1109/CVPR.2018.00716. URL
http://openaccess.thecvf.com/content_
cvpr_2018/html/Zhang_ShuffleNet_An_
Extremely_CVPR_2018_paper.html.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and
Zou, Y. DoReFa-Net: Training Low Bitwidth Con-
volutional Neural Networks with Low Bitwidth Gra-
dients. arXiv preprint arXiv:1606.06160, 2016. doi:
10.1080/00131940802117563. URL http://arxiv.
org/abs/1606.06160.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained ternary
quantization. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. URL https://openreview.net/
forum?id=S1_pAu9xl.

Zhu, S., Dong, X., and Su, H. Binary ensemble neural
network: More bits per network or more networks per
bit? In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4918–4927,
June 2019. doi: 10.1109/CVPR.2019.00506. URL
http://openaccess.thecvf.com/content_
CVPR_2019/papers/Zhu_Binary_Ensemble_
Neural_Network_More_Bits_per_Network_
or_More_CVPR_2019_paper.pdf.

http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://doi.org/10.1109/ICCVW.2019.00256
https://doi.org/10.1109/ICCVW.2019.00256
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wang_HAQ_Hardware-Aware_Automated_Quantization_With_Mixed_Precision_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wang_HAQ_Hardware-Aware_Automated_Quantization_With_Mixed_Precision_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wang_HAQ_Hardware-Aware_Automated_Quantization_With_Mixed_Precision_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wang_HAQ_Hardware-Aware_Automated_Quantization_With_Mixed_Precision_CVPR_2019_paper.html
https://doi.org/10.1145/3123266.3129393
https://doi.org/10.1145/3123266.3129393
https://doi.org/10.1145/3343031.3350534
https://doi.org/10.1145/3343031.3350534
http://proceedings.mlr.press/v97/zhang19a.html
http://proceedings.mlr.press/v97/zhang19a.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1606.06160
https://openreview.net/forum?id=S1_pAu9xl
https://openreview.net/forum?id=S1_pAu9xl
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_Network_or_More_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_Network_or_More_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_Network_or_More_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_Network_or_More_CVPR_2019_paper.pdf

Larq Compute Engine

Zhuang, B., Shen, C., Tan, M., Liu, L., and Reid,
I. Structured binary neural networks for accurate
image classification and semantic segmentation.
In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 413–422, June
2019. doi: 10.1109/CVPR.2019.00050. URL
http://openaccess.thecvf.com/content_
CVPR_2019/papers/Zhuang_Structured_
Binary_Neural_Networks_for_Accurate_
Image_Classification_and_Semantic_
CVPR_2019_paper.pdf.

A BENCHMARKS ON RASPBERRY PI 4B
We provide the benchmark numbers on the Raspberry Pi
4B, for comparison with the numbers on a Pixel 1 phone
presented in the main text.

For the example convolutions, the performance for the var-
ious precisions is shown in Figure 11. The relationship
between MACs and latency of individual convolutions is
shown in Figure 12. The associated speedups are described
in Table 6. We see that speedups with respect to floating
point convolutions is slightly better while improvement with
respect to 8-bit quantized convolutions is a bit lower.

The accuracy and latency of existing BNN models and
QuickNet on the Raspberry Pi is shown in Figure 13. The
latency for various shortcut configurations are compared in
Figure 14, and the relationship between MACs and latency
is shown in Figure 15.

0

10

20

30

40

R
a
s
p

b
e
rr

y
 P

i
4
B

 l
a
te

n
c
y
 (

m
s
)

A B C D

Float (TFLite) 8-bit (TFLite) Binary (LCE)

Figure 11. The impact of binarization on latency of convolutional
layers with 3×3 kernel for the same convolutions as in Figure 2
on a Raspberry Pi 4B. With respect to floating point, we observe
binary speedups of between 14× for (A) and over 20× for (D).
With respect to 8-bit, we observe speedups of between 6× and
10×.

1.0e+51.0e+6 1.0e+7 1.0e+8 1.0e+9

MACs

0.001

0.01

0.1

1

10

100

1,000

10,000

R
a
s
p

b
e
rr

y
 P

i
4
B

 l
a
te

n
c
y
 (

m
s
)

Float (TFLite) 8-bit (TFLite) Binary (LCE)

Figure 12. The relationship between MACs and latency for a large
range of convolutions in binary, int8 and 32-bit floating point. See
also Figure 3.

Table 6. Speedup of binarized convolutions on Raspberry Pi 4B
with LCE, compared to 8-bit integer or floating point precision
with TensorFlow Lite. We determine this speedup for a large range
of individual convolutions and provide the mean, latency-weighted
mean and overall range. Compare to Table 2.

Precision Mean Weighted mean Range

1 vs. 32 17.5× 16.0× 8.8–23.0×
1 vs. 8 8.3× 8.5× 5.1–9.6×

0 50 100 150 200 250

Raspberry Pi 4 latency (ms, single thread)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Im
a
g

e
N

e
t

v
a
li
d

a
ti

o
n

 a
c
c
u

ra
c
y

QuickNet

RealToBinaryNet

BinaryDenseNet

MeliusNet22

BinaryResNetE18

BiRealNet

XNORNet

BinaryAlexNet

model

5

10

15

20

model size (MiB)

Figure 13. Accuracy and latency for various popular BNN models
as well as the newly introduced QuickNet on a Raspberry Pi 4B.
Compare to Figure 7.

http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhuang_Structured_Binary_Neural_Networks_for_Accurate_Image_Classification_and_Semantic_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhuang_Structured_Binary_Neural_Networks_for_Accurate_Image_Classification_and_Semantic_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhuang_Structured_Binary_Neural_Networks_for_Accurate_Image_Classification_and_Semantic_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhuang_Structured_Binary_Neural_Networks_for_Accurate_Image_Classification_and_Semantic_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhuang_Structured_Binary_Neural_Networks_for_Accurate_Image_Classification_and_Semantic_CVPR_2019_paper.pdf

Larq Compute Engine

Block

0

1

2

3

4

R
a
s
p

b
e
rr

y
 P

i
4
B

 l
a
te

n
c
y
 (

m
s
) 1 5 6 9 10 13 14

A B C A B C A B C A B C A B C A B C A B C

Binary layers Other High-precision layers

Figure 14. Study of the impact of full-precision shortcuts on la-
tency on a Raspberry Pi 4B. See Figure 9 for details.

100,000,000 300,000,000 500,000,000

eMACs @ 17

0

50

100

150

200

250

R
a
s
p

b
e
rr

y
 P

i
4
B

 l
a
te

n
c
y
 (

m
s
)

QuickNet

RealToBinaryNet

BinaryDenseNet

MeliusNet22

BinaryResNetE18

BiRealNet

XNORNet

BinaryAlexNet

family

Figure 15. The relationship between MACs and latency for the
BNNs in Larq Zoo. Based on Table 6, here we assume a scaling
of 17 binary MACs per full-precision MAC - the combined num-
ber is referred to as eMACs to indicate the assumed equivalence.
Compare to Figure 10.

B BENCHMARKS ON PIXEL 5 PHONE

We provide additional benchmark numbers on the Pixel
5 phone running Android 11 in Figure 16. The Cortex-
A76 CPU used in the Pixel 5 phone includes the sdot
instruction which significantly improves performance of 8-
bit convolutions compared to the Pixel 1 and Raspberry PI
4B.

0

2

4

6

8

10

P
ix

e
l
5
 l
a
te

n
c
y
 (

m
s
)

A B C D

Float (TFLite) 8-bit (TFLite) Binary (LCE)

Figure 16. The impact of binarization on latency of convolutional
layers with 3×3 kernel for the same convolutions as in Figure 2
on a Pixel 5 phone. With respect to floating point, we observe
binary speedups of between 11.5× for (A) and 16.5× for (D).
With respect to 8-bit, we observe speedups of between 2.7× and
3.7×.

