TENSORFLOW LITE MICRO:
EMBEDDED MACHINE LEARNING ON TINYML SYSTEMS

Robert David! Jared Duke' Advait Jain' Vijay Janapa Reddi'?
Nat Jeffries! Jian Li' Nick Kreeger! Ian Nappier! Meghna Natraj !
Shlomi Regev' Rocky Rhodes' Tiezhen Wang' Pete Warden '

ABSTRACT
TensorFlow Lite Micro (TFLM) is an open-source ML inference framework for running deep-learning models on
embedded systems. TFLM tackles the efficiency requirements imposed by embedded-system resource constraints
and the fragmentation challenges that make cross-platform interoperability nearly impossible. The framework
adopts a unique interpreter-based approach that provides flexibility while overcoming these unique challenges.
In this paper, we explain the design decisions behind TFLM and describe its implementation. We present an
evaluation of TFLM to demonstrate its low resource requirements and minimal run-time performance overheads.

1 INTRODUCTION

Tiny machine learning (TinyML) is a burgeoning field at
the intersection of embedded systems and machine learning.
The world has over 250 billion microcontrollers (IC Insights,
2020), with strong growth projected over coming years. As
such, a new range of embedded applications are emerging
for neural networks. Because these models are extremely
small (few hundred KBs), running on microcontrollers or
DSP-based embedded subsystems, they can operate contin-
uously with minimal impact on device battery life.

The most well-known and widely deployed example of this
new TinyML technology is keyword spotting, also called
hotword or wakeword detection (Chen et al., 2014; Gru-
enstein et al., 2017; Zhang et al., 2017). Amazon, Apple,
Google, and others use tiny neural networks on billions of
devices to run always-on inferences for keyword detection—
and this is far from the only TinyML application. Low-
latency analysis and modeling of sensor signals from micro-
phones, low-power image sensors, accelerometers, gyros,
PPG optical sensors, and other devices enable consumer and
industrial applications, including predictive maintenance
(Goebel et al., 2020; Susto et al., 2014), acoustic-anomaly
detection (Koizumi et al., 2019), visual object detection
(Chowdhery et al., 2019), and human-activity recognition
(Chavarriaga et al., 2013; Zhang & Sawchuk, 2012).

Unlocking machine learning’s potential in embedded de-

'Google 2Harvard University. Correspondence to:
Pete Warden <petewarden@google.com>, Vijay Janapa Reddi
<vj@eecs.harvard.edu>.

Proceedings of the 4" MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

vices requires overcoming two crucial challenges. First
and foremost, embedded systems have no unified TinyML
framework. When engineers have deployed neural networks
to such systems, they have built one-off frameworks that
require manual optimization for each hardware platform.
Such custom frameworks have tended to be narrowly fo-
cused, lacking features to support multiple applications and
lacking portability across a wide range of hardware. The
developer experience has therefore been painful, requiring
hand optimization of models to run on a specific device.
And altering these models to run on another device necessi-
tated manual porting and repeated optimization effort. An
important second-order effect of this situation is that the
slow pace and high cost of training and deploying mod-
els to embedded hardware prevents developers from easily
justifying the investment required to build new features.

Another challenge limiting TinyML is that hardware vendors
have related but separate needs. Without a generic TinyML
framework, evaluating hardware performance in a neutral,
vendor-agnostic manner has been difficult. Frameworks are
tied to specific devices, and it is hard to determine the source
of improvements because they can come from hardware,
software, or the complete vertically integrated solution.

The lack of a proper framework has been a barrier to acceler-
ating TinyML adoption and application in products. Beyond
deploying a model to an embedded target, the framework
must also have a means of training a model on a higher-
compute platform. TinyML must exploit a broad ecosystem
of tools for ML, as well for orchestrating and debugging
models, which are beneficial for production devices.

Prior efforts have attempted to bridge this gap. We can distill
the major issues facing the frameworks into the following:

TensorFlow Lite Micro

* Inability to easily and portably deploy models across
multiple embedded hardware architectures

» Lack of optimizations that take advantage of the under-
lying hardware without requiring framework develop-
ers to make platform-specific efforts

e Lack of productivity tools that connect training
pipelines to deployment platforms and tools

* Incomplete infrastructure for compression, quantiza-
tion, model invocation, and execution

* Minimal support features for performance profiling,
debugging, orchestration, and so on

* No benchmarks that allow vendors to quantify their
chip’s performance in a fair and reproducible manner

 Lack of testing in real-world applications.

To address these issues, we introduce TensorFlow Lite Mi-
cro (TFLM), which mitigates the slow pace and high cost
of training and deploying models to embedded hardware by
emphasizing portability and flexibility. TFLM makes it easy
to get TinyML applications running across architectures,
and it allows hardware vendors to incrementally optimize
kernels for their devices. It gives vendors a neutral platform
to prove their performance and offers these benefits:

* Our interpreter-based approach is portable, flexible,
and easily adapted to new applications and features

* We minimize the use of external dependencies and
library requirements to be hardware agnostic

* We enable hardware vendors to provide platform-
specific optimizations on a per-kernel basis without
writing target-specific compilers

* We allow hardware vendors to easily integrate their ker-
nel optimizations to ensure performance in production
and comparative hardware benchmarking

* Our model-architecture framework is open to a wide
machine-learning ecosystem and the TensorFlow Lite
model conversion and optimization infrastructure

* We provide benchmarks that are being adopted by
industry-leading benchmark bodies like MLPerf

* Our framework supports popular, well-maintained
Google applications that are in production.

This paper makes several contributions: First, we clearly lay
out the challenges to developing a machine-learning frame-
work for embedded devices that supports the fragmented
embedded ecosystem. Second, we provide design and imple-
mentation details for a system specifically created to cope
with these challenges. And third, we demonstrate that an
interpreter-based approach, which is traditionally viewed
as a low-performance alternative to compilation, is in fact
highly suitable for the embedded domain—specifically, for

machine learning. Because machine-learning performance
is largely dictated by linear-algebra computations, the inter-
preter design imposes minimal run-time overhead.

2 TECHNICAL CHALLENGES

Many issues make developing an ML framework for embed-
ded systems particularly difficult, as discussed here.

2.1 Missing Features

Embedded platforms are defined by their tight limitations.
Therefore, many advances from the past few decades that
have made software development faster and easier are un-
available to these platforms because the resource tradeoffs
are too expensive. Examples include dynamic memory
management, virtual memory, an operating system, a stan-
dard instruction set, a file system, floating-point hardware,
and other tools that seem fundamental to modern program-
mers (Kumar et al., 2017). Though some platforms provide
a subset of these features, a framework targeting widespread
adoption in this market must avoid relying on them.

2.2 Fragmented Market and Ecosystem

Many embedded-system uses only require fixed software
developed alongside the hardware, usually by an affili-
ated team. The lack of applications capable of running
on the platform is therefore much less important than it
is for general-purpose computing. Moreover, backward
instruction-set-architecture (ISA) compatibility with older
software matters less than in mainstream systems because
everything that runs on an embedded system is probably
compiled from source code anyway. Thus, embedded hard-
ware can aggressively diversify to meet power requirements,
whereas even the latest x86 processor can still run instruc-
tions that are nearly three decades old (Intel, 2013).

These differences mean the pressure to converge on one
or two dominant platforms or ISAs is much weaker in the
embedded space, leading to fragmentation. Many ISAs have
thriving ecosystems, and the benefits they bring to partic-
ular applications outweigh developers’ cost of switching.
Companies even allow developers to add their own ISA
extensions (Waterman & Asanovic, 2019; ARM, 2019).

Matching the wide variety of embedded architectures are
the numerous tool chains and integrated development envi-
ronments (IDEs) that support them. Many of these systems
are only available through a commercial license with the
hardware manufacturer, and in cases where a customer has
requested specialized instructions, they may be inaccessi-
ble to everyone. These arrangements have no open-source
ecosystem, leading to device fragmentation that prevents a
lone development team from producing software that runs
well on many different embedded platforms.

TensorFlow Lite Micro

2.3 Resource Constraints

People who build embedded devices do so because a general-
purpose computing platform exceeds their design limits.
The biggest drivers are cost, with a microcontroller typically
selling for less than a few dollars (IC Insights, 2020); power
consumption, as embedded devices may require just a few
milliwatts of power, whereas mobile and desktop CPUs re-
quire watts; and form factor, since capable microcontrollers
are smaller than a grain of rice (Wu et al., 2018).

To meet their needs, hardware designers trade off capabil-
ities. A common characteristic of an embedded system is
its low memory capacity. At one end of the spectrum, a
big embedded system has a few megabytes of flash ROM
and at most a megabyte of SRAM. At the other end, a small
embedded system has just a few hundred kilobytes or fewer,
often split between ROM and RAM (Zhang et al., 2017).

These constraints mean both working memory and perma-
nent storage are much smaller than most software written for
general-purpose platforms would assume. In particular, the
size of the compiled code in storage requires minimization.

Most software written for general-purpose platforms con-
tains code that often goes uncalled on a given device. Choos-
ing the code path at run time is a better use of engineering
resources than shipping more-highly custom executables.
Such run-time flexibility is hard to justify when code size is
a concern and the potential uses are fewer. As a result, devel-
opers must break through the a library’s abstraction if they
want to make modifications to suit their target hardware.

2.4 Ongoing Changes to Deep Learning

Machine learning remains in its infancy despite its break-
neck pace. Researchers are still experimenting with new
operations and network architectures to glean better predic-
tions from their models. Their success in improving results
leads product designers to demand these enhanced models.

Because new mathematical operations—or other fundamen-
tal changes to neural-network calculations—often drive the
model advances, adopting these models in software means
porting the changes, too. Since research directions are hard
to predict and advances are frequent, keeping a framework
up to date and able to run the newest, best models requires
a lot of work. Hence, for instance, while TensorFlow has
more than 1,400 operations (TensorFlow, 2020e), Tensor-
Flow Lite, which is deployed on more than four billions
edge devices worldwide, supports only about 130 opera-
tions. Not all operations are worth supporting, however.

3 DESIGN PRINCIPLES

To address the challenges, we developed a set of developer
principles to guide the design of TFLM that we discuss here.

3.1 Minimize Feature Scope for Portability

We believe an embedded machine-learning (ML) framework
should assume the model, input data, and output arrays are in
memory, and it should only handle ML calculations based on
those values. The design should exclude any other function,
no matter how useful. In practice, this approach means the
library should omit features such as loading models from a
file system or accessing peripherals for inputs.

This principle is crucial as many embedded platforms are
missing basic features, such as memory management and
library support (Section 2.1), that mainstream platforms take
for granted. Supporting the myriad possibilities would make
porting the ML framework across devices unwieldy.

Fortunately, ML models are functional, having clear inputs,
outputs, and possibly some internal state but no external
side effects. Running a model need not involve calls to
peripherals or other operating-system functions. To remain
efficient, we focus only on implementing those calculations.

3.2 Enable Vendor Contributions to Span Ecosystem

All embedded devices can benefit from high-performance
kernels optimized for a given microprocessor. But no one
team can easily support such kernels for the entire embed-
ded market because of the ecosystem’s fragmentation (see
Section 2.2). Worse, optimization approaches vary greatly
depending on the target microprocessor architecture.

The companies with the strongest motivation to deliver max-
imum performance on a set of devices are the ones that
design and sell the underlying embedded microprocessors.
Although developers at these companies are highly experi-
enced at optimizing traditional numerical algorithms (e.g.,
digital signal processing) for their hardware, they often lack
deep-learning experience. Therefore, evaluating whether
their optimization changes are detrimental or acceptable to
model accuracy and overall performance is difficult.

To improve the development experience for hardware ven-
dors and application developers, we make sure optimizing
the core library operations is easy. One goal is to ensure
substantial technical support (tests and benchmarks) for de-
veloper modifications and to encourage submission to a
library repository (details are presented in Section 4).

3.3 Reuse TensorFlow Tools for Scalability

The TensorFlow training environment includes more than
1,400 operations, similar to other training frameworks (Ten-
sorFlow, 2020e). Most inference frameworks, however,
explicitly support only a subset of these operations, making
exports difficult. An exporter takes a trained model (such
as a TensorFlow model) and generates a TensorFlow Lite
model file (.tflite); after conversion, the model file can be

TensorFlow Lite Micro

TensorFlow Lite
Flatbuffer File

Ordered Op

- >
—

TensorFlow Training Flow Lite Exporter

Training Inference

Figure 1. Model-export workflow.

\4

A\

deployed to a client device (e.g., a mobile or embedded sys-
tem) and run locally using the TensorFlow Lite interpreter.

Exporters receive a constant stream of new operations, most
defined only by their implementation code. Because the
operands lack clean semantic definitions beyond their im-
plementations and unit tests, supporting these operations
is difficult. Attempting to do so is like working with the
elaborate CISC ISA without access to the ISA manual.

Manually converting/exporting one or two models to a new
representation is easy. Users will want to convert a large
space of potential models, however, and the task of under-
standing and changing model architectures to accommodate
a framework’s requirements is difficult. Often, only af-
ter users have built and trained a model do they discover
whether all of its operations are compatible with the target
inference framework. Worse, many users employ high-level
APIs, such as Keras (Chollet et al., 2015), which may hide
low-level operations, complicating the task of removing
depencence on operations. Also, researchers and product
developers often split responsibilities, with the former cre-
ating models and the latter deploying them. Since product
developers are the ones who discover the export errors, they
may lack the expertise or permission to retrain the model.

Model operators have no governing principles or a unified
set of rules. Even if an inference framework supports an
operation, particular data types may not, or the operation
may exclude certain parameter ranges or may only serve in
conjunction with other operations. This situation creates a
barrier to providing error messages that guide developers.

Resource constraints also add many requirements to an ex-
porter. Most training frameworks focus on floating-point
calculations, since they are the most flexible numerical rep-
resentation and are well optimized for desktop CPUs and
GPUs. Fitting into small memories, however, makes eight-
bit and other quantized representations valuable for embed-
ded deployment. Some techniques can convert a model
trained in floating point to a quantized representation (Krish-
namoorthi, 2018), but they all increase exporter complexity.
Some also require support during the training process, ne-
cessitating changes to the creation framework as well. Other
optimizations are also expected during export, such as fold-
ing constant expressions into fixed values—even in complex
cases like batch normalization (Zhang et al., 2017)—and
removing dropout and similar operations that are only useful
during training (Srivastava et al., 2014).

Because writing a robust model converter takes a tremen-
dous amount of engineering work, we built atop the existing
TensorFlow Lite tool chain. As Figure 1 shows, we use
the TensorFlow Lite toolchain to ease conversion and op-
timization and the converter outputs a FlatBuffer file used
by TFLM to load the inference models. We exploited this
strong integration with the TensorFlow training environment
and extended it for rapidly supporting deeply embedded
machine-learning systems. For example, we reuse the Ten-
sorFlow Lite reference kernels, thus giving users a harmo-
nized environment for model development and execution.

3.4 Build System for Heterogeneous Support

A crucial feature is a flexible build environment. The build
system must support the highly heterogeneous ecosystem
and avoid falling captive to any one platform. Otherwise,
developers would avoid adopting it due to the lack of porta-
bility and so would the hardware platform vendors.

In desktop and mobile systems, frameworks commonly pro-
vide precompiled libraries and other binaries as the main
software-delivery method. This approach is impractical in
embedded platforms because they encompass too many dif-
ferent devices, operating systems, and tool-chain combina-
tions to allow a balancing of modularity, size, and other con-
straints. Additionally, embedded system developers must
often make code changes to meet such constraints.

We prioritize code that is easy to build using various IDEs
and tool chains. This approach means we avoid techniques
that rely on build-system features that do not genearlize
across platforms. Examples of such features include setting
custom include paths, compiling tools for the host processor,
using custom binaries or shell scripts to produce code, and
defining preprocessor macros on the command line.

Our principle is that we should be able to create source files
and headers for a given platform, and users should then be
able to drag and drop those files into their IDE or tool chain
and compile them without any changes. We call it the “Bag
of Files” principle. Anything more complex would prevent
adoption by many platforms and developers.

4 IMPLEMENTATION

We discuss our implementation decisions and tradeoffs we
make as we describe specific modules in detail.

4.1 System Overview

The first step in developing a TFLM application is to cre-
ate a live neural-network-model object in memory. The
application developer produces an “operator resolver” ob-
ject through the client APIL. The “OpResolver” API controls
which operators link to the final binary, minimizing file size.

TensorFlow Lite Micro

The second step is to supply a contiguous memory “arena”
that holds intermediate results and other variables the in-
terpreter needs. Doing so is necessary because we assume
dynamic memory allocation is unavailable.

The third step is to create an interpreter instance (Sec-
tion 4.2), supplying it with the model, operator resolver, and
arena as arguments. The interpreter allocates all required
memory from the arena during the initialization phase. We
avoid any allocations afterward to ensure heap fragmen-
tation avoids causing errors for long-running applications.
Operator implementations may allocate memory for use dur-
ing the evaluation, so the operator preparation functions are
called during this phase, allowing their memory needs to be
communicated to the interpreter. The application-supplied
OpResolver maps the operator types listed in the serial-
ized model to the implementation functions. A C API call
handles all communication between the interpreter and op-
erators to ensure operator implementations are modular and
independent of the interpreter’s details. This approach eases
replacement of operator implementations with optimized
versions, and it also encourages reuse of other systems’
operator libraries (e.g., as part of a code-generation project).

The fourth step is execution. The application retrieves point-
ers to the memory regions that represent the model inputs
and populates them with values (often derived from sensors
or other user-supplied data). Once the inputs are available,
the application invokes the interpreter to perform the model
calculations. This process involves iterating through the
topologically sorted operations, using offsets calculated dur-
ing memory planning to locate the inputs and outputs, and
calling the evaluation function for each operation.

Finally, after it evaluates all the operations, the interpreter
returns control to the application. Invocation is a simple
blocking call. Most MCUs are single-threaded and they
use interrupts for urgent tasks so it is acceptable. But an
application can still perform one from a thread, and platform-
specific operators can still split their work across processors.
Once invocation finishes, the application can query the in-
terpreter to determine the location of the arrays containing
the model-calculation outputs and then use those outputs.

The framework omits any threading or multitasking support,
since any such features would require less-portable code and
operating-system dependencies. However, we support mul-
titenancy. The framework can run multiple models as long
as they do not need to run concurrently with one another.

4.2 TFLM Interpreter

TFLM is an interpreter-based machine-learning inference
framework. The interpreter loads a data structure that clearly
defines a machine learning model. Although the execution
code is static, the interpreter handles the model data at run

’ Application }—

‘ Client API ‘
TF Lite Micro
Interpreter
Model Memory Operator
Loader Planner Resolver
Operator API

Operator Operator
Implementation Implementation

Figure 2. Implementation-module overview.

time, and this data controls which operators to execute and
where to draw the model parameters from.

We chose an interpreter on the basis of our experience de-
ploying production models on embedded hardware. We see
a need to easily update models in the field—a task that may
be infeasible using code generation. Using an interpreter,
however, sharing code across multiple models and applica-
tions is easier, as is maintaining the code, since it allows
updates without re-exporting the model. Moreover, unlike
traditional interpreters with lots of branching overhead rel-
ative to a function call, ML model interpretation benefits
from long-running kernel complexity. Each kernel runtime
is large and amortizes the interpreter overhead (Section 5).

The alternative to an interpreter-based inference engine is
to generate native code from a model during export using C
or C++, baking operator function calls into fixed machine
code. It can increase performance at the expense of porta-
bility, since the code would need recompilation for each
target. Code generation intersperses settings such as model
architecture, weights, and layer dimensions in the binary,
which means replacing the entire executable to modify a
model. In contrast, an interpreted approach keeps all this
information in a separate memory file/area, allowing model
updates to replace a single file or contiguous memory area.

We incorporate some important code-generation features in
our approach. For example, because our library is buildable
from source files alone (Section 3.4), we achieve much of
the compilation simplicity of generated code.

4.3 Model Loading

As mentioned, the interpreter loads a data structure that
clearly defines a model. For this work, we used the Ten-
sorFlow Lite portable data schema (TensorFlow, 2020b).
Reusing the export tools from TensorFlow Lite enabled us
to import a wide variety of models at little engineering cost.

TensorFlow Lite Micro

4.3.1 Model Serialization

TensorFlow Lite for smartphones and other mobile devices
employs the FlatBuffer serialization format to hold models
(TensorFlow, 2020a). The binary footprint of the accessor
code is typically less than two kilobytes. It is a header-
only library, making compilation easy, and it is memory
efficient because the serialization protocol does not require
unpacking to another representation. The downside to this
format is that its C++ header requires the platform compiler
to support the C++11 specification.

We had to work with several vendors to upgrade their tool
chains to handle this version, but since we had implicitly
chosen modern C++ by basing our framework on Tensor-
Flow Lite, it has been a minor obstacle. Another challenge
of this format was that most of the target embedded devices
lacked file systems, but because it uses a memory-mapped
representation, files are easy to convert into C source files
containing data arrays. These files are compilable into the
binary, to which the application can easily refer.

4.3.2 Model Representation

We also copied the TensorFlow Lite representation, the
stored schema of data and values that represent the model.
This schema was designed for mobile platforms with storage
efficiency and fast access in mind, so it has many features
that eased development for embedded platforms. For ex-
ample, operations reside in a topologically sorted list rather
than a directed-acyclic graph. Performing calculations is
as simple as looping through the operation list in order,
whereas a full graph representation would require prepro-
cessing to satisfy the operations’ input dependencies.

The drawback of this representation is that it was designed
to be portable from system to system, so it requires run-time
processing to yield the information that inferencing requires.
For example, it abstracts operator parameters from the ar-
guments, which later pass to the functions that implement
those operations. Thus, each operation requires a few code
lines executed at run time to convert from the serialized rep-
resentation to the structure in the underlying implementation.
The code overhead is small, but it reduces the readability
and compactness of the operator implementations.

Memory planning is a related issue. On mobile devices,
TensorFlow Lite supports variable-size inputs, so all depen-
dent operations may also vary in size. Planning the optimal
layout of intermediate buffers for the calculations must take
place at run time when all buffer dimensions are known.

4.4 Memory Management

We are unable to assume the operating system can dynami-
cally allocate memory. So the framework allocates and man-
ages memory from a provided memory arena. During model

Lowest address of buffer Highest address of buffer

Global Tensor Arena Buffer

Head
Allocations

Tail

Alloc |Alloc Allocations

“Temp” Allocation Arena

Figure 3. Two-stack allocation strategy.

preparation, the interpreter determines the lifetime and size
of all buffers necessary to run the model. These buffers in-
clude run-time tensors, persistent memory to store metadata,
and scratch memory to temporarily hold values while the
model runs (Section 4.4.1). After accounting for all required
buffers, the framework creates a memory plan that reuses
nonpersistent buffers when possible while ensuring buffers
are valid during their required lifetime (Section 4.4.2).

4.4.1 Persistent Memory and Scratchpads

We require applications to supply a fixed-size memory arena
when they create the interpreter and to keep the arena intact
throughout the interpreter’s lifetime. Allocations with the
same lifetime can treat this arena as a stack. If an allocation
takes up too much space, we raise an application-level error.

To prevent memory errors from interrupting a long-running
program, we ensure that allocations only occur during the
interpreter’s initialization phase. No allocation (through our
mechanisms) is possible during model invocation.

This simplistic approach works well for initial prototyping,
but it wastes memory because many allocations could over-
lap with others in time. One example is data structures that
are only necessary during initialization. Their values are
irrelevant after initialization, but because their lifetime is
the same as the interpreter’s, they continue to take up arena
space. A model’s evaluation phase also requires variables
that need not persist from one invocation to another.

Hence, we modified the allocation scheme so that
initialization- and evaluation-lifetime allocations reside in a
separate stack relative to interpreter-lifetime objects. This
feat uses a stack that increments from the lowest address
for the function-lifetime objects (“Head” in Figure 3) and a
stack that decrements from the arena’s highest address for
interpreter-lifetime allocations (“Tail” in Figure 3). When
the two stack pointers cross, they indicate a lack of capacity.

The two-stack allocation strategy works well for both shared
buffers and persistent buffers. But model preparation also
holds allocation data that model inference no longer needs.
Therefore, we used the space in between the two stacks as
temporary allocations when a model is in memory planning.
Any temporary data required during model inference resides
in the persistent-stack allocation section.

Our approach reduces the arena size as the initialization

TensorFlow Lite Micro

allocations can be discarded after that function is done,
and the memory is reusable for evaluation variables. This
approach also enables advanced applications to reuse the
arena’s function-lifetime section in between evaluation calls.

4.4.2 Memory Planner

A more complex optimization opportunity involves the
space required for intermediate calculations during model
evaluation. An operator may write to one or more output
buffers, and later operators may later read them as inputs.
If the output is not exposed to the application as a model
output, its contents need only remain until the last operation
that needs them has finished. Its presence is also unneces-
sary until just before the operation that populates it executes.
Memory reuse is possible by overlapping allocations that
are unneeded during the same evaluation sections.

The memory allocations required over time can be visual-
ized using rectangles (Figure 4a), where one dimension is
memory size and the other is the time during which each
allocation must be preserved. The overall memory can be
substantially reduced if some areas are reused or compacted
together. Figure 4b shows a more optimal memory layout.

Memory compaction is an instance of bin packing (Martello,
1990). Calculating the perfect allocation strategy for arbi-
trary models without exhaustively trying all possibilities is
an unsolved problem, but a first-fit decreasing algorithm
(Garey et al., 1972) usually provides reasonable solutions.

In our case, this approach consists of gathering a list of
all temporary allocations, including size and lifetime; sort-
ing the list in descending order by size; and placing each
allocation in the first sufficiently large gap, or at the end
of the buffer if no such gap exists. We do not support dy-
namic shapes in the TFLM framework, so we must know
at initialization all the information necessary to perform
this algorithm. The “Memory Planner” (shown in Figure 2)
encapsulates this process; it allows us to minimize the arena
portion devoted to intermediate tensors. Doing so offers a
substantial memory-use reduction for many models.

Memory planning at run time incurs more overhead during
model preparation than a preplanned memory-allocation
strategy. This cost, however, comes with the benefit of
model generality. TFLM models simply list the operator
and tensor requirements. At run time, we allocate and enable
this capability for many model types.

Offline-planned tensor allocation is an alternative memory-
planning feature of TFLM. It allows a more compact mem-
ory plan, gives memory-plan ownership and control to the
end user, imposes less overhead on the MCU during ini-
tialization, and enables more-efficient power options by
allowing different memory banks to store certain memory
areas. We allow the user to create a memory layout on a

Memory Size¢ ——— Memory Size —

(a) Naive

Figure 4. Intermediate allocation strategies.

host before run time. The memory layout is stored as model
FlatBuffer metadata and contains an array of fixed-memory
arena offsets for an arbitrary number of variable tensors.

4.5 Multitenancy

Embedded-system constraints can force application-model
developers to create several specialized models instead of
one large monolithic model. Hence, supporting multiple
models on the same embedded system may be necessary.

If an application has multiple models that need not run
simultaneously, it is possible to have two separate instances
running in isolation from one another. However, this is
inefficient because the temporary space cannot be reused.

Instead, TFLM supports multitenancy with some memory-
planner changes that are transparent to the developer. TFLM
supports memory-arena reuse by enabling the multiple
model interpreters to allocate memory from a single arena.

We allow interpreter-lifetime areas to stack on each other in
the arena and reuse the function-lifetime section for model
evaluation. The reusable (nonpersistent) part is set to the
largest requirement, based on all models allocating in the
arena. The nonreusable (persistent) allocations grow for
each model—allocations are model specific (Figure 4b).

4.6 Multithreading

TFLM is thread-safe as long as there is no state correspond-
ing to the model that is kept outside the interpreter and the
model’s memory allocation within the arena.

The interpreter’s only variables are kept in the arena, and
each interpreter instance is uniquely bound to a specific
model. Therefore, TFLM can safely support multiple inter-
preter instances running from different tasks or threads.

TFLM can also run safely on multiple MCU cores. Since
the only variables used by the interpreter are kept in the
arena, this works well in practice. The executable code is
shared, but the arenas ensure there are no threading issues.

TensorFlow Lite Micro

| Head
TF Lite Micro L]_‘] (stack)
Interpreter |
[TfLiteTensor | data | shape }—-[Shape array
Memory =
Allocator | uns [TfLiteTensor | data | shape |—[Shape array
[TfLiteTensor | data | shape H Shape array | Tail

(stack)
Tensor Arena

 ——bindsto

(a) Single-model

TF Lite Micro |- i | Head
Interpreter | >NAs 10 LL‘] (stack)
|
NG WY
\\ \ TfLiteTensor | data | shape }—-{ Shape array
KT [TfLiteTensor | data | shape || Shape array
Allocator \ TfLiteTensor | data | shape H Shape array | Tail

(stack)

Tensor Arena

(b) Multiple models.

Figure 5. Memory-allocation strategy for a single model versus a multi-tenancy scenario. In TFLM, there is a one-to-one binding between
a model, an interpreter and the memory allocations made for the model (which may come from a shared memory arena).

4.7 Operator Support

Operators are the calculation units in neural-network graphs.
They represent a sizable amount of computation, typically
requiring many thousands or even millions of individual
arithmetic operations (e.g., multiplies or additions). They
are functional, with well-defined inputs, outputs, and state
variables as well as no side effects beyond them.

Because the model execution’s latency, power consumption,
and code size tend to be dominated by the implementations
of these operations, they are typically specialized for partic-
ular platforms to take advantage of hardware characteristics.
In practice, we attracted library optimizations from hard-
ware vendors such as Arm, Cadence, Ceva, and Synopsys.

Well-defined operator boundaries mean it is possible to de-
fine an API that communicates the inputs and outputs but
hides implementation details behind an abstraction. Sev-
eral chip vendors have provided a library of neural network
kernels designed to deliver maximum neural-network per-
formance when running on their processors. For example,
Arm has provided optimized CMSIS-NN libraries divided
into several functions, each covering a category: convolu-
tion, activation, fully connected layer, pooling, softmax, and
optimized basic math. TFLM uses CMSIS-NN to deliver
high performance as we demonstrate in Section 5.

4.8 Platform Specialization

TFLM gives developers flexibility to modify the library
code. Because operator implementations (kernels) often
consume the most time when executing models, they are
prominent targets for platform-specific optimization.

We wanted to make swapping in new implementations easy.
To do so, we allow specialized versions of the C++ source
code to override the default reference implementation. Each
kernel has a reference implementation that is in a directory,
but subfolders contain optimized versions for particular plat-
forms (e.g., the Arm CMSIS-NN library).

As we explain in Section 4.9, the platform-specific source

files replace the reference implementations during all build
steps when targeting the named platform or library (e.g., us-
ing TAGS="cmsis—nn"). Each platform is given a unique
tag. The tag is a command line argument to the build system
that replaces the reference kernels during compilation. In
a similar vein, library modifiers can swap or change the
implementations incrementally with no changes to the build
scripts and the overarching build system we put in place.

4.9 Build System

To address the embedded market’s fragmentation (Sec-
tion 2.2), we needed our code to compile on many platforms.
We therefore wrote the code to be highly portable, exhibiting
few dependencies, but it was insufficient to give potential
users a good experience on a particular device.

Most embedded developers employ a platform-specific IDE
or tool chain that abstracts many details of building subcom-
ponents and presents libraries as interface modules. Simply
giving developers a folder hierarchy containing source-code
files would still leave them with multiple steps before they
could build and compile that code into a usable library.

Therefore, we chose a single makefile based build sys-
tem to determine which files the library required, then gen-
erated the project files for the associated tool chains. The
makefile held the source-file list, and we stored the platform-
specific project files as templates that the project-generation
process filled in with the source-file information. That pro-
cess may also perform other postprocessing to convert the
source files to a format suitable for the target tool chain.

Our platform-agnostic approach has enabled us to support a
variety of tool chains with minimal engineering work, but
it does have some drawbacks. We implemented the project
generation through an ad hoc mixture of makefile scripts and
Python. This strategy makes the process difficult to debug,
maintain, and extend. Our intent is for future versions to
keep the concept of a master source-file list that only the
makefile holds, but then delegate the actual generation to
better-structured Python in a more maintainable way.

TensorFlow Lite Micro

5 SYSTEM EVALUATION

TFLM has undergone testing and it has been deployed ex-
tensively with many processors based on the Arm Cortex-M
architecture (Arm, 2020). It has been ported to other ar-
chitectures including ESP32 (Espressif, 2020) and many
digital signal processors (DSPs). The framework is also
available as an Arduino library. It can generate projects for
environments such as Mbed (ARM, 2020) as well. In this
section, we use two representative platforms to assess and
quantify TFLM’s computational and memory overheads.

5.1 Experimental Setup

Our benchmarks focus on the (1) performance benefits of
optimized kernels and (2) platforms we can support and the
performance we achieve on them. So, we focus on extreme
endpoints rather than on the overall spectrum. Specifically,
we evaluate two extreme hardware designs and ML models.

We evaluate two extreme hardware designs: MCU (general)
and ultra-low-power DSP (specialized). The details for
the two hardware platforms are shown in Table 1. First
is the Sparkfun Edge, which has an Ambiq Apollo3 MCU.
Apollo3 is powered by an Arm Cortex-M4 core and operates
in burst mode at 96 MHz (Ambiq Micro, 2020). The second
platform is an Xtensa Hifi Mini DSP, which is based on the
Cadence Tensilica architecture (Cadence, 2020).

We evaluate two extreme ML models in terms of model size
and complexity for embedded devices. We use the Visual
Wake Words (VWW) person-detection model (Chowdhery
et al., 2019), which represents a common microcontroller vi-
sion task of identifying whether a person appears in a given
image. The model is trained and evaluated on images from
the Microsoft COCO data set (Lin et al., 2014). It primarily
stresses and measures the performance of convolutional op-
erations. Also, we use the Google Hotword model, which
aids in detecting the key phrase “OK Google.” This model
is designed to be small and fast enough to run constantly
on a low-power DSP in smartphones and other devices with
Google Assistant. Because it is proprietary, we use a version
with scrambled weights and biases. More evaluation is bet-
ter but TinyML is nascent and not many benchmarks exist.
The benchmarks we use are part of TinyMLPerf (Banbury
et al., 2020) and also used by MCUNet (Lin et al., 2020).

Our benchmarks are INT8 TensorFlow Lite models in a
serialized FlatBuffer format. The benchmarks run multiple

Platform Processor Clock Flash RAM

Sparkfun Edge | Arm CPU

(Ambiq Apollo3) | Cortex-M4 | 20 MHZ | 1 MB 0.38 MB
. - Xtensa DSP

Tensilica HiFi HiE; Mini 10MHz | 1 MB 1 MB

Table 1. Embedded-platform benchmarking.

inputs through a single model, measuring the time to process
each input and produce an inference output. The benchmark
does not measure the time necessary to bring up the model
and configure the run time, since the recurring inference cost
dominates total CPU cycles on most long-running systems.

5.2 Benchmark Performance

We provide two sets of benchmark results. First are the base-
line results from running the benchmarks on reference ker-
nels, which are simple operator-kernel implementations de-
signed for readability rather than performance. Second are
results for optimized kernels compared with the reference
kernels. The optimized versions employ high-performance
ARM CMSIS-NN and Cadence libraries (Lai et al., 2018).

The results in Table 2 are for the CPU (Table 2a) and DSP
(Table 2b). The total run time appears under the “Total
Cycles” column, and the run time excluding the interpreter
appears under the “Calculation Cycles” column. The differ-
ence between them is the minimal interpreter overhead. The
“Interpreter Overhead” column in both Table 2a and Table 2b
is insignificant compared with the total model run time on
both the CPU and DSP. The overhead on the microcontroller
CPU (Table 2a) is less than 0.1% for long-running models,
such as VWW. In the case of short-running models such
as Google Hotword, the overhead is still minimal at about
3% to 4%. The same general trend holds in Table 2b for
non-CPU architectures like the Xtensa HiFi Mini DSP.

Comparing the reference kernel versions to the optimized
kernel versions reveals considerable performance improve-
ment. For example, between “VWW Reference” and
“VWW Optimized,” the CMSIS-NN library offers more than
a 4x speedup on the Cortex-M4 microcontroller. Optimiza-
tion on the Xtensa HiFi Mini DSP offers a 7.7x speedup. For
“Google Hotword,” the optimized kernel speed on Cortex-
M4 is only 25% better than the baseline reference model
because less time goes to the kernel calculations. Each in-
ner loop accounts for less time with respect to the total run
time of the benchmark model. On the specialized DSP, the
optimized kernels have a significant impact on performance.

5.3 Memory Overhead

We assess TFLM’s total memory usage. TFLM’s memory
usage includes the code size for the interpreter, memory
allocator, memory planner, etc. plus any operators that are
required by the model. Hence, the total memory usage varies
greatly by the model. Large models and models with com-
plex operators (e.g. VWW) consume more memory than
their smaller counterparts like Google Hotword. In addition
to VWW and Google Hotword, in this section, we added an
even smaller reference convolution model containing just
two convolution layers, a max-pooling layer, a dense layer,
and an activation layer to emphasize the differences.

TensorFlow Lite Micro

Model Total Calculation | Interpreter Model Total Calculation | Interpreter
Cycles Cycles Overhead Cycles Cycles Overhead

VWw 18,990.8K 18,987.1K <0.1% YWw 387,341.8K 387,330.6K | <0.1%

Reference Reference

YWW 4.857.7K 48529K | <0.1% YWW 49,952.3K 49.946.4K | <0.1%

Optimized Optimized

Google Hotword | 45 ¢ 43K 3.3% Google Hotword | g9 4 987.4K 0.3%

Reference Reference

Google Hotword | 3¢ 4y 34.9K 4.1% Google Hotword | g¢ 4 84.6K 4.3%

Optimized Optimized

(a) Sparkfun Edge (Apollo3 Cortex-M4) (b) Xtensa HiFi Mini DSP
Table 2. Performance results for TFLM target platforms.
Overall, TFLM applications have a small footprint. The Model Persistent | Nonpersistent | Total
interpreter footprint, by itself, is less than 2KB (at max). Memory | Memory Memory
Convolutional
Table 3 shows that for the convolutional and Google Hot- Reference 1.29kB 775 kB 904 kB
word models, the memory consumed is at most 13 KB. For gofogle Hotword | 5151 p 680 bytes 12.80 kB
the larger VWW model, the framework consumes 26.5 KB. V‘;Ver“‘;'me
26.50 kB 55.30 kB 81.79 kB

To further analyze memory usage, recall that TFLM allo- Reference

cates program memory into two main sections: persistent
and nonpersistent. Table 3 reveals that depending on the
model characteristics, one section can be larger than the
other. The results show that we adjust to the needs of the
different models while maintaining a small footprint.

5.4 Benchmarking and Profiling

TFLM provides a set of benchmarks and profiling APIs
(TensorFlow, 2020c) to compare hardware platforms and
to let developers measure performance as well as iden-
tify opportunities for optimization. Benchmarks provide
a consistent and fair way to measure hardware performance.
MLPerf (Reddi et al., 2020; Mattson et al., 2020) adopted
the TFLM benchmarks; the tinyMLPerf benchmark suite
imposes accuracy metrics for them (Banbury et al., 2020).

Although benchmarks measure performance, profiling is
necessary to gain useful insights into model behavior.
TFLM has hooks for developers to instrument specific code
sections (TensorFlow, 2020d). These hooks allow a TinyML
application developer to measure overhead using a general-
purpose interpreter rather than a custom neural-network
engine for a specific model, and they can examine a model’s
performance-critical paths. These features allow identifica-
tion, profiling, and optimization of bottleneck operators.

6 RELATED WORK

There are a number of compiler frameworks for infer-
ence on TinyML systems. Examples include Microsoft’s
ELL (Microsoft, 2020), which is a cross-compiler tool
chain that enables users to run ML models on resource
constrained platforms, similar to the platforms that we

Table 3. Memory consumption on Sparkfun Edge.

have evaluated. Graph Lowering (GLOW) (Rotem et al.,
2018) is an open-source compiler that accelerates neural-
network performance across a range of hardware platforms.
STM32Cube.Al (STMicroelectronics, 2020) takes models
from Keras, TensorFlow Lite, and others to generate code
optimized for a range of STM32-series MCUs. TinyEngine
(Lin et al., 2020) is a code-generator-based compiler that
helps eliminate memory overhead for MCU deployments.
TVM (Chen et al., 2018) is an open-source ML compiler
for CPUs, GPUs, and ML accelerators that has been ported
to Cortex-M7 and other MCUs. uTensor (uTensor, 2020), a
precursor to TFLM, consists of an offline tool that translates
a TensorFlow model into Arm microcontroller C++ machine
code and it has a run time for execution management.

In contrast to all of these related works, TFLM adopts
a unique interpreter based approach for flexibility. An
interpreter-based approach provides an alternative design
point for others to consider when engineering their inference
system to address the ecosystem challenges (Section 2).

7 CONCLUSION

TFLM enables the transfer of deep learning onto embedded
systems, significantly broadening the reach of ML. TFLM
is a framework that has been specifically engineered to run
machine learning effectively and efficiently on embedded
devices with only a few kilobytes of memory. TFLM’s
fundamental contributions are the design decisions that we
made to address the unique challenges of embedded sys-
tems: hardware heterogeneity in the fragmented ecosystem,
missing software features and severe resource constraints.

TensorFlow Lite Micro

ACKNOWLEDGEMENTS

TFLM is an open-source project and a community-based
open-source project. As such, it rests on the work of
many. We extend our gratitude to many individuals, teams,
and organizations: Fredrik Knutsson and the CMSIS-NN
team; Rod Crawford and Matthew Mattina from Arm; Raj
Pawate from Cadence; Erich Plondke and Evgeni Gousef
from Qualcomm; Jamie Campbell from Synopsys; Yair
Siegel from Ceva; Sai Yelisetty from DSP Group; Zain
Asgar from Stanford; Dan Situnayake from Edge Impulse;
Neil Tan from the uTensor project; Sarah Sirajuddin, Rajat
Monga, Jeff Dean, Andy Selle, Tim Davis, Megan Kacholia,
Stella Laurenzo, Benoit Jacob, Dmitry Kalenichenko, An-
drew Howard, Aakanksha Chowdhery, and Lawrence Chan
from Google; and Radhika Ghosal, Sabrina Neuman, Mark
Mazumder, and Colby Banbury from Harvard University.

REFERENCES

Ambiq Micro. Apollo 3 Blue Datasheet,
2020. URL https://cdn.sparkfun.com/
assets/learn_tutorials/9/0/9/
Apollo3_Blue MCU.Data_Sheet_v0_9_1.pdf.

ARM. Arm Enables Custom Instructions for embed-
ded CPUs, 2019. URL https://www.arm.com/
company/news/2019/10/arm-enables—
custom—instructions—for-embedded-
cpus.

ARM. Mbed, 2020. URL https://os.mbed.com.

Arm. Arm Cortex M, 2020. URL https:
//developer.arm.com/ip-products/
processors/cortex-m.

Banbury, C. R., Reddi, V. J., Lam, M., Fu, W., Fazel,
A., Holleman, J., Huang, X., Hurtado, R., Kanter,
D., Lokhmotov, A., et al. Benchmarking tinyml
systems: Challenges and direction. arXiv preprint
arXiv:2003.04821, 2020.

Cadence. Tensilica Hi-Fi DSP Family, 2020.
https://ip.cadence.com/uploads/928/
TIP PB HiFi DSP FINAL-pdf.

URL

Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S. T,
Troster, G., Millan, J. d. R., and Roggen, D. The op-
portunity challenge: A benchmark database for on-body
sensor-based activity recognition. Pattern Recognition
Letters, 34(15):2033-2042, 2013.

Chen, G., Parada, C., and Heigold, G. Small-footprint
keyword spotting using deep neural networks. In 2014
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4087—4091. IEEE, 2014.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. TVM:
An automated end-to-end optimizing compiler for deep
learning. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pp.
578-594, 2018.

Chollet, F. et al.
keras.io/.

Keras, 2015. URL https://

Chowdhery, A., Warden, P., Shlens, J., Howard, A., and
Rhodes, R. Visual wake words dataset. arXiv preprint
arXiv:1906.05721, 2019.

Espressif. Espressif ESP32, 2020. URL https:
//www.espressif.com/en/products/socs/
esp32.

Garey, M. R., Graham, R. L., and Ullman, J. D. Worst-case
analysis of memory allocation algorithms. In Proceed-
ings of the fourth annual ACM symposium on Theory of
computing, pp. 143-150, 1972.

Goebel, K. et al. NASA PCoE Datasets, 2020. URL https:
//ti.arc.nasa.gov/tech/dash/groups/
pcoe/prognostic—-data-repository/.

Gruenstein, A., Alvarez, R., Thornton, C., and Ghodrat, M.
A cascade architecture for keyword spotting on mobile
devices. arXiv preprint arXiv:1712.03603, 2017.

IC Insights. MCUs Expected to Make
est Comeback after 2020 Drop, 2020.
https://www.icinsights.com/news/
bulletins/MCUs-Expected-To-Make-
Modest—-Comeback-After-2020-Drop—-/.

Mod-
URL

Intel. Intel-64 and ia-32 architectures software developer’s
manual. Volume 3A: System Programming Guide, Part, 1
(64), 2013.

Koizumi, Y., Saito, S., Uematsu, H., Harada, N., and
Imoto, K. ToyADMOS: A dataset of miniature-
machine operating sounds for anomalous sound detec-
tion. In Proceedings of IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics (WAS-
PAA), pp. 308-312, November 2019. URL https:
//ieeexplore.ieee.org/document /8937164.

Krishnamoorthi, R. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint
arXiv:1806.08342, 2018.

Kumar, A., Goyal, S., and Varma, M. Resource-efficient
machine learning in 2 kb ram for the internet of things.

In International Conference on Machine Learning, pp.
1935-1944, 2017.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/9/Apollo3_Blue_MCU_Data_Sheet_v0_9_1.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/9/Apollo3_Blue_MCU_Data_Sheet_v0_9_1.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/9/Apollo3_Blue_MCU_Data_Sheet_v0_9_1.pdf
https://www.arm.com/company/news/2019/10/arm-enables-custom-instructions-for-embedded-cpus
https://www.arm.com/company/news/2019/10/arm-enables-custom-instructions-for-embedded-cpus
https://www.arm.com/company/news/2019/10/arm-enables-custom-instructions-for-embedded-cpus
https://www.arm.com/company/news/2019/10/arm-enables-custom-instructions-for-embedded-cpus
https://os.mbed.com
https://developer.arm.com/ip-products/processors/cortex-m
https://developer.arm.com/ip-products/processors/cortex-m
https://developer.arm.com/ip-products/processors/cortex-m
https://ip.cadence.com/uploads/928/TIP_PB_HiFi_DSP_FINAL-pdf
https://ip.cadence.com/uploads/928/TIP_PB_HiFi_DSP_FINAL-pdf
https://keras.io/
https://keras.io/
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://www.icinsights.com/news/bulletins/MCUs-Expected-To-Make-Modest-Comeback-After-2020-Drop--/
https://www.icinsights.com/news/bulletins/MCUs-Expected-To-Make-Modest-Comeback-After-2020-Drop--/
https://www.icinsights.com/news/bulletins/MCUs-Expected-To-Make-Modest-Comeback-After-2020-Drop--/
https://ieeexplore.ieee.org/document/8937164
https://ieeexplore.ieee.org/document/8937164

TensorFlow Lite Micro

Lai, L., Suda, N., and Chandra, V. CMSIS-NN: Efficient
neural network kernels for Arm Cortex-M cpus. arXiv
preprint arXiv:1801.06601, 2018.

Lin, J., Chen, W.-M., Lin, Y., Cohn, J., Gan, C., and Han,
S. Mcunet: Tiny deep learning on IoT devices. arXiv
preprint arXiv:2007.10319, 2020.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P,
Ramanan, D., Dollar, P., and Zitnick, C. L. Microsoft
COCO: Common objects in context. In European confer-
ence on computer vision, pp. 740-755. Springer, 2014.

Martello, S. Chapter 8: Bin packing, knapsack prob-
lems: algorithms and computer implementations. Wiley-
Interscience series in discrete mathematics and optimiza-
tion, 1990.

Mattson, P., Reddi, V. J., Cheng, C., Coleman, C., Di-
amos, G., Kanter, D., Micikevicius, P., Patterson, D.,
Schmuelling, G., Tang, H., et al. MLPerf: An industry
standard benchmark suite for machine learning perfor-
mance. IEEE Micro, 40(2):8-16, 2020.

Microsoft. Embedded Learning Library, 2020. URL
https://microsoft.github.io/ELL/.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., et al. MLPerf inference bench-
mark. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 446—
459. IEEE, 2020.

Rotem, N., Fix, J., Abdulrasool, S., Catron, G., Deng,
S., Dzhabarov, R., Gibson, N., Hegeman, J., Lele, M.,
Levenstein, R., et al. Glow: Graph lowering com-
piler techniques for neural networks. arXiv preprint
arXiv:1805.00907, 2018.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

STMicroelectronics. STM32Cube.Al, 2020. URL
https://www.st.com/content/st_com/en/
stm32-ann.html.

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., and
Beghi, A. Machine learning for predictive maintenance:
A multiple classifier approach. IEEE Transactions on
Industrial Informatics, 11(3):812-820, 2014.

TensorFlow. TensorFlow Lite FlatBuffer Model, 2020a.
URL https://www.tensorflow.org/lite/
api_docs/cc/class/tflite/flat-buffer-
model.

TensorFlow. TensorFlow Lite Guide, 2020b. URL https:
//www.tensorflow.org/lite/guide.

TensorFlow. Tensorflow Lite Micro Benchmarks, 2020c.
URL https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/
lite/micro/benchmarks.

TensorFlow. Tensorflow Lite Micro Profiler, 2020d.
URL https://github.com/tensorflow/
tensorflow/blob/master/tensorflow/
lite/micro/micro_profiler.cc.

TensorFlow. TensorFlow Core Ops, 2020e.
URL https://github.com/tensorflow/
tensorflow/blob/master/tensorflow/
core/ops/ops.pbtxt.

uTensor. uTensor, 2020. URL https://github.com/
uTensor/uTensor.

Waterman, A. and Asanovic, K. The risc-v instruction set
manual, volume i: Unprivileged isa document, version
20190608-baseratified. RISC-V Foundation, Tech. Rep,
2019.

Wu, X., Lee, 1., Dong, Q., Yang, K., Kim, D., Wang, J.,
Peng, Y., Zhang, Y., Saliganc, M., Yasuda, M., et al. A
0.04 mm 3 16nw wireless and batteryless sensor system
with integrated cortex-m0+ processor and optical commu-
nication for cellular temperature measurement. In 2018
IEEE Symposium on VLSI Circuits, pp. 191-192. IEEE,
2018.

Zhang, M. and Sawchuk, A. A. Usc-had: a daily activity
dataset for ubiquitous activity recognition using wearable
sensors. In Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, pp. 1036-1043, 2012.

Zhang, Y., Suda, N., Lai, L., and Chandra, V. Hello edge:
Keyword spotting on microcontrollers. arXiv preprint
arXiv:1711.07128, 2017.

https://microsoft.github.io/ELL/
https://www.st.com/content/st_com/en/stm32-ann.html
https://www.st.com/content/st_com/en/stm32-ann.html
https://www.tensorflow.org/lite/api_docs/cc/class/tflite/flat-buffer-model
https://www.tensorflow.org/lite/api_docs/cc/class/tflite/flat-buffer-model
https://www.tensorflow.org/lite/api_docs/cc/class/tflite/flat-buffer-model
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/micro/benchmarks
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/micro/benchmarks
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/micro/benchmarks
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/micro_profiler.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/micro_profiler.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/micro_profiler.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/ops.pbtxt
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/ops.pbtxt
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/ops.pbtxt
https://github.com/uTensor/uTensor
https://github.com/uTensor/uTensor

