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ABSTRACT
Modern deep neural networks increasingly make use of features such as control flow, dynamic data structures, and
dynamic tensor shapes. Existing deep learning systems focus on optimizing and executing static neural networks
which assume a pre-determined model architecture and input data shapes—assumptions that are violated by
dynamic neural networks. Therefore, executing dynamic models with deep learning systems is currently both
inflexible and sub-optimal, if not impossible. Optimizing dynamic neural networks is more challenging than
static neural networks; optimizations must consider all possible execution paths and tensor shapes. This paper
proposes Nimble, a high-performance and flexible system to optimize, compile, and execute dynamic neural
networks on multiple platforms. Nimble handles model dynamism by introducing a dynamic type system, a set
of dynamism-oriented optimizations, and a light-weight virtual machine runtime. Our evaluation demonstrates
that Nimble outperforms existing solutions for dynamic neural networks by up to 20× on hardware platforms
including Intel CPUs, ARM CPUs, and Nvidia GPUs.

1 INTRODUCTION

As deep learning-based applications have become ubiqui-
tous, so have systems for optimizing, executing, and de-
ploying such applications. A number of systems research
projects focus on enhancing the performance of a subset
of pre-trained models produced by deep learning (DL) re-
searchers on various platforms (Dahl et al., 2012; Han et al.,
2016; Johnson et al., 2016; Liu et al., 2019; Wang et al.,
2019). Specifically, these models represented as static data
flow graphs where the sizes of each input and output (i.e.,
tensors or n-dimensional arrays) are known a priori, ensur-
ing the execution path remains unchanged on every invo-
cation. We refer to models with this static nature as static
models. Continued advances in neural networks, especially
those in natural language processing, have introduced new
dynamism in models, such as control flow (Hochreiter &
Schmidhuber, 1997; Sutskever et al., 2014), dynamic data
structures (Tai et al., 2015; Liang et al., 2016), and dynamic
shapes (Devlin et al., 2018). We refer to models exhibiting
these behaviors as dynamic models.

As dynamic models mature and continue to move from
research to production, it calls for an efficient and cross-
platform inference system. This poses new challenges for
deep learning practitioners, as dynamic models introduce
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input-dependent graph topology, breaking existing system
assumptions and invalidating optimizations designed for
purely static data flow graphs. However, no existing solu-
tions fulfill these requirements.

Many existing approaches to dynamic model optimization
apply or extend existing deep learning frameworks (Xu et al.,
2018; Gao et al., 2018; Yu et al., 2018; Jeong et al., 2018;
2019; Neubig et al., 2017; Looks et al., 2017). However,
deep learning frameworks optimized for training can be
limiting in model inference settings due to their rich fea-
ture set. In order to realize these features frameworks are
often monolithic, large, and non-portable. Moreover, ap-
proaches which inherit from frameworks rely on third-party
kernel libraries such as OpenBLAS (Zhang et al., 2014),
cuDNN (Chetlur et al., 2014), and oneDNN (Intel, 2020) to
achieve competitive performance. These libraries expose a
fixed set of operators for the corresponding hardware, com-
promising the portability of dynamic models which require
a large number of operators with varying data types and
shapes. Designing a new interface independent of existing
frameworks provides a clean programming model but often
at the cost of performance, due to dynamic interpretation of
the model (Neubig et al., 2017).

An alternative approach that has generated significant in-
terest in both academia and industry is the end-to-end op-
timization of neural networks using deep learning compil-
ers, such as XLA (XLA Team, 2017), Glow (Rotem et al.,
2018), TVM (Chen et al., 2018a), and MLIR (Lattner et al.,
2021). Deep learning compilers differ from traditional deep
learning frameworks by separating execution into a compi-
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lation, and a runtime phase. The compilation phase enables
whole-model optimization at the graph level, and workload
specific kernel code-generation for multiple hardware plat-
forms, while the runtime executes the compiled module.

However, deep learning compilers have been primarily re-
stricted to static models due to lack of support for dynamism.
Specifically, in order to compile and execute the dynamic
models, a system requires an intermediate representation
(IR) which can statically represent dynamic constructs, a
code generator which can generate kernels for dynamically
varying data shapes, and a runtime to handle the dynamic ex-
ecution and kernel dispatch accordingly. Further, dynamic-
specific optimizations, such as dynamic memory planning,
the process of statically optimizing dynamic allocations, are
necessary to achieve desirable performance. None of these
features exist in the current deep learning compilers.

To this end, we present Nimble, a high-performance and
portable system for compiling, optimizing, and executing
dynamic neural networks on multiple platforms. To the best
of our knowledge, this is the first attempt to systematically
handle dynamic models from a compiler perspective. First,
we introduce type system extensions to handle data with
unknown dimension, which is common in dynamic mod-
els, by performing type checking and inference for shapes
with Any. Second, we devise several optimizations specific
to dynamic models, including dynamic shape-aware code
generation, memory planning, and device placement. Third,
we propose a virtual machine (VM)-based runtime, which
decouples the platform-independent controlling logic and
platform-dependent kernel implementation, to be portable,
light-weight, and most importantly, able to execute dynamic
models. Evaluation on LSTM (Hochreiter & Schmidhuber,
1997), Tree-LSTM (Tai et al., 2015) and BERT (Devlin
et al., 2018) shows that Nimble lowers the latency by 1.05×
to 19.9× compared to the best solution whichever on main-
stream hardware platforms both in the cloud (Intel CPUs
and Nvidia GPUs) and at the edge (ARM CPUs).

In summary, this paper makes the following three core con-
tributions:
• Proposes and builds an end-to-end system for efficient

dynamic model inference across multiple hardware plat-
forms, including an empirical study to benchmark the
results;

• Devises several compilation and optimization techniques,
including a dynamic type system, a memory planning
pass, a heterogeneous device placement mechanism to
place computation and data, and a symbolic kernel code
generation and shape-based dispatch algorithm;

• Designs and implements tensor based abstract machine
with a platform-independent instruction set to efficiently
and flexibly execute dynamic models across platforms.

The rest of the paper is organized as follows. Section 2
reviews the limitation of existing deep learning compilers

and gives the overview of Nimble. Section 3 presents the
design and implementation of the compilation flow of Nim-
ble, followed by VM-based runtime in Section 4. Section 5
provides the evaluation results using various models on dif-
ferent hardware platforms. Section 6 covers related work,
and Section 7 concludes the paper.

2 CHALLENGES AND OUR APPROACH

2.1 Limitation of Deep Learning Compilers

As aforementioned, existing solutions to dynamic models
either rely on or extend deep learning frameworks. These so-
lutions bring significant challenges in portability and cross-
platform support due to the gigantic codebase and the vendor
library dependency. Deep learning compilers provide an
alternative approach as being portable across platforms with
minimal memory footprint by virtue of being light-weight
and dependency-free.

However, current deep learning compilers are not able
to process dynamic models due to missing the following
dynamism-specific features.

• An IR for representing dynamism. Performing data
type and shape inference on static models is straightfor-
ward as they are known during declaration and remain
unchanged during runtime. However, the shape of an
input tensor may vary wildly across different input sam-
ples in a dynamic model. The emergence of control flow
constructs further complicates this problem as different
execution paths can emit substantially different data. A
fully static IR, hence, is inadequate to cope with the dy-
namic characteristics of these models.

• A set of dynamic-oriented optimizations. Existing
deep learning compilers, e.g. TVM (Chen et al., 2018a)
and Glow (Rotem et al., 2018), expect static input for
each optimization. The memory spaces of each tensor
are pre-allocated and their live cycles are determined us-
ing a dedicated optimization pass. They also ensure the
homogeneous execution of the entire model because all
kernels are executed on the same device. However, these
optimizations may completely break when dynamism
appears, in which different execution paths possibly re-
quire different amounts of memory with undetermined
sizes before runtime. Therefore, certain IR nodes may be
introduced to help runtime type inference and memory
allocation. The operations in these nodes are intrinsi-
cally more CPU friendly, which would lead to the serious
performance problem if not placed correctly.

• A symbolic kernel code generator. Code generation
(codegen) is responsible for generating high-performance
executable kernels for operators. Recent research (Chen
et al., 2018a;b; Zheng et al., 2020b; Adams et al., 2019;
Zheng et al., 2020a) has achieved impressive results in
kernel performance with static shapes on multiple back-
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o Platform-independent bytecode
o Platform-dependent kernels

Runtime
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Memory planning (§3.3)

Symbolic codegen (§3.5)

Device placement (§3.4)

Figure 1: Nimble overview. Nimble consists of a compiler
that handles model with dynamism and a runtime that exe-
cutes dynamic models in multiple platforms.

ends. Nonetheless, challenges in codegen with symbolic
shapes remain unexplored. After applying the same set
of loop optimization, kernels generated with symbolic
shapes could still perform bad if the loop boundary is
not handled properly. Meanwhile, kernel tuning under
symbolic shape settings becomes more challenging as the
search space grows exponentially.

• A light-weight and cross-platform runtime. For effi-
ciency purpose, the runtime of static models could be
simply designed as a sequential executor that traverses
the input data flow graph in the topological order to in-
voke operators one by one. However, the execution path
of dynamic models may only be known at runtime and
the kernels for certain operators must be dispatched ac-
cording to the data shape determined at runtime, making
a simple graph-traversing runtime insufficient.

2.2 Our Approach

To address these challenges, this paper presents Nimble, a
high-performance and flexible system for compiling and op-
timizing dynamic models for multiple platforms. In general,
the design goals of Nimble are:

1. Supporting dynamic models. Nimble targets models
with all types of dynamism, including control flow, dy-
namic data structures and varied data shapes.

2. Being portable and light-weight. The module that Nim-
ble produces should be executable across a number of
platforms on the cloud (high-end CPUs and GPUs) and
at the edge (low-power CPUs and GPUs). The runtime
should be light enough to run on devices with minimal
compute power and memory capacity.

3. Enabling high performance. Nimble should be perfor-
mant in the context of dynamism across platforms.

Figure 1 shows the system architecture of Nimble that we
propose to achieve the aforementioned design goals. It is
a system consisting of two major components, namely a
compiler and a runtime. Nimble takes a model in the for-
mat of mainstream deep learning frameworks, converts it
into a unified intermediate representation (IR), then opti-
mizes and compiles the IR into an executable that contains

both platform-agnostic bytecode and platform-dependent
kernel code, and finally loads the executable to execute in
the VM-based runtime. The bytecode is executed by Nim-
ble’s runtime interpreter, which is shareable across various
platforms. This design effectively enables us to only main-
tain one version of the execution logic, but focus more on
the performance critical operator kernels. The kernels are
optimized for a specific hardware platform to achieve high
performance.

To effectively support dynamic models without performance
degradation for static models, we introduce various analysis
and optimization techniques in Nimble’s compiler. First, a
set of IR extensions are devised to represent dynamic shapes
(Any shape) and dynamic allocations for static optimization
of dynamic program behaviors (Section 3.1). Second, shape
functions are attached to operators to compute the output
shapes dynamically and perform type checking at runtime
(Section 3.2). Third, a memory planning optimization is
employed to reduce the amount of memory consumed (Sec-
tion 3.3). Fourth, a heterogeneous device placement mech-
anism is designed to place IR nodes on “the-best” device
to reduce expensive cross-device data transferring and syn-
chronization (Section 3.4). Finally, the compiler features a
code generator that is capable of specializing the codegen
of certain likely shapes (Section 3.5). Once the executable
with dynamic behavior is compiled, the VM-based runtime
can load and interpret it with intelligent dynamic kernel
dispatching (Section 4). We detail the design and implemen-
tation of each of these features in the subsequent sections.

3 COMPILER SUPPORT FOR DYNAMISM

A key challenge preventing existing deep learning compilers
from handling dynamism is the lack of a uniform and dy-
namic representation. For example, optimizations and run-
time of existing IR, e.g., TVM, always assume the presence
of static shape information. These assumptions introduce
quite a few challenges for optimization to dynamism.

In order to handle dynamism, we design a set of IR ex-
tensions which expose the essential semantics required to
optimize dynamic programs. The approach is implemented
in Nimble on top of the Apache TVM (version 0.6) deep
learning compiler infrastructure (Chen et al., 2018a) to lever-
age its frontend converters from various DL frameworks to
its IR. TVM’s frontends alleviate the need to frontend spe-
cific details enabling our work to focus on contributions
such as IR extensions and optimizations. To use Nimble,
one only needs to feed it with a pre-trained model, perform
compilation and then inference. Furthermore, the lessons
here are applicable to other compiler efforts.

This section describes how we transform standard TVM
programs into our dynamic dialect to easily apply static
optimizations to dynamic programs, much as we do in the
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traditional compiler optimization. Particularly, we detail
three key components required to compile dynamic models.
• An extended type system which enables static tracking of

dynamic shapes.
• A series of optimization passes that make dynamic output

shapes, allocation, and device placement explicit.
• A set of codegen techniques for producing code of kernels

with dynamic input and output shapes.

3.1 Typing

Deep learning compilers use type systems to represent,
check and infer the data types and shapes of tensors. In
some frameworks and compilers this is separated into two
steps, shape inference and data type inference. TVM per-
forms both simultaneously and refers to them as type in-
ference (Roesch et al., 2019), a terminology we will use
throughout the section.

A Tensor Type is designated by an n-dimensional shape
(defined as a tuple of integers describing the tensor’s dimen-
sions) and a data type (e.g. float32 or int64). Current
deep learning IRs only support codegen when all dimen-
sions of a tensor’s shape are known at compile-time, i.e.,
static shapes are mandatory for type inference and checking.

In the context of dynamic models, many data shapes can
only be determined at runtime. Therefore, the previous as-
sumption of static data shapes does not hold. In order to
support dynamic data shapes, Nimble introduces a special
dimension called Any to represent statically unknown di-
mensions. For example, we can represent a tensor type as
Tensor[(1, 10, Any), float32], where the size
of the third dimension in this tensor is unknown while the
other two dimensions have concrete values. This concept
has been introduced in other frameworks. Janus (Jeong et al.,
2019) uses similar denotation to represent a dynamic dimen-
sion but only for type unification, while Nimble extends type
inference to handle Any as described next.

Operator Type Relation A type relation describes the rela-
tionship between types of operator inputs and outputs. The
type system of TVM relies on these type relations 1 to infer
and bidirectionally propagate type and shape relationships
between inputs and outputs of operators across the whole
network.

The type relation must be generalized to properly handle
dynamic shapes. For example, a program which grows a ten-
sor on each loop iteration (a case existing in the decoder of
many NLP models) is both impossible to type and compile
without proper type system support. With the introduction
of Any, we are able to improve the existing type relations
to support dynamic models.

There are two dynamic type relation cases in particular.

1
Relay (Roesch et al., 2019) includes more details of the type relations with static cases.

First, operators with dynamic output shapes depending on
the input data, such as arange2 and unique3, will use
Any to describe those shapes. Second, when input shapes
contain Any dimension, the type relation needs to prop-
agate Any correctly to the output types and relax typing
constraints that hold in the static cases when necessary. For
example, the rules for broadcast4 type relation between two
dimensions with Any are defined as follows:

broadcast rel(Any, 1)→ Any

broadcast rel(Any, d)→ d (d > 1)

broadcast rel(Any,Any)→ Any

Note that due to the presence of dynamic shapes, these
type relation rules can no longer rule out all type errors
at compile-time. For example, for the second rule shown
above, when Any is neither 1 nor d at runtime, it then
violates the broadcast type constraints. To address this,
we take the gradual typing (Siek & Taha, 2006) approach
and leave certain type checking at runtime after Any is
instantiated by a concrete value (see Section 3.2 for more
details). One could eliminate these errors using a more
advanced type system, but at increased complexity.

Type Inference One caveat of the Any dimension is that
unknown dimensions will propagate during type inference,
reducing chances for shape specialization. To limit the loss
of precision introduced by using Any dimensions, we intro-
duce sub-shaping to the type system. Much like sub-typing
used in popular programming languages (Liskov & Wing,
1994; Amadio & Cardelli, 1993), our type system exten-
sion enables values with concrete dimensions to be valid
sub-types of tensor types with dynamic dimensions. For
example a Tensor[(128, 128), f32] is a valid sub-
type of Tensor[(any, 128), f32]. Furthermore we
use program analysis to detect and remove unnecessary dy-
namism, by communicating extra shape information which
can be used in downstream compilation. We do this in two
critical spots: first we refine any false dynamic dimensions
with static dimensions using a secondary shape analysis;
and second, in code generation we use a single variable
dimension for equivalent dynamic dimensions.

3.2 Shape Function

The introduction of Any dimension invalidates the pre-
allocation mechanism adopted in the existing deep learning
compiler. Instead, we now have to track the amount of
memory required to be allocated in parallel to computing.
Furthermore, static type checking cannot eliminate all type
errors at compile-time due to dynamic tensor shapes. Con-
sequently, we define a shape function to compute the output

2
arange generates a range of values in a (start, stop, step) interval the arrays output size is

a function of input arguments.
3
unique selects the unique elements of a tensor.

4
https://docs.scipy.org/doc/numpy/user/basics.broadcasting

https://docs.scipy.org/doc/numpy/user/basics.broadcasting
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shape for storage allocation and verify the type relation in
accord with the semantics of every operator. The shape func-
tion is similar in structure to the type relations described in
Section 3.1 but are present at runtime instead of compile-
time. It enables compiling and embedding the computation
of output shapes into the program.

Based on the characteristics of operators, we divide the
shape functions in three different modes: data independent,
data dependent, and upper bound. Data independent shape
functions are used for operators in which the output shape
only depends on the shapes of inputs such as normal 2-
D convolution. Data dependent shape functions require
the concrete input values to compute the output shapes.
For example, the output shape of arange depends on the
value of start, stop, and step. In addition, there are certain
operators such as Non Maximum Suppression (nms) where
the complexity of computing the output shapes is on par
with the complexity of executing the operator itself. To
avoid the redundant computation, we use an upper bound
shape function to quickly estimate an upper bound shape for
the output. We require such operators to return the output
shape along with output value, so as to use the real shape to
slice the output tensors into precise output shape and layout.

It is worth noting that in the presence of dynamic shape
functions, operator fusion needs to be specially taken care
of. Operator fusion, which combines basic operators into a
composite operator, is a critical technique for performance
optimization as it reduces unnecessary memory copies and
improves the cache locality. The compiler can easily con-
nect the shape functions of basic operators to form the shape
function for a composite operator when all shape functions
are data independent. However, a basic operator with a data
dependent or upper bound shape function cannot be fused to
other operators, i.e., taking the outputs of other operators as
its inputs to fuse together, as the shape function requires to
access to the intermediate result within a composite operator.
As a result, we explicitly define the fusion policy to prevent
this from happening.

3.3 Memory Planning

Many deep learning compilers use a form of static memory
planning that coalesces memory into contiguous chunks and
minimizes allocations. For devices such as GPUs these opti-
mizations are essential for reducing memory fragmentation
and ensuring allocation does not hamper kernel performance.
Existing deep learning compiler IRs hide memory allocation
behind a functional interface, where each operator implic-
itly allocates its output storage. Before execution, the sys-
tem then performs static memory planning on the data flow
graph enabling efficient pre-allocation of the output buffers.
Due to this “out-of-band” nature of memory allocation, it
is challenging to customize, modify, or compose memory
optimizations with other passes. For example, if one needs

to adjust memory allocation for heterogeneous execution,
modifications to the runtime are required. TVM’s graph run-
time is one such example of static memory planning. Due
to the coarse-grained memory semantics of deep learning
models, it is essential that memory optimizations occur at
a suitably high-level of abstraction, unlike traditional com-
pilers. Existing work provides no clear path to performing
static optimization on dynamic memory allocation.

In order to perform what we refer to as “dynamic memory
planning” we have extended TVM to transform its IR with
implicit memory allocations to one with explicit buffer
allocation and manipulation. The key to this transformation
is an inter-procedural change of calling convention, with
each operator now taking its outputs explicitly. The
transformation makes it possible to track and optimize
dynamic memory allocations in the IR. In order to perform
this optimization we have introduced four new IR con-
structs, (a) invoke_mut(op, inputs, outputs)
which takes outputs as mutable in-out arguments, (b)
alloc storage(size, alignment, device)
which allocates a region of memory of a particular size,
(c) alloc tensor(storage, offset, shape,
dtype, attrs) which allocates a tensor at a partic-
ular storage offset with a shape and data type, and (d)
kill(tensor) which frees a tensor before its reference
count becomes zero due to exiting the frame.

We illustrate how this works with an example of trans-
forming a single statically shaped operation such as broad-
casting addition. Note that in the below code examples
Tensor<d1, ..., dn> is shorthand for a tensor of
shape (d1, ..., dn) containing floating point values.

1 fn main() -> Tensor<10> {
2 let t1, t2 : Tensor<10> = ...;
3 add(t1, t2)
4 }

Here we only must allocate a single buffer, that is, the return
buffer for the addition operation.

1 fn main() -> Tensor<10> {
2 let t1 = ...; let t2 = ...;
3 let buf1 = alloc_storage(40,64,cpu);
4 let out1 = alloc_tensor(buf1,0,(10),f32);
5 invoke_mut(add, (t1, t2), (out1));
6 out1
7 }

The above transformation replaces the operator invocation
add to code which first allocates an output tensor from
backing storage at offset zero, and call to invoke_mut.
For the sake of space, we present a more complex example
in the Appendix A, which illustrates how to handle memory
allocation when operators have dynamic shaped inputs. The
key insight is to internalize a notion of memory allocation
into the IR, enabling static optimization of both static and
dynamic allocations in the presence of control and dynamic
shapes. Now that all allocations are explicit in the IR, we
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shape func

device copy

invoke_mut

(a) (b) (c)

CPU GPU

device copy

Figure 2: Some heterogeneous device placement rules. (a)
The inputs and outputs of shape functions are placed on
CPU. (b) device copy changes the device of output ac-
cordingly. (c) The device of all arguments to invoke mut
must be the same.

can provide analogous optimizations in the static case on
dynamic programs, for example we have implemented a
storage coalescing pass to group storage into a larger region
which allows the multiplexing of multiple tensor allocations
to a single piece of storage. Futher optimization like liveness
analysis and graph coloring algorithm can be applied to the
program to reuse the storages.

3.4 Heterogeneous Device Placement

As discussed in Section 3.2, shape functions are executed at
runtime to calculate the output shape of an operator. These
functions should execute on the CPU as their outputs are
used to compute the size of allocated memory. In the case of
heterogeneous execution (i.e., CPU and GPU), it is essential
to carefully place the execution of IR nodes to proper de-
vices. Otherwise, considerable overhead from data transfers
and device synchronization will occur if the inputs to shape
functions and kernels need to be copied from or to GPU. To
minimize the performance penalty, we analyze the program
to place sub-expressions on the most suitable devices.

We introduce a unification based analysis for computing
the correct device placement and allocation based on the
previous scheduling of the compute kernels. The goal of
our device analysis is to assign each IR node properly to
minimize the number of cross-device copies. We introduce
a concept of DeviceDomain to represent the domain of a
device, including source and destination. Each expression in
the IR defaults to the empty domain, meaning no constraint
on its device placement. In addition, a new IR construct,
device_copy, is introduced to facilitate the heteroge-
neous execution of the Nimble runtime. It represents a data
transfer between different devices and is inserted when a
cross-device data copy is mandatory. Our analysis is for-
mulated as a set of device placement rules which describes
how device constraints flow, and then we use unification,
a technique common in type inference and compilers, to
compute the precise device placement. Figure 2 depicts
some highlights of the rules to assign and propagate the
device types: (a) both inputs and outputs of shape function
are assigned to CPU, (b) the output of device_copy is
assigned to the device that is copied to, (c) all arguments to
invoke_mut should have the same device domain. The
full set of rules can be found in the Appendix B.

Based on these rules, we use a union-find data structure to
bidirectionally propagate and unify the device placement
of each IR node. We introduce two operations, union(s,
t) and find(s), to achieve DeviceDomain unification
throughout the entire program. union(s,t) unions the
equivalence device domains of s and t into one equivalence
domain when the device types match. find(s) returns the
representative of the device domain that s belongs to. These
two operations are applied until all IR nodes are annotated.
If there is no constraint to a device domain, we assign the
compilation target (i.e., GPU) to it in favor of better kernel
performance. The result of the heterogeneous device place-
ment composes with memory planning and shape function
insertion resulting in correctly placed allocations.

3.5 Symbolic Codegen

Deep learning compilers (Chen et al., 2018a; Ragan-Kelley
et al., 2013) have demonstrated competitive performance
compared to manually tuned kernels on multiple platforms.
Recent trends apply machine learning based search to fur-
ther reduce or eliminate complex manual performance tun-
ing using either template based (Chen et al., 2018b; Zheng
et al., 2020b) or search based (Adams et al., 2019; Zheng
et al., 2020a) approaches. However, existing work which
focuses on tuning in the presence of static shapes falls short
with symbolic or dynamic shapes. There are two inherent
challenges with regard to codegen of symbolic shapes.

• How to achieve the same performance of kernels gener-
ated with symbolic shapes as that with static shapes when
applying the same schedule?

• How to extend the machine learning based approach to
tune kernels with symbolic shapes?

Loop parallelism and loop tiling are common optimization
techniques that exploit multi-core capabilities by achieving
data access patterns which are memory hierarchy aware for
both CPUs and GPUs. However, the combination of these
techniques lead to complex loop boundary conditions. In
static cases, we can prove these conditions always hold, and
thus eliminate checks that hamper further optimizations such
as unrolling. While straightforward to handle with static
shapes, it becomes a non-trivial challenge when performing
symbolic codegen. If not carefully handled, the boundary
condition checks will stay, leading to poor performance.

To address this issue, we generate multiple kernels according
to the residues modulo of the tiling factor and then dispatch
based on the actual shape at runtime. For example, suppose
a symbolic dimension x is tiled by a factor of 8, we then
duplicate the generated kernel for 8 times, and replace the
symbolic var x by 8k+r in each copy, where k = bx/8c and
r ∈ [0..7]. By applying this technique in conjunction with
an enhanced symbolic expression simplification pass, we
can eliminate most boundary checks to achieve performance
that is nearly identical to kernels compiled with a single
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static shape. Lastly, we automatically generate a dispatch
function that invokes the corresponding kernel based on the
residue. In addition, the dispatch function can be extended
to invoke either compiler generated kernels or third party
library whichever is faster from the profiling results. The
increased kernel size is relatively small compared to the
overall deep learning models. In case where resources are
extremely limited, we can either generate fewer number of
kernels than the tiling factor or reduce the tiling factor to find
an acceptable trade-off between code size and performance.

A known issue to machine learning based tuning is that it
takes a long time (usually hours) to find the best schedule
for a single kernel. When it comes to symbolic shapes,
the tuning time can be exponentially longer if we naively
tune for every possible shape. In this paper, we extend the
template based tuning approach for symbolic shapes to make
tuning time tractable. The template based tuning approach
takes a human-defined code template and a search space,
and searches the best configuration within the search space
using machine learning algorithms. We observe that a good
configuration for one shape usually performs well on other
shapes. Based on this observation, we devise the following
mechanism to tune the kernel for symbolic shapes.

1. First replace the symbolic dimensions by a large enough
value (e.g., 64) so that the search space can cover most
possibilities, and run the tuning algorithm on the static
shape for a sufficient number of iterations.

2. Pick top k configurations, apply them to a selection of
other shapes, and evaluate their performance.

3. Pick the configuration that performs best on average
among shapes previously evaluated.

Empirically, we found that k = 100 covers most of the best
configurations for other shapes. Current popular dynamic
models usually only require kernels with one symbolic vari-
able. As a result, we choose the values of power of two
up to 256 in the cross evaluation of other shapes. If there
is more than one symbolic variable, a more sophisticated
selection approach might be required to limit the evaluation
time of step 2. We leave this to the future work. Further,
if the workload distribution is known, we can adjust the
weighting of known shapes in step 3.

4 VIRTUAL MACHINE

The conventional runtime of existing deep learning compil-
ers which naively executes a model operator by operator in
topological order does not work for executing the compiled
modules of dynamic models. A more intelligent and pow-
erful execute engine is required to handle the control flow
execution logic, and dispatch different kernels accordingly.
In order to achieve these goals and be portable to differ-
ent platforms, we design and implement a virtual machine
(VM)-based runtime.

In Nimble, we compile a dynamic model into a VM exe-
cutable that contains platform-independent bytecode and
platform-dependent kernel code, which can be later loaded
and executed. The bytecode consists of a series of instruc-
tions that predicate the order of kernel invocation and control
flow execution logic. This design compliments conventional
runtime’s capability for executing highly optimized kernels
but not directly handling orchestration between kernels.

The design of the VM instruction set is motivated by the
simple observation that kernel execution dominates neural
network execution time. It is quite different from traditional
language virtual machines, which contain many instructions
that perform little work, leading to a profile where the cost
of each instruction executed matters. Our ISA is composed
of CISC-style instructions in which each instruction cor-
responds to a primitive IR expression on tensors, such as
allocation and kernel invocation, which in turn may corre-
spond to executing multiple “low-level” operations. For
example, LoadConst idx, $reg is capable of multi-
ple addressing modes as it first reads the index idx and then
loads the data from a constant pool to the destination regis-
ter $reg. A complete list of instruction set can be found
in the Appendix C. We naturally select a register-based
virtual machine design (Davis et al., 2003) for a compact
bytecode, which is easy for users to read and modify. We
provide the abstraction of an infinite set of virtual registers
as it significantly simplifies optimizations and allocation
(similar to SSA) and minimizes conceptual barriers to rapid
prototyping and modification.

Instructions are represented using a traditional tagged union
containing the op-code and the data payload. This repre-
sentation enables both efficient serialization and instruction
decoding and dispatch. Nimble uses variable-length instruc-
tion format due to the inclusion of variable sized operands
such as data shapes in the instructions.

After we have generated an executable from the compiling
phase, we can create an interpreter to load it. When exe-
cution begins, the interpreter runs a dispatch loop which
checks the op-code and executes the appropriate logic, then
repeats. As our instructions are coarse-grained (i.e., they can
be viewed as super-instructions), the number of branches
generated by the dispatch-loop is lower than traditional
programming language VMs, adding negligible overhead
compared to ahead of time compilation.

Discussion An alternative solution to the runtime is ahead
of time compilation to eliminate dispatch overhead. But due
to the granularity of the operations, dispatch time makes
up a very small portion in the execution. More importantly,
our VM provides flexibility traditionally attributed to virtual
machines and a clear compiler/runtime split. We see the
potential of VM to be integrated as a runtime module into
a larger system. For example, VM can provide resource
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isolation where multiple inference instances share the same
hardware in the cloud. Furthermore, a Quality of Service
(QoS)-aware system, e.g., (Kang et al., 2018; Yachir et al.,
2009), could leverage VM to suspend the current model
execution for a higher priority or time-critical model. Last,
thanks to the simplicity of the VM design, one can verify the
implementation of VM for security and privacy purposes.

5 EVALUATION

This section evaluates the performance of Nimble on dy-
namic models against existing state-of-the-art solutions, as
well as its optimization implication. Specifically, the section
seeks to answer the following questions:

• What is the overall performance of Nimble for dynamic
models compared against state-of-the-art alternatives on
various hardware platforms?
• How much overhead does Nimble VM introduce for han-

dling dynamism at runtime?
• How effective are the proposed optimization techniques,

such as memory planning and symbolic codegen?

5.1 Experiment setup

All experiments were conducted on Amazon EC2 instances.
We evaluated Nimble on three hardware platforms: Intel
Skylake CPUs (c5.9xlarge, 18 physical cores, hereinafter
called Intel CPU), Nvidia Tesla T4 GPUs (g4dn.4xlarge, 1
card, 2,560 CUDA cores, hereinafter called Nvidia GPU),
and ARM Cortex A72 (a1.4xlarge, 16 physical cores, here-
inafter called ARM CPU). Although all tests are done on
the cloud, our results of ARM CPU are portable to the edge
devices, e.g. Raspberry Pi, due to the same architecture.

To study the efficiency of Nimble in handling dynamic mod-
els, we compared it with mainstream deep learning frame-
works, including TensorFlow (v1.15), MXNet (v1.6), Py-
Torch (v1.5) 5, DyNet (v2.1), as well as dynamic-specific
systems TensorFlow Fold based on TensorFlow v1.0. We
were unable to compare Nimble with Cavs (Xu et al., 2018),
JANUS (Jeong et al., 2019), or Jeong et al.(Jeong et al.,
2018) as none of them is open-source. No public deep
learning compiler has claimed support for dynamic models.

Three popular models that represent different classes
of dynamism were chosen in this experiment, viz.
LSTM (Hochreiter & Schmidhuber, 1997) (dynamic control
flow), Tree-LSTM (Tai et al., 2015) (dynamic data structure),
and BERT (Devlin et al., 2018) (dynamic data shape). The
input size / hidden size used in the LSTM and Tree-LSTM
model are 300/512 and 300/150, respectively. We used
BERT base implementation. For LSTM and BERT, we used
Microsoft Research’s Paraphrase Corpus (MRPC) (Dolan
et al., 2005) with variable input lengths as our input dataset.

5
We use PyTorch v1.4 on ARM CPU because PyTorch v1.5 fails to build on ARM instance.

For Tree-LSTM, we used the Stanford Sentiment Treebank
(SST) (Socher et al., 2013) with various tree structures as
the input dataset.

5.2 Overall performance

We compared the overall performance of Nimble against
baselines for each dynamic model. Nimble successfully ac-
complished inference for all models on all platforms. How-
ever, not all baseline systems could perform inference for
these models. For instance, Tree-LSTM only runs on Py-
Torch, DyNet, and TensorFlow Fold as other frameworks
cannot handle dynamic data structures. TensorFlow Fold
was not designed to process BERT hence no result was ob-
tainable. We cannot find a BERT implementation on DyNet.
Finally, the model inference of Tree-LSTM on Nvidia GPU
was omitted as it’s hard to saturate GPU compute capabil-
ity due to excessive control flows and small kernel sizes,
making GPU less favorable deployment targets.

The baseline systems all make use of third-party kernel li-
braries to achieve high-performance by leveraging the heav-
ily hand-optimized operators, which is handicapped when an
operator is not supported on a specific target. However, Nim-
ble has the ability to select either the self-compiled kernels
or the ones provided by third-party library based on which
one maximizes performance. It uses dynamic dispatch logic
to invoke the selected kernels using platform-independent
bytecode at runtime.

First, the latency result comparison is shown in Table 1.
Nimble consistently outperforms the baseline on both 1-
and 2-layer cases, with 2.2×, 1.3×, and 3.2× faster than
the best alternative on Intel CPU, Nvidia GPU, and ARM
CPU, respectively. We implemented the LSTM model using
a for-loop control flow in all systems for fair comparison.
PyTorch has an alternative implementation for LSTM that
unrolls the LSTM cells along the sequence length and dy-
namically batches the matrix multiplication for the inputs.
Note that this optimization is orthogonal to the control flow
handling and can be implemented in Nimble. DyNet is
significantly slow on CPU because it only utilizes a single
core. We observe that latency on Nvidia GPU is higher
than Intel CPU with Nimble. This is because the size of
LSTM model is relative small so that it cannot fully utilize
the massive parallelism in the GPU. The significant perfor-
mance improvement of Nimble comes from two aspects:
(a) utilizing the deep learning compiler for better kernel fu-
sion and implementation, (b) encoding the control flow into
platform-independent instructions with minimal overhead.

Next, we inspected the performance of model inference
on Tree-LSTM as exhibited in Table 2. The table shows
that Nimble runs substantially faster than the baselines. On
PyTorch, the performance speedups are 17.4× on Intel CPU
and 19.8× on ARM CPU as PyTorch uses Python to handle
the tree data structure. DyNet performs much better than
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Unit: 1 layer 2 layers
µs/token Intel NV ARM Intel NV ARM

Nimble 47.8 54.6 182.2 97.2 107.4 686.4
PT 103.6 80.6 2735.9 224.0 158.1 5862.2
DY 936.4 68.8 5701.6 2350.8 140.7 12811.3
MX 212.9 135.7 3695.9 401.7 223.8 7768.0
TF 301.4 304.7 978.3 687.3 406.9 2192.8

Table 1: LSTM model inference latency of Nimble, PyTorch
(PT), DyNet (DY), MXNet (MX), and TensorFlow (TF) on
Intel CPU, Nvidia (NV) GPU, and ARM CPU.

Unit: µs/token Intel ARM

Nimble 40.3 86.3
PyTorch 701.6 1717.1
DyNet 98.2 312.9
TF Fold 6 209.9 –

Table 2: Tree-LSTM model inference latency.

PyTorch as it handles the control flow execution carefully in
C++. However, Nimble still outperforms it as DyNet does
not optimize computation kernels for CPUs. TensorFlow
Fold is 5.2× slower than Nimble on Intel CPU because it
has to re-compile upon every input.

Last, Table 3 summarizes the performance comparison of
BERT. The results indicate that Nimble outstrips the base-
lines for all frameworks on all platforms in the experiment.
The reduction in latency compared to the best alternative
is 1.5×, 1.3×, and 1.05× on Intel CPU, Nvidia GPU, and
ARM CPU, respectively. The reasons are two-fold: (a) simi-
lar to frameworks, Nimble is also able to use the well-tuned
third-party libraries on Intel CPU (MKL) and Nvidia GPU
(cuDNN); (b) Nimble can leverage more thorough operator
fusion brought by the deep learning compiler.

In sum, the evaluation results demonstrate that Nimble pro-
duces more portable performance for all dynamic models on
different platforms. Instead, the performance of frameworks
is more platform dependent and varies from model to model.

5.3 Microbenchmark

This subsection analyzes the performance gain of Nimble
by using BERT as the microbenchmark. Three studies will
be conducted to examine (a) the overhead introduced by the
VM, (b) the advantage of the proposed memory planning
pass, and (c) the performance discrepancy between symbolic
and static codegen. Other models share similar observations.

Overhead in handling dynamism In order to understand
the overhead that Nimble spends to take care of dynamism,
we compared it to TVM where static sequence length and
TVM static runtime is used to execute BERT. Table 4 de-
tails the performance difference between Nimble and TVM.

5
TensorFlow Fold was not built successfully on ARM CPU.

Unit: µs/token Intel Nvidia ARM

Nimble 307.0 95.2 2862.6
PyTorch 479.5 220.4 11851.2
MXNet 455.8 152.9 8628.0
TensorFlow 768.7 125.2 2995.4

Table 3: BERT model inference latency.

Device TVM Nimble kernel others
lat. (ms) lat. (ms) lat. (ms) (ms)

Intel 19.38 24.32 21.06 3.26
ARM 223.50 237.41 228.59 8.82
Nvidia 5.58 5.86 5.60 0.26

Table 4: BERT model latency (sequence length 128) using
TVM and Nimble on different hardware. kernel latency
shows the time of kernel execution in Nimble, and others
shows the extra latency introduced by other instructions.

TVM is 5% to 25% faster than Nimble on static shapes,
though the absolute latency difference is small. The over-
head comes from two aspects: (a) kernels generated with
symbolic shapes cause extra overhead in the index com-
putation; (b) other instructions in the VM are required to
handle the dynamic execution, such as shape functions, dy-
namic memory allocation, instruction dispatch, etc. On
Nvidia GPU, most of the bytecode latency is overlapped
with the GPU execution thanks to the heterogeneous device
placement (Section 3.4), and therefore the overhead of other
instructions is negligible.

Memory planning Section 3.3 proposed memory planning
to coalesce memory allocation together and reuse the already
allocated memory chunks. This pass reduces the number
of buffer allocation by 47%, and the memory allocation
latency is reduced by 75% on Intel CPU. We also compared
the memory usage of Nimble with memory planning to TVM
which statically analyze and pre-allocate memory on popu-
lar computer vision models such as ResNet (He et al., 2016),
MobileNet (Howard et al., 2017), VGG (Simonyan & Zisser-
man, 2014) and SqueezeNet (Iandola et al., 2016). It turned
out that Nimble uses up to 8% more memory footprint.

Symbolic codegen We selected 3 dense layers from BERT
model and compared the performance between symbolic
codegen and static codegen on ARM CPU. For symbolic
codegen, we use Any as the sequence length during the com-
pilation and evaluate the kernel with the sequence length 128
at runtime. For static codegen, we directly set the sequence
length to 128 at compilation time. Figure 3 illustrates the
relative latency of kernels generated with symbolic shapes
to the baseline – kernel compiled with static shapes. The
auto-tuning algorithm tiles the symbolic axis by 8 in all three
kernels. We varied the number of generated kernels to be dis-
patched during the symbolic codegen from 8 (full dispatch)
to 1 (no dispatch) as described in Section 3.5. We observe
that symbolic codegen with full dispatch can achieve nearly
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Figure 3: Relative latency of 3 dense operators using sym-
bolic codegen and static codegen on ARM CPU. The latency
of static-shaped kernels is used as the baseline. “dispatch/k”
means that we generate k symbolic kernels to be dispatched
at runtime. “no dispatch” means that only one symbolic
kernel is generated and therefore no dispatching is needed.

identical performance to that for static codegen, while reduc-
ing the number of kernels hurts the performance. Similar
trends are seen in dense operators with different shapes,
other operators, and on other platforms.

6 RELATED WORK

This section contrasts Nimble to existing solutions for exe-
cuting dynamic neural networks.

Deep learning frameworks Some frameworks support dy-
namic control flow via the addition of primitives in their
graph representations, such as switch and merge in Tensor-
Flow (Yu et al., 2018) and foreach, cond, and while loop
in MXNet (Zheng, 2018). Indirect encodings of control
flow require specialized data-flow runtimes which handle
operations like switch, or hybrid runtimes which separate
execution of the control and data planes. Both are heavily
intrusive to the framework codebase. In addition, there have
been many framework extensions to support different kinds
of dynamism.TensorFlow Fold (Looks et al., 2017) conducts
an analysis of the user’s provided computation graph to iden-
tify dynamic operations that can be batched together. Once
such operations are found, a batched TensorFlow graph
is generated which provides shape specialized sub-graphs.
Although this may provide speedup, it introduces large over-
head as each path must be executed as a separated sub-
computation graph, as well as limits further optimization.
Jeong et al. (Jeong et al., 2018) and JANUS (Jeong et al.,
2019) also extend TensorFlow to improve the performance
for dynamic models. These extensions are framework spe-
cific and are not directly related to compilation techniques
we employ. The use of speculative execution is complimen-
tary to our techniques.

Dynet (Neubig et al., 2017) and PyTorch (Paszke et al.,
2019) use host language features (i.e., Python’s control flow)
to dynamically unroll control flow to produce a static trace of

a dynamic model. Tracing based approaches provide a flex-
ible and friendly programming model at the cost of ahead
of time optimization. Additionally, it requires the creation
of a data flow graph for each trace, introducing overhead
for control-flow constructs and limiting whole-program op-
timization, a challenge also faced in traditional tracing JIT
compilation. JAX (Bradbury et al., 2018) also supports re-
stricted forms of dynamic networks but its optimizations are
fundamentally restricted by XLA, its underlying compiler.
For example, dynamic value dependent control-flow is not
supported in JAX’s JIT mode. In contrast Nimble makes
dynamic behaviors less costly to use without compromising
performance for the static subset.

In addition, frameworks rely on third-party libraries (Chetlur
et al., 2014; Intel, 2020) to implement operators with dif-
ferent data shapes, namely, they achieve good performance
for models with dynamic shapes on a specific hardware plat-
form only if the corresponding high-performance third-party
library supports an operation. Therefore, frameworks, as
well as the runtime systems derived from them for dynamic
models (Xu et al., 2018; Gao et al., 2018), generally perform
poorly on devices in the second tier of support such as ARM
CPU, and on operator and shape combinations not found in
popular benchmarks. In contrast Nimble works across all
platforms and can generate performant code for new shapes
and new devices on demand (Section 3.5).

Deep learning compilers Existing deep learning compil-
ers, including XLA (XLA Team, 2017), TVM (Chen et al.,
2018a), and Glow (Rotem et al., 2018), can compile deep
learning models to run on multiple hardware platforms with
accelerated performance. However, little work has been
done on optimizing compilation for dynamic neural net-
works. MLIR (Lattner et al., 2021) is a promising direction
and its IR supports dynamic shapes, but no dynamic opti-
mizations or end to end performance have been reported
yet. Nimble’s compilation and VM design is largely inspired
by production compilers and VMs, such as LLVM (Lattner
& Adve, 2004), GCC (gcc, 2019), and JVM (jvm, 2013)
for general solutions to handle dynamic behaviors, such as
control flow and variable-length input arrays.

7 CONCLUSION

This paper proposed Nimble, an end-to-end compiler and
runtime solution to dynamic neural networks. Nimble is the
first deep learning compiler that supports neural networks
with dynamism, via a lightweight and portable VM-based
runtime for executing compiled models on multiple plat-
forms. Experimental results showed that Nimble efficiently
executed popular dynamic models on multiple platforms
with better performance and broader coverage compared
to the state-of-the-art. Future work includes enabling dy-
namic model inference on emerging AI accelerators and
high-performance training of dynamic models.
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APPENDICES

A MEMORY PLANNING EXAMPLE

In the case of operators with dynamic shaped inputs, we
need to insert shape functions before the kernel invocation to
compute the output shapes and allocate memory accordingly
as detailed in Section 3.2. Our uniform treatment of shape
functions as standard tensor expressions enables them to
be fused and optimized like normal, but one challenge is
that we must now manifest memory allocations in a fixed
point until we allocate the outputs for both the compute and
necessary shape functions. We illustrate this below how
the explicit memory allocation transformation works with a
single dynamic concatenation.

1 fn (x: Tensor<?, 2>, y: Tensor<1, 2>)
2 ->Tensor<?, 2> {
3 concat((%x, %y))
4 }

This is the same transformation as the simple example
shown in Section 3.3 with the addition of carefully inserting
invocations to the shape function to compute sizes of output
buffers for the dynamically sized kernel.

1 fn (x: Tensor<?, 2>, y: Tensor<1, 2>)
2 ->Tensor<?, 2> {
3 let in_sh0 = shape_of(x);
4 let in_sh1 = shape_of(y);
5 let buf0 = alloc_storage(16, 64, ...);
6 let out_sh0 = alloc_tensor(buf0, ...);
7 invoke_shape_func(concat,
8 (in_sh0, in_sh1), (out_sh0,), ...);
9 let buf1 = alloc_storage(...);

10 let out0 = alloc_tensor(
11 buf1, out_sh0, ...);
12 invoke_mut(concat, (x, y), (out0));
13 out_0
14 }

After the transformation you may notice we have introduced
a call to invoke_shape_func which invokes a shape
function for a kernel (line 7). The shape function requires
input shapes as arguments which further require us to invoke
shape_of for both %x and %y (line 3-4). shape_of will
be directly mapped to a VM instruction to retrieve the shape
of a tensor at runtime. The transformation also inserts an
additional storage and tensor allocation for the output of the
shape function (line 5-6).

B HETEROGENEOUS DEVICE PLACEMENT
RULES

The full set of heterogeneous device placement rules are
listed below:

• shape_of. Defaults to the CPU domain because we
can access the shape of a tensor regardless of which
device it is placed on.

• Shape functions. These IRs take the output of one or
multiple shape_of and then derive the shape of an
operation according to predefined type inference rules.
The output of a shape function is used to compute the
amount of memory that this operator requires at run-
time, which only needs a few cheap scalar arithmetic
computation. Therefore, the inputs and outputs would
be better on a CPU domain as well.

• device_copy. The input and output of this IR are
on different domains as it copies data from one domain
to another. The device domains of the input and output
are propagated in the opposite directions to other IR
nodes that are reachable to/from the device copy node.

• Memory operations. The device domain of stor-
age from alloc_storage is designated in the ex-
pression, and later is propagated to the device do-
main of the tensors allocated from this storage via
alloc_tensor.

• invoke_mut. All arguments used in the
invoke_mut must have the same device domain.

• Other common IR nodes. The device domain of other
common IR nodes, e.g. variables, constants, operators,
etc., can be directly propagated from the above nodes.

C VM ISA
Table C.1 details the opcode and the functionality of each
instruction. Recall that Nimble is designed to support neural
networks with dynamic features, such as control flow and dy-
namic data structures etc., in a portable, high-performance,
and light-weight manner. A set of instructions are proposed
to fulfill this task. These instructions provide not only high-
level information about the dynamic model behavior but
also an architectural level interface for better orchestration
and virtualization of the execution of control logic and op-
timized operator kernels. The current instruction set only
contains 22 instructions for dynamic model inference. It
largely reduces the dispatching overhead and simplifies byte-
code serialization and deserialization. We categorize these
instructions as follows:

• Register-to-Register Operations. Register-to-Register
operations, e.g. Move, transfer data between different
offset of the register file. Objects are reference counted,
make use of copy-on-write and passed by reference
ensuring register operations are cheap even if the size
of underlying container is large.

• Memory Operations. Memory operations can allocate
space for tensors, load constant tensors, and so on.
Due to the design of our constant pool, weights (which
are constant during inference) can remain in-memory
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Instruction Description

Move Moves data from one register to another.
Ret Returns the object in the result register to the caller’s register.
If Jumps to the true or false offset depending on the condition.
Goto Unconditionally jumps to an offset.
LoadConst Loads a constant at an index from the constant pool.
LoadConsti Loads a constant immediate.
AllocStorage Allocates a storage block on a specified device.
AllocTensor Allocates a tensor object with a static shape from a storage.
AllocTensorReg Allocates a tensor object given the shape in a register.
AllocADT Allocates a data type using the entries from a register.
AllocClosure Allocates a closure with a lowered virtual machine function.
FreeStorage Free allocated memory back to memory manager.
FreeTensor Release the memory occupied by a tensor back to the storage object.
Invoke Invokes a function.
InvokeClosure Invokes a closure.
InvokePacked Invokes an optimized operator kernel.
GetField Gets the value at a certain index from a VM object.
GetTag Gets the tag of an Algebraic Data Types (ADT) constructor.
DeviceCopy Copies a chunk of data from one device to another.
ShapeOf Retrieves the shape of a tensor.
ReshapeTensor Assigns a new shape to a tensor without altering its data.
Fatal Raises fatal in the VM.

Table C.1: The opcode and the description of Nimble’s instruction set.

with no specialized support. They can be referenced
by the LoadConst instruction. FreeStorage and
FreeTensor free the memory before the reference
count becomes zero.

• Call Operations. Call operations are the most fre-
quently executed instructions. The ISA has specialized
call instructions for invoking a global function, a kernel
primitive, and a closure. InvokePacked is the most
performance-critical one. It is in charge of invoking
the operator kernels that are optimized either by the un-
derlying deep learning compiler or a third-party library.
Kernel primitives are ahead-of-time compiled and can
leverage both compiler-generated kernels and the third-
party libraries using the dispatch function described in
Section 3.5. On the other hand, both Invoke and
InvokeClosure call into a global VM function
where a closure object carries the captured registers.

• Control Flow Operations. Unconditional jump instruc-
tions, e.g. Goto and Ret, are used by both static and
dynamic models to jump to a specific program point.
Only dynamic models need conditional control opera-
tions, e.g. If, to determine the direction of branching.
The interpreter updates the PC using the offset from
either the true branch or false branch based on the
conditional value.

• Miscellaneous Operations. To ease compiler optimiza-
tions (e.g. memory planning and device placement)
and code generation, we offer the native support of
several instructions in the VM, namely ShapeOf,
DeviceCopy, and ReshapeTensor. These three
instructions are used to directly manipulate runtime
data, such as extracting the shape of a tensor, moving
data between different devices, and transforming the
shape of a tensor. With the help of them, we could pre-
serve more coarse-grained IR at the frontend making
optimization simpler.
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