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ABSTRACT
Quantization enables efficient acceleration of deep neural networks by reducing model memory footprint and
exploiting low-cost integer math hardware units. Quantization maps floating-point weights and activations in a
trained model to low-bitwidth integer values using scale factors. Excessive quantization, reducing precision too
aggressively, results in accuracy degradation. When scale factors are shared at a coarse granularity across many
dimensions of each tensor, effective precision of individual elements within the tensor are limited. To reduce
quantization-related accuracy loss, we propose using a separate scale factor for each small vector of (=16-64)
elements within a single dimension of a tensor. To achieve an efficient hardware implementation, the per-vector
scale factors can be implemented with low-bitwidth integers when calibrated using a two-level quantization
scheme. We find that per-vector scaling consistently achieves better inference accuracy at low precision compared
to conventional scaling techniques for popular neural networks without requiring retraining. We also modify a
deep learning accelerator hardware design to study the area and energy overheads of per-vector scaling support.
Our evaluation demonstrates that per-vector scaled quantization with 4-bit weights and activations achieves 69%
energy saving and 36% area saving over an 8-bit baseline while maintaining over 75% accuracy for ResNet50
on ImageNet. 4-bit weights and 8-bit activations achieve near-full-precision accuracy for both BERT-base and

BERT-large on SQuAD while reducing area by 28% compared to an 8-bit baseline.

1 INTRODUCTION

Deep neural networks (DNNs) continue to achieve ground-
breaking accuracy on a range of tasks, including image
classification, object detection, machine translation, and nat-
ural language processing (NLP) (LeCun et al., 2015). In
parallel, hardware designers have been racing to achieve
the best performance per watt for running DNN inference
on devices ranging from the edge to the datacenter (Sze
et al., 2020). While most DNN models are trained in single-
precision floating-point, they can be deployed for inference
in lower-precision formats such as half-precision floating-
point, fixed-point, and low-bitwidth integer depending on
the target device and application specifications. Quantizing
DNN models to lower precisions allows us to accelerate
compute-bound operations such as convolution on high-
throughput low-cost math units, conserve memory band-
width for memory-bound computations, and reduce storage
requirements in on-chip buffers and caches. For example,
NVIDIA’s Ampere Graphics Processing Unit (GPU) archi-
tecture supports INT8 and INT4 data types for these pur-
poses (NVIDIA Corporation, 2020).
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One way to quantize a DNN model is through quantization-
aware training (QAT). QAT either trains the model from
scratch or finetunes the trained full-precision model, with
quantization operations in the model. Alternatively, post-
training quantization (PTQ) directly quantizes the values of
the full-precision model before and during inference without
any retraining (Wu et al., 2020). Often, PTQ is more desir-
able because it does not require access to the complete set of
possibly confidential training data, eliminates lengthy fine-
tuning, requires little hyperparameter tuning, and provides
a turnkey solution for quantizing any DNN. However, PTQ
usually results in more accuracy loss than QAT because of
the lack of training with quantizers in the loop. For both
QAT and PTQ, accuracy loss from quantization varies by
precision, model, and quantization algorithm.

Quantization scales high-precision values of a particular
range to lower-precision values of a different range. A
high-precision number () is mapped to a lower-precision
number (z,) with z, = Q(z/s, N) where s is the scale
factor and Q(a, b) is the function that quantizes a to a b-bit
integer. Scale factors play an important role in determining
the quantization error, which affects the ultimate accuracy
of the quantized model. To avoid overloading the quan-
tized model with too many scale factors and nullifying the
compute and memory benefits of quantization, scale factors
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Figure 1. Convolution — Comparison between per-layer/per-
output-channel scaling and per-vector scaling.

must be shared among multiple tensor elements. Typically,
scale factors are shared at a coarse granularity by elements
of an entire tensor or a large sub-tensor. For example, a
typical quantized convolution layer as shown in Figure 1
employs a single scale factor for the entire input activation
tensor (C' x H x W) and each kernel (C' x R x S) of the
weight tensor. While coarse-grained scaling amortizes the
cost of scaling across many elements, it likely requires map-
ping a broader range of values to the specified low-precision
representation. The resulting increase in quantization error
introduces significant accuracy loss for low-precision rep-
resentations. The problem is exacerbated for DNNs whose
input and/or weight values span a wide dynamic range.

We propose fine-grained per-vector scaled quantization (VS-
Quant) to mitigate quantization-related accuracy loss. In
contrast to coarse-grained per-layer/per-output-channel scal-
ing, VS-Quant employs a scale factor for each vector of
elements (V' x 1 x 1) in the activation and/or weight tensor
as shown in Figure 1. The range that must be represented
within each vector is smaller than the range that must be
represented across the entire layer, so many vectors can
be represented at much higher precision and quantization
error is only encountered in a small subset of vectors that
contain wide ranges of values. Moreover, the unit of a
vector matches the unit of vector multiply-and-accumulate
(MAC) hardware ubiquitous in DNN accelerators (Sijster-
mans; Venkatesan et al., 2019; NVIDIA Corporation, 2020).
This hardware-software synergy leads to an elegant exten-
sion of current accelerator architectures for implementing
per-vector scaling with low overhead. The major contribu-
tions of our work are as follows:

* We propose VS-Quant, a novel per-vector scaled quantiza-
tion technique to mitigate accuracy loss typical in existing
quantized DNN models.

* We propose a two-level scaling scheme and algorithm
that combine a set of fine-grained scale factors with each
coarse-grained scale factor to enable efficient VS-Quant
hardware implementations.

* We evaluate VS-Quant on popular DNN models and
demonstrate significantly higher PTQ accuracy than con-
ventionally scaled quantization on computer vision and
NLP tasks.

* We extend the vector MAC unit of a DNN accelerator to
support VS-Quant in hardware and analyze the area and
power impact.

* We explore tradeoffs between accuracy and hardware
efficiency across a range of hardware implementations
and DNN models to identify Pareto-optimal designs for
low-precision inference with PTQ.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews related work; Section 3 describes the funda-
mentals for quantization; Section 4 presents and evaluates
our per-vector scaling technique and associated two-level
scaling scheme; Section 5 describes the hardware imple-
mentation; Section 6 explores the accuracy and hardware
efficiency tradeoff; Section 7 discusses quantization-aware
retraining in the context of per-vector scaling, followed by
conclusions in Section 8.

2 RELATED WORK

Krishnamoorthi evaluates per-channel scaled quantization
at various precisions for a set of convolutional neural net-
works (CNNs) (Krishnamoorthi, 2018). The paper finds
that although PTQ can achieve good accuracy at 8 bits for
these networks, QAT is required for getting good accuracy
at lower precisions or for matching floating-point accuracy
at 8-bits. McKinstry et al. shows that CNNs require only
a small number of epochs of finetuning after carefully set-
ting the learning rate schedule and fixing the quantization
range (McKinstry et al., 2018). Instead of fixing the quanti-
zation range before QAT, PACT proposes to learn the range
of weights and activations as part of training (Choi et al.,
2018). Both papers achieve full-precision accuracy with
only 4-bit precision. Other research has explored very low
precision ternary (Zhu et al., 2016) and binary (Courbariaux
et al., 2015; Hubara et al., 2016) weights and activations.
These models required significant retraining to recover accu-
racy loss and do not reach full-precision accuracy for more
difficult tasks. In addition to CNNs, recent work has pro-
posed quantized transformer models for NLP (Zafrir et al.,
2019; Shen et al., 2020) and for machine translation (Bhan-
dare et al., 2019; Prato et al., 2019; Wu et al., 2016b). Wu
et al. establishes a single 8-bit quantization workflow for
maintaining less than 1% accuracy drop for many different
types of networks (Wu et al., 2020).

Prior work has proposed schemes for uniform quantiza-
tion (Courbariaux et al., 2014; Zhou et al., 2016) and non-
uniform quantization (Han et al., 2015; Zhu et al., 2016).
Uniform quantization uses integer or fixed-point format
which can be accelerated with specialized math pipelines
and is the focus of this paper. Non-uniform quantization
leverages codebook look-ups to enable model compression
and memory bandwidth reduction. To reduce quantization
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error, vector quantization (Gray, 1984) based techniques
take advantage of redundancy within a subspace of a weight
or activation tensor. In particular, product quantization
splits each subspace into vectors and optimizes a codebook
for the vectors in each subspace (Wu et al., 2016a; Gong
et al., 2014). Stock et al. extends this technique to pre-
serve the reconstruction quality of actual network outputs
instead of just weights (Stock et al., 2020). On a separate
note, knowledge distillation can also improve the accuracy
of quantized model (Mishra & Marr, 2017). By training
the quantized model to mimic a high-precision model in a
student-teacher setting, the paper obtains higher accuracy
for a ternary ResNet-variant architecture.

Since the full set of training data may not be available at
inference time, there is increasing interest in PTQ tech-
niques that directly quantize full-precision values before and
during inference (Krishnamoorthi, 2018; Lee et al., 2018;
Nagel et al., 2019). More recently, Zhao et al. propose
the outlier channel splitting technique to exactly represent
outliers (Zhao et al., 2019). By duplicating channels that
contain outliers and halving the values of those channels,
this technique effectively shrinks the quantization range
without modifying the network. Also focusing on the dis-
tribution of tensor values, Fang et al. propose a piecewise
linear quantization scheme that optimally splits the quan-
tization range into non-overlapping but differently-sized
regions (Fang et al., 2020). With this, more precision can
be assigned to the range where a majority of values lie. The
paper also leverages a per-group quantization trick on each
output channel filter to further reduce quantization error. To
model long-tail effects in data distribution, Biscaled-DNN
uses two scale factors for quantization (Jain et al., 2019).
One scale factor is dedicated for increasing precision, and
the other for increasing range. ZeroQ sidetracks the need
for a training dataset by engineering a synthetic one that
matches the statistics of the batch normalization operation of
each layer of the network (Cai et al., 2020). This technique
is considered another form of knowledge distillation.

Besides integer quantization, previous work proposes low-
cost fixed-point and floating-point inspired data types for en-
ergy efficiency. For example, Moons et al. propose adaptive
fixed-point quantization that trains a network for arbitrary
fixed-point precision while minimizing energy (Moons et al.,
2017). Flexpoint replaces 32-bit floating-point values with a
block floating-point format that leverages shared exponents
that can be dynamically adjusted to minimize overflow and
maximize dynamic range (Koster et al., 2017). To avoid
data loss from exponent sharing while improving energy
efficiency, AdaptivFloat leverages a floating-point exponent
bias based on absolute maximum value of the tensor to op-
timize the clipping of the tensor’s dynamic range (Tambe
et al., 2020). Rouhani et al. explore the accuracy-cost trade-
offs of different variants of a block floating-point format

in production-level cloud-scale inference (Rouhani et al.,
2020). Other work performs mixed-precision quantization
on a per-layer basis to adapt to each layer’s sensitivity to
precision (Wu et al., 2018; Khoram & Li, 2018).

3 QUANTIZATION FUNDAMENTALS

Integer quantization maps high-precision floating-point
weights and activations in a DNN to low-precision integer
representations, typically with 8 or fewer bits. For simplic-
ity, in this paper we refer to the floating-point weights and
activations collectively as real values, and the quantized
low-precision weights and activations collectively as inte-
ger values. We also focus on uniform integer quantization
where the values are evenly distributed within the range of
the integer format. While non-uniform quantization such as
logarithmic quantization (Miyashita et al., 2016) is also pos-
sible, the techniques proposed in this paper are orthogonal
and can be applied to either form of quantization.

There are several considerations when deciding how to quan-
tize real values into integers. First, we must choose a range
of real values to be represented so that any value out-of-
range will be clipped. We may not necessarily want to
choose the full range of presented real values, but rather
clip outliers to improve the precision of quantized values
within the range where most values reside. Second, we need
to select the number of bits available for our integer values.
With more integer bits, more discrete levels (integer val-
ues) are available to represent the same range of real values,
resulting in smaller quantization error.

An N-bit signed two’s complement integer quantization
maps real values = € [Tmin,Tmae] to values x, €
[-2N-1 2N=1 _ 1]. In general, a positive real scale fac-
tor s is used to scale the value from the real range to
the integer range, and a zero point z represents the inte-
ger value corresponding to a real zero value. Since the
zero point complicates integer computation pipelines, ef-
ficient DNN accelerators typically apply symmetric scale-
only quantization assuming z = 0, Zyipn = —Tmaz, and
zy € [-2N71 4 1,2N=1 — 1] (Wu, 2019). If v denotes the
absolute maximum real value that needs to be represented,

(67

§= oNTT (1

zq = clip (F] ,—2N-141 oN-1_ 1) )
S

where E] denotes rounding the scaled value to the nearest
integer. If = is unsigned, 2,,;, = 0 and z, will be deter-
mined based on the integer range of [0, 2" — 1]. To avoid
issues with vanishing gradient, quantized integer values
are avoided during training. Instead, simulated quantization
using discrete real values is applied to simulate the effect

of integer quantization (Krishnamoorthi, 2018). Equation 3
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Model Task Accuracy  Metric Dataset
ResNet50 v1.5  Image classification 76.16 Topl ImageNet 2012
BERT-base Language model 86.88 F1 SQuAD v1.1
BERT-large Language model 90.93 F1 SQuAD v1.1
Table 1. Overview of DNN models in this study

Model | Bitwidths | Max Entropy 99.9% 99.99% 99.999% 99.9999% MSE
Wit=3 Act=3U | 0.18 6.61 7.11 4.60 1.54 0.45 0.23
ResNet50 Wit=4 Act=4U | 60.31 70.76 70.46 70.55 68.71 66.47 55.27
’ Wit=6 Act=6U | 75.43 75.79 75.24 75.80 75.73 75.66 75.34
Wit=8 Act=8U | 76.16  76.13 75.37 76.07 76.11 76.07 76.06
Wit=4 Act=4 1.48 9.92 5.23 6.13 241 1.48 7.77
BERT-base Wt=6 Act=6 9.33 15.63 61.32 71.87 69.89 14.22 69.79
Wt=8 Act=8 | 76.88  73.17 69.78 84.10 84.65 79.67 85.67
Wit=4 Act=4 1.92 6.96 6.29 4.64 4.02 1.92 5.10
BERT-large Wit=6 Act=6 4.17 7.74 13.51 81.42 73.93 12.46 84.17
Wit=8 Act=8 | 88.81 37.26 26.82 90.49 90.67 89.44 90.81

Table 2. DNN accuracy with per-channel scaling and static calibration:

Weight and activation bitwidths are specified under

Bitwidths. U indicates unsigned values. Values are otherwise signed. Max, Entropy, and MSE denote calibration using maxi-
mum absolute value, KL-divergence, and mean squared error, respectively. Percentages indicate the use of percentile calibration.

defines the simulated-quantized value z; as a real value
from rescaling the integer value by the original scale factor.
524 3)

s _

Tq

Typically in a convolutional layer, a scale factor for weight
or activation is determined for every layer of the network.
Known as per-layer scaling, a single scale factor is used for
each weight tensor (i.e., K x C' x R x S), and another scale
factor is used for each activation tensor (i.e., C' x H x W).
To improve accuracy, multiple scale factors are determined
for the weights of each layer. Known as per-channel scaling,
a different scale factor is used for each output channel of a
layer (i.e., C' x R x S). We collectively refer to per-layer
and per-channel scaling as coarse-grained scaling.

Scale factors must be chosen carefully to best approximate a
real distribution with a limited number of discrete values. A
calibration process is used to select the o used in Equation 1
for quantizing weights and activations. While « can be set to
the maximum absolute value of the distribution (called max
calibration), it is often beneficial to omit outlier values in
favor of additional precision for inlier values. For example,
percentile calibration sets « to a specific fraction of |24z
Entropy calibration, on the other hand, determines the «
that minimizes the information loss between real and quan-
tized distributions. For weights, scale factors are determined
using static calibration prior to inference. For activations,
scale factors can be determined using static calibration prior
to inference or through dynamic calibration during infer-
ence. Note that static calibration for activations requires
representative data samples that model the distribution of
likely encountered inputs (Wu et al., 2018).

While per-channel scaling achieves better accuracy than per-
layer scaling, coarse-grained scaling methods generally lead

to significant accuracy degradation for a range of quantized
models. With PTQ but without QAT, we observe accu-
racy degradation in popular image recognition and language
models (listed in Table 1) after quantization, as indicated in
Table 2. Even for models where coarse-grained scaling can
be competitive, careful calibration of the scale factor with
the right calibration technique is required for good accuracy.
As shown in Table 2, the quality of calibration varies among
different versions of the same network and across different
networks. We first focus on enabling state-of-the-art infer-
ence accuracy with PTQ before discussing VS-Quant for
QAT. Note that only convolution and linear layers have been
quantized. Other layers remain in floating-point.

4 PER-VECTOR SCALED QUANTIZATION

We propose VS-Quant, per-vector scaled quantization, to
mitigate the accuracy loss from quantization. Rather than
computing a single scale factor over multiple dimensions
of a tensor, VS-Quant applies a scale factor for each vector
of elements within a single dimension of a tensor. For a
convolutional layer shown in Figure 1, per-vector scaling
subdivides the input channel (C') dimension of the weight or
activation tensor into [C'/V'] vectors each with V' elements.
The number of vectors contained within a tensor depends
on its shape and the designated vector size V.

In Table 3, we show that VS-Quant with static max calibra-
tion for weights and dynamic max calibration for activations
has the potential to achieve significantly better accuracy
with low bitwidths. Compared to the floating-point baseline,
per-vector scaled quantization achieves negligible accuracy
drop at 6 bits and less than 1% drop at 4 bits for ResNet50.
In comparison, per-channel scaled quantization requires at
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Model [ Bitwidths [ Per-vector | Best Per-channel

Wt=3 Act=3U 69.78 7.97

Wt=4 Act=4U 75.28 70.76

ResNetS0 | \i_6 Act=6U |  76.00 75.80
Wit=8 Act=8U 76.15 76.16

Wit=3 Act=8 82.93 12.11

BERT- Wt=4 Act=8 86.26 78.86
base Wt=6 Act=8 86.63 85.47
Wt=8 Act=8 86.54 85.67

Wit=3 Act=8 89.54 11.59

BERT- Wt=4 Act=8 90.66 86.75
large Wt=6 Act=8 90.76 90.58
Wt=8 Act=8 90.88 90.81

Table 3. PTQ accuracy of different DNN models with floating-
point per-vector scale factors — Best Per—-Channel indi-
cates the best calibrated per-channel scaled quantized accuracy
among all calibration methods in Table 2.

least 6-bit weights for less than 1% drop. Both BERT-base
and BERT-large achieve close to full-precision accuracy
with 4-bit weights, compared to per-channel scaled quanti-
zation which has difficulty reach the same level even with 8
bits on BERT-base. Note that results are reported for PTQ
where retraining is not required.

4.1 Vector Size

The quality of per-vector scaling depends on the vector size
parameter. At one extreme with V' = 1, each element would
be individually quantized with its own scale factor and thus
experience no loss in precision. At the other extreme with
V = C, elements in each (R, S) in weight and (H, W)
in activation would share the same scale factor. Table 4
compares the accuracy of a 6-bit quantized ResNet50 with
per-vector scaling for different vector sizes. Accuracy de-
creases with increasing vector size because larger vectors
have a higher probability of needing to represent a wider
range of values. The goal is to carefully select V' to mini-
mize the required number of scale factors (maximize vector
size) while maximizing the precision of the vector-scaled
approximation and resulting network accuracy.

V=l V=2 V=4 V=8
76137608 76.05  76.05

V=16
76.00

V=32
75.96

V=064
75.96

Table 4. Accuracy of 6-bit ResNet50 on ImageNet with VS-
Quant for different vector sizes

4.2 Vector MAC

In addition to better precision, the vector granularity also
maps naturally to the vector unit of compute in typical DNN
accelerators. Because convolution and linear layers can be
conveniently expressed as a collection of dot-products be-
tween an unrolled region of weights and an unrolled region
of activations, vector-MAC units are the ubiquitous building
blocks of many DNN processing architectures. Equation 4

shows the dot-product y(j) between the jth vector region of
weights w(j)(i), ¢ € [0,V — 1] and the jth vector region
of activations a(j)(i), ¢ € [0,V — 1].

(w(5)(@) - a(5) (7)) 4)

With VS-Quant, we compute a scale factor s,,(j) for the jth
weight vector and a scale factor s, (j) for the jth activation
vector to scale the quantized integer weights w,(7)(), ¢ €
[0,V — 1] and integer activations a4 (j)(4), ¢ € [0,V — 1].
Therefore, the dot-product in Equation 4 becomes the scaled
dot-product in Equation 5.

V-1
Yg(J) = (Z(wq(waq(z’))) sw(f)sai) (5

=0

Note that the scale factors are factored out of each vector
MAC, leading to a simple VS-Quant hardware implementa-
tion, as discussed in Section 5.

4.3 Calibration

While it is orthogonal to per-vector scaling, calibration is
still needed to determine the range of real values to be repre-
sented, which is parameterized by .. As with conventional
scaling techniques, weight scale factors s,,(j) can be de-
termined statically based on the trained model. Activation
scale factors s,(j) can be computed statically with repre-
sentative input samples or dynamically during inference.
Likewise, calibration methods including maximum absolute
value, percentile, and entropy can still be applied. However,
because each vector only has a small number of elements,
the distribution of a vector may lack enough samples to sup-
port more sophisticated calibration methods like percentile
and entropy to determine a statistically useful .

4.4 Two-Level Quantization

The results in Table 3 rely on floating-point scale factors
per vector, which would lead to an inefficient hardware
implementation. To improve area and energy efficiency, we
introduce a two-level scaling scheme that further applies
integer quantization on the per-vector scale factors. With
this scheme, the per-vector scale factor s in Equation 3
is factored into the product of an integer per-vector scale
factor s, and a floating-point coarse-grained scale factor -,
as shown in Equation 6.

Tgy =S¢ " Tg (6)
Here 2, denotes the simulated-quantized value with two
levels of scale factors. With an integer scale factor per-
vector, we need to store only a low-bitwidth integer along-
side each vector of tensor elements, and we can complete
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all vector-wise computations with integer arithmetic. With
the two-level scaling technique, we push the more expen-
sive floating-point scale factors to the coarser granularity
by introducing the less expensive integer scale factors at
the finer granularity to achieve a balance between accu-
racy and hardware efficiency. Given N-bit integer weights
or activations and M-bit integer per-vector scale factors,
adding the M-bit scale factor alongside each V-element
vector leads to a memory overhead of M/(V N). To give
a perspective with N = M = 4 and V = 16, the storage
overhead is 6.25% which equates to an effective bitwidth
of 4.25 bits. Compared to coarse-grained scaling, two-level
per-vector scaling requires scaling the dot-product by the
product of the integer scale factors, which represents an
extra (2N + log(V')) x 2M multiplication for each vector
dot-product.

Equations 7a-7j detail the algorithm for determining the
scale factors when quantizing a real valued tensor z to an
N-bit signed integer in the two-level quantization scheme.
Index ¢ indicates each vector; index j represents each ele-
ment of a vector; and k is the index along the coarse-grained
dimension with different coarse-grained scale factors. As-
suming per-channel scale factors for the weight tensor of a
convolutional layer, k € [0, K —1] while ¢ € [0, [C/V]—1]
and j € [0,V —1].

The algorithm first computes floating-point scale factors at
a per-vector granularity. Then it quantizes the per-vector
scale factors by separating them into integer per-vector com-
ponents and a floating-point per-channel component. We
specify the datatype of each tensor in Equation 7 as fp for
floating-point and int for integer.

Tomaz(Ky 1) pp = mjax lz(k, 7, 1)] (7a)
. xmaw(ka Z)
S(k’7 Z)fp = m (7b)
.. k7 ‘a ]
SR AT B
x;l(k‘,j, i)fp = xq(k,j, i)s(k, 1) (7d)
Smaz (k) ;p = max s(k, 1) (7e)
Smaa:(k)
V(k) p = oM 1 (71)
. k,1
Sl](kvl)int = \‘Si(k;)—‘ (7g)
5q2(kvi)fp = sq(k, l) (k) (7h)

To determine the per-vector scale factors, the algorithm
computes the absolute maximum over the elements j €
[0,V — 1] of each vector (k,7) in Equation 7a and then

determines the floating-point per-vector scale factor that
would scale the absolute maximum to the maximum rep-
resentable N-bit signed integer. This step is analogous to
Equation 1 but at a per-vector granularity. Equation 7c per-
forms the actual per-vector scaling and rounds the resulting
tensor values to integers which will be used in our integer
dot-product unit. Note that the scale factor here is per-vector
for each (k, ) but broadcasted correspondingly to each el-
ement (k, j, i) of the tensor. At this point, we have every-
thing we need if we were doing a single-level quantization
with floating-point scale factors per-vector. The single-level
simulated-quantized value is expressed in Equation 7d.

To further quantize the scale factor, we repeat the quantiza-
tion process of taking the absolute maximum, computing
the ratio of real valued maximum to integer maximum, and
scaling and rounding to integer on the single-level scale fac-
tor as shown in Equations 7e to 7g. Equation 7h shows the
two-level scale factor as a composition of integer per-vector
scale factor and floating-point per-channel scale factor. The
two-level simulated-quantized value is therefore represented
as the product of the integer tensor values and the two levels
of scale factors, as shown in Equation 7.

Using two-level quantization for calibrating scale factors,
DNN inference accuracy with PTQ across a range of weight,
activation, and scale factor bitwidths is shown in Tables 5, 6,
and 7. We compare the accuracy of VS-Quant with two-level
scaling using low-bitwidth integer and fp16 scale factors to
VS-Quant with fp32 scale factors and per-channel scaling
(similar to Table 3). Compared to per-vector scaling, we
consistently observe significantly lower accuracy loss with
VS-Quant across all three DNNs, particularly at low weight
and activation bitwidths. For example, VS-Quant with 3-bit
weights and 8-bit activations achieves over 89% accuracy
for BERT-large on SQuAD while the best per-channel cali-
brated quantization only achieves 11.59% accuracy.

The two-level quantization algorithm in Equation 7 is merely
one of several ways to determine the two levels of scale
factors. For example, instead of first computing the single-
level per-vector scale factor and then breaking it down into
the product of two levels of scale factors, we can do it one
level at a time by first computing the per-channel scale factor
and then back-calculating the per-vector scale factor. While
this approach provides a larger space to explore the integer
values and integer scale factors, it requires computing the
absolute maximum over a larger tensor as opposed to just a
vector, and is more expensive to implement in hardware.

S5 HARDWARE IMPLEMENTATION

To evaluate the hardware efficiency of VS-Quant, we ex-
tended a previous optimized DNN accelerator (Venkatesan
et al., 2019) by adding per-vector scaling support. Fig-
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Bitwidths  [S=3/4 S=3/6 S=4/4 S=4/6 S=6/4 S=6/6[S=fp32]POC

Wit=4 Act=3U|72.64 73.51 73.53 74.33 73.82 74.69| 74.71 |67.20
Wit=4 Act=4U|73.39 74.20 74.36 75.04 74.58 75.35| 75.28 |70.76
Wit=4 Act=6U|73.68 74.45 74.64 75.25 74.89 75.40| 75.40 |72.20
Wit=4 Act=8U|73.65 74.42 74.66 75.21 74.83 75.42| 75.42 |72.30
Wit=6 Act=3U|73.57 74.36 74.22 74.99 74.35 75.32| 75.23 |71.52
Wit=6 Act=4U|74.26 75.12 74.9575.59 75.14 75.80| 75.83 |74.77
Wit=6 Act=6U|74.69 75.13 75.13 75.74 75.40 75.96| 76.00 |75.80
Wit=6 Act=8U|74.55 75.19 75.19 75.73 75.41 76.03 [75.89
Wit=8 Act=3U|73.65 74.47 74.24 75.13 74.67 75.35| 75.56 |71.98
Wit=8 Act=4U|74.48 75.16 75.08 75.71 75.21[75.96| 75.91 |75.11
Wit=8 Act=6U|74.77 75.32 75.26 75.86 75.46 76.17 (76.01
Wit=8 Act=8U|74.61 75.33 75.1575.85 75.47J 76.15 [76.16

Table 5. ResNet50 on ImageNet with integer scale factors

Bitwidths [S=4/8 S=4/10 S=6/8 S=6/10]S=fp16][S=fp32[POC

Wt=3 Act=8|81.57 81.77 82.64 82.80 | 82.90 | 82.93 |12.11
Wit=4 Act=8/85.65 85.88 86.00 86.33 | 86.27 | 86.26 |78.86
Wt=6 Act=8|85.87 86.22 86.29 86.63 |85.47
Wit=8 Act=8|85.94 1 86.38 86.37 86.54 |85.67

Table 6. BERT-base on SQuAD with integer scale factors

Bitwidths |S=4/8 S=4/10 S=6/8 5=6/10]S=Ip16]S=fp32] POC

Wit=3 Act=6[84.99 85.56 8.24
Wit=3 Act=8|88.72 88.96 11.59
Wit=4 Act=6|87.36 87.98 50.45
Wit=4 Act=8|90.28 90.51 86.75
Wit=6 Act=6|87.78 88.22 84.17
Wit=6 Act=8]90.45 90.54 90.58
Wit=8 Act=6|87.98 88.38 86.44
Wi=8 Act=8[90.59 90.55 90.81

Table 7. BERT-large on SQuAD with integer scale factors

Tables 5-7. Accuracy of different networks with integer
scale factors — Accuracy numbers are color-coded from
highest (dark blue) to lowest acceptable (dark red).
S=Sw/Sa indicates Sw-bit unsigned per-vector weight
scale factors and Sa-bit unsigned per-vector activation
scale factors. S=fp16 and S=fp32 indicate single-level
fp16 and fp32 per-vector scale factors. POC column lists
best accuracy achieved for per-channel scaled quantization.

ure 2(a) shows the micro-architecture of a processing ele-
ment (PE) in the accelerator, which is responsible for the
dot-product computation listed in Equations 4 and 5. The
PE consists of a set of VS-Quant vector MAC units, a weight
buffer, an input activation buffer, an accumulation collector,
a VS-Quant post-processing unit, and control logic.

Each VS-Quant vector MAC unit, shown in Figure 2(b),
performs a V -element dot-product between the correspond-
ing weight and activation data. In parallel, the product of
the per-vector weight scale factor s,, and activation scale
factor s, is computed and rounded to the desired precision.
The two outputs are then multiplied to compute a scaled
partial sum output. Each entry of the weight buffer stores
a weight vector along with corresponding per-vector scale
factor. Similarly, the input activation buffer stores an acti-
vation vector and a per-vector scale factor in each row. The

accumulation collector stores partial sum values from all
the vector MAC computations and temporally accumulates
them across multiple cycles in an integer format. For N-bit
weights and activations along with M-bit weight and acti-
vation scale factors, we have N x N — 2N-bit products
that are accumulated over the vector size V, resulting in
2N + log2V wide dot-product outputs. The dot-product
results are multiplied with the product of the M-bit weight
and activation scale factors to produce 2N + logaV + 2M
wide partial sums. For improved energy efficiency, the vec-
tor MAC unit can optionally round the product of the scale
factors to fewer than 2M bits before multiplying with the
dot-product result. Finally, the accumulation collectors are
designed with appropriate widths to avoid overflow. Taken
together, the PE achieves efficient data reuse across all three
data types: (i) each input activation vector is shared spatially
across multiple vector MAC units; (ii) weight vectors are
reused temporally across multiple cycles using a weight col-
lector; (iii) partial sums are reused spatially inside the vector
MAC unit and temporally in the accumulation collector.

For post-processing, the output of the accumulation collec-
tor is fed to a post-processing unit (PPU). To implement dy-
namic calibration for the scale factors of the activations, we
perform the required calibration operations in the VS-Quant
PPU and convert the higher-precision output activations
back to N-bit vector elements with per-vector scale factors
for the next layer. Figure 2(c) shows the block diagram of
the VS-Quant PPU that performs the calibrate-and-quantize
operations. As a post-processing step following the com-
pletion of a layer of computation, we leverage a vector max
unit to implement Equation 7a to compute the absolute max-
imum of each vector of elements. Then a reciprocal unit and
shifter implement Equation 7b to compute the ratios of abso-
lute maximums of the vector to the maximum representable
value of an N-bit integer value. The computed ratios are
the scale factors used to quantize the output activations and
convert them to VS-Quant format for computation of the
next layer.

To quantify the area and energy impact of supporting VS-
Quant in hardware, we also consider a baseline PE architec-
ture for comparison without the scale factor related multipli-
ers in the vector MAC unit and without the scale factor over-
heads in the weight and activation buffers. In this case, each
vector MAC unit simply performs a V-wide dot-product
and produces a partial sum of width 2NV + logs V' for N-bit
weights and activations. Per-channel scaling is performed
in the baseline design PPU.

We evaluate the impact on energy per operation of VS-
Quant compared to the baseline design using the MAG-
Net DNN generator and exploration infrastructure (Venkate-
san et al., 2019). MAGNet’s published 8-bit configuration
achieved 2.1 tera-operations/sec/mm? (TOPS/mm?) and 69
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Figure 2. Hardware diagram — DNN accelerator with per-vector scaling support.

fJ/operation (14.5 TOPS/Watt) in a 16nm FinFET technol-
ogy node. We normalize all subsequent energy and area
numbers in this paper to a similar baseline design with 8-bit
weights and activations. The design tools shown in Table 9
of Appendix A are used to implement the hardware and
measure area and power in a sub-16nm process technology.

Figure 3 shows the average energy per operation across a
range of hardware configurations. In this and all subsequent
plots, we use W/A/ws/as to denote each configuration,
where W stands for weight bitwidth, A for activation bitwidth,
ws for weight scale bitwidth, and as for activation scale
bitwidth. — indicates use of per-channel scaling. Energy is
normalized to that of the 8/8/-/- configuration. The black
bars for the per-channel scaled configurations (4/4/-/- and
8/8/-/-) show that quantization can achieve up to 2x energy
savings over an 8-bit baseline. When the VS-Quant hard-
ware is introduced and the scale factor product (s,, X sg)
in Figure 2(b) is kept at full-bitwidth precision (i.e., no
rounding), the yellow bars for the 4/4/4/6 and 4/4/8/8 con-
figurations show energy overheads over corresponding 4-bit
per-channel scaled configurations due to additional multi-
pliers for scaling and wider accumulation widths. When
the scale factor product is rounded to an intermediate size
of 8 bits or 12 bits, the energy overheads of adding V§-
Quant support to the hardware can be substantially reduced,
as demonstrated by the blue and orange bars. As a result,
per-vector scaled configurations with rounding can achieve
lower energy consumption for a given accuracy target.

6 DESIGN SPACE EXPLORATION

To better understand the accuracy, energy, and area trade-
offs enabled by VS-Quant, we combine the energy and area

N
i

-
N

-

S
®
g
o
50.8 7
g | | . .
S04 / 7 7 7
g N B .
] % % % %
£0.2 % . / .
50 7 7 7 /
414)--  4JA/AI6  4/4/8/8  3/6/4/10  3/8/4/10  8/8/--
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7. 8-bit scale product 12-bit scale product

Figure 3. Effect of scale product bitwidth on energy — For this
and subsequent figures, W/A/ws/as indicates weight, activation,
weight scale, and activation scale bitwidths. Dashes indicate per-
channel/per-layer scaling for weights/activations.

results from our DNN inference accelerator with accuracy
results from real networks using a Pytorch-based PTQ li-
brary (Wu et al., 2020). Table 9 in Appendix A details the
design tools used and parameters explored in our evaluation.

Figures 4, 5, and 6 present the design spaces of ResNet50,
BERT-base, and BERT-large, respectively, for various
bitwidth configurations of our DNN accelerator hardware.
Results are shown as a tradeoff among energy efficiency (x-
axis), area efficiency as performance per unit area (y-axis),
and inference accuracy (color/shape). Since all configura-
tions run with the same throughput (operations per cycle),
performance is identical and only the VLSI energy and area
costs vary. Each point in the plot reports metrics for a syn-
thesized hardware instance selected from the set of precision
parameter options in Table 9 of Appendix A, normalized
to our baseline design (8/8/-/- configuration). Energy re-
sults are averaged over layers of the networks, weighted by
the number of operations in each layer. For each network,
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Figure 4. ResNet50 design space

we decide the acceptable amount of accuracy loss against
the full-precision baseline and only visualize those design
points that are within an acceptable accuracy range.

As indicated in the legends in Figures 4, 5, and 6, we plot
only ResNet50, BERT-base, and BERT-large design points
that have an accuracy above 74.0%, 80.0%, and 87.0%,
respectively. We then subdivide the acceptable range into
finer accuracy ranges (four colors/shapes) to help visualize
the achieved accuracy on top of the area-energy space. For
design points of the same color/shape (within the same
accuracy range), the upper left of the plot is optimal with
the lowest energy per operation and highest performance
per area. We label the prominent Pareto-optimal points as
well as any per-channel scaled points. Overall, VS-Quant
provides a much more expansive space of design tradeoffs
than baseline 4-bit, 6-bit, and 8-bit datapaths, which we
discuss in detail for each network below. For some VS§-
Quant points with per-vector scaling on both weights and
activations, we use scale product rounding (typically 4-8
bits) to improve energy efficiency. We include the measured
loss from scale product rounding in our accuracy data.

For ResNet50 results (Figure 4), the baseline 8/8/-/- already
has minimal accuracy loss compared to the floating-point
reference, so limited accuracy gains are available from VS-
Quant. However, the green/circle 6/8/6/- VS-Quant point
(6-bit weights, 8-bit activations, and 6-bit per-vector scale
factors for weights) provides 12% lower energy as well
as 12% smaller area at similar accuracy. When moving
to 4-bit and 6-bit representations, VS-Quant provides even
more energy and area reductions in the slightly lower ac-
curacy range. For example, in the >75.5% accuracy range
(blue/square points), the 6/4/-/6 design point achieves 57%
less energy and 25% smaller area than the baseline design.
In the >75.0% accuracy range (yellow/rhombus points),
the 4/4/8/8 design point achieves 69% less energy and 36%
smaller area than the baseline design. When moving to even
lower accuracy in the >74.0% range (red/triangle points),
even smaller area can be found at 4/4/4/6 and 4/3/4/6. In
prior work, limiting accuracy loss to 1-2% with 4-to-6-bit
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Figure 5. BERT-base design space
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Figure 6. BERT-large design space

integer representations had only been possible with QAT.

Figures 5 and 6 highlight the best energy efficiency and area
achieved for BERT-base and BERT-large similarly at differ-
ent accuracy targets. For both BERT models, VS-Quant is
observed to be the most competitive across multiple accu-
racy targets, requiring very few bits for representing weights.
In particular, a 4/8/8/10 configuration (4-bit weights, 8-bit
activations, 8-bit per-vector weight scale factors, and 10-
bit per-vector activation scale factors) for either model can
achieve an accuracy target close to that of the full-precision
baseline while reducing area by 28% and energy by 3%. For
BERT-base, this kind of accuracy is not attainable even with
our baseline design (8-bit per-channel scaled quantization)
according to Table 2. If we relax our accuracy requirement
to at least 82.0% for BERT-base and 87.0% for BERT-large,
we can further decrease area and energy by dropping weight
precision to only 3 bits. Based on the design points, the only
BERT configuration where it makes sense to implement
per-channel scaled quantization is the 6/8/-/- configuration
targeting around 1% accuracy loss, although this configu-
ration trades off significant area to attain the lowest energy
in that accuracy range. On the other hand, configurations
such as 4/8/6/8 for BERT-base and BERT-large are able to
save energy without compromising on area. In comparison
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Figure 7. Accuracy and area tradeoff for BERT models of dif-
ferent sizes — Per-channel design points are outlined and filled.

to these lower-energy points, optimal VS-Quant hardware
configurations such as 4/8/8/10 achieve great accuracy on
both BERT-base and BERT-large.

We further study how the size of a network affects its ac-
curacy, energy, and area tradeoff by comparing the design
points of BERT-base against those of BERT-large. As shown
in Figure 7, for example, BERT-large is the only choice if
the accuracy target is beyond the best that BERT-base is able
to achieve. Below that threshold, we should always select
BERT-base because it is consistently more area-efficient
than BERT-large. This suggests that one should configure
the size of the model based on the desired accuracy target
to realize the best hardware efficiency.

7 QUANTIZATION-AWARE RETRAINING

While we are able to leverage per-vector scaled PTQ to
maintain reasonable accuracy down to 3 bits in some cases,
accuracy loss is inevitable at low precision without QAT
when compared to a full-precision baseline. The loss can
be substantial if an inferior combination of weight and ac-
tivation precisions is used. For example, BERT generally
requires 8-bit precision for activations to get reasonable
accuracy even with VS-Quant. Furthermore, many practi-
cal inference deployment scenarios may not have QAT as
an option due to lack of access to full training datasets or
limits on compute time and tuning effort. However, there
are cases in which we can finetune a pretrained model with
quantization in-the-loop for only a limited number of itera-
tions to adapt the weights and activations to the quantized
model (McKinstry et al., 2018).

VS-Quant is not limited to PTQ and can also be applied
to QAT to achieve even higher accuracy for a given set of
bitwidths. We apply per-vector scaled QAT using a con-
ventional QAT framework that leverages a straight-through
estimator (STE) in the backward pass to propagate the gra-
dient through any quantizer. While the framework trains
the weights that get fed into the quantizers in the model, the

.. Accuracy with QAT

Model Bitwidths PVAW POC
ResNet50 | Wi=3 Act=3U | 75.53 (20) 72.02 (20)
Wi=4 Act=4 | 8621 (5) 73.29 (20)
BERT-base | \o1 4 Act=8 | 87.60(1) 86.81(1)
Wi=3 Act=4 | 89.16(2) 21.63(2)
BERT-large |y 3 aci=8 | 90.43(1) 88.84(1)

Table 8. QAT study — Compares best accuracy achieved after QAT-
based finetuning, with number of finetuned epochs in parentheses.

quantization scale factors are not parameters and are not ex-
plicitly trained. Table 8 evaluates the best accuracy achieved
with QAT-based finetuning for both per-vector scaled quan-
tization and per-channel scaled quantization. The number
of retraining epochs taken to recover the specified accuracy
is shown in parentheses. Based on the presented cases in
Table 8, per-vector scaled QAT gives significantly better
accuracy than per-channel scaled QAT and requires much
less effort to recover accuracy loss from quantization.

8 CONCLUSIONS

In this paper, we introduced VS-Quant, a novel per-vector
scaled quantization technique that employs per-vector scale
factors to mitigate accuracy loss typical in existing quan-
tized DNN models. To support efficient per-vector scaling
in hardware, we implemented a two-level scaling scheme
and associated algorithm that combine a set of fine-grained
scale factors with each coarse-grained scale factor. We eval-
uated VS-Quant on a set of popular DNN models and tasks
and demonstrated that it achieves significant improvement
in post-training quantization accuracy when compared to
conventional per-channel scaled quantization techniques.

By extending the vector MAC unit of a DNN accelerator
to dynamically support per-vector scaling at inference-time,
we analyze the area and power implications of per-vector
scaling on the hardware. Experiments demonstrate that
VS-Quant with 4-bit weights and activations achieves 69%
energy saving and 36% area saving while maintaining over
75% accuracy for ResNet50 on ImageNet. Furthermore, VS-
Quant with 4-bit weights and 8-bit activations achieves near-
full-precision accuracy for both BERT-base and BERT-large
on SQuAD while reducing area by 28% compared to a non-
VS-Quant 8-bit baseline. By exploring the design space, we
find that per-vector scaling provides better accuracy, energy,
and area tradeoffs for low-precision inference. For future
work, we will continue to optimize the VS-Quant hardware
and study scale factor and other intermediate rounding. We
will extend QAT to explicitly learn per-vector scale factors.
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A EXPERIMENTAL SETUP

Design tools
Mentor Graphics Catapult HLS
Synopsys VCS
Synopsys Design Compiler Graphical
Synopsys ICC2
Synopsys PT-PX
Design space

HLS Compiler
Verilog simulator
Logic synthesis
Place-and-route
Power analysis

Vector size 16
Weight/activation
precision 3-bit, 4-bit, 6-bit, 8-bit

Weight/activation
scale precision
Scaling granularity

3-bit, 4-bit, 6-bit, 8-bit, 10-bit
POC, PVAO, PVYWO, PVAW

Table 9. Experimental setup — POC = per-channel, PVAO = per-
vector on activations only, PVWO = per-vector on weights only,
PVAW = per-vector on both weights and activations.



