BOVEDA: BUILDING AN ON-CHIP DEEP LEARNING MEMORY HIERARCHY

BRICK BY BRICK

Isak Edo' Sayeh Sharify! Daniel Ly-Ma' Ameer Abdelhadi' Ciaran Bannon' Milos Nikolic '
Mostafa Mahmoud ! Alberto Delmas Lascorz' Gennady Pekhimenko?? Andreas Moshovos !

ABSTRACT

Data access between on- and off-chip memories account for a large fraction of overall energy consumption during
inference with deep learning networks. On-chip memory compression can greatly reduce this energy cost as long
as it balances the simplicity and low cost of the compression/decompression implementation and its effectiveness
in data size reduction. We present Boveda, a simple and effective on-chip lossless memory compression technique
for fixed-point precision networks. It reduces data widths by exploiting the value distribution deep learning
applications naturally exhibit. Boveda can increase the effective on-chip capacity, reduce off-chip traffic, and/or
achieve a desired performance/energy target while using smaller on-chip memories. Boveda can be placed after
any memory block in the on-chip memory hierarchy and can work with any data-parallel processing units such as
the vector-like or the tensorcore units of modern graphics processors (Durant et al., 2017; Jia et al., 2018), systolic
arrays such as that used in the Tensor Processing Unit (Jouppi et al., 2017), and units that process sparse tensors
such as those used in the SCNN accelerator (Parashar et al., 2017). To demonstrate the potential of Boveda, we
implement it over (i) SCNN, a state-of-the-art accelerator for sparse networks, (ii) a Tensorcore-like architecture,
and (iii) TPU. Boveda reduces memory footprint by 34% for SCNN and sparse models on top of zero compression.
For dense models, Boveda improves compression by 47%. We also present a prototype FPGA implementation.

1 INTRODUCTION

Data compression in the memory hierarchy is appealing for
deep learning (DL) workloads and accelerators where mem-
ory accesses account for a large fraction of overall energy
consumption (Dally, 2011; Horowitz, 2014b). First, data
compression at any level of the hierarchy boosts effective
capacity by encoding each value using fewer bits. Second,
it improves effective latency and energy efficiency by re-
ducing access to slower and more energy-demanding higher
hierarchy levels and off-chip memory. Third, it reduces the
number of read or written bits per value, boosting effective
bandwidth and energy efficiency. Finally, it complements
dataflow and blocking for data reuse, which are the front-
line techniques for boosting energy efficiency in the memory
hierarchy for deep learning.

The Need for On-Chip Memory Compression: Since off-
chip accesses have been more than an order of magnitude
costlier than on-chip ones for quite some time now (e.g.,
accessing 32b from DRAM costs 640pj vs. Spj from an §KB

IDepartment of Electrical & Computer Engineering, Uni-
versity of Toronto “Department of Computer Science, Univer-
Y P P
sity of Toronto 3Vector Institute. Correspondence to: Isak Edo
<isak.edo@mail.utoronto.ca>.

Proceedings of the 4'" MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

SRAM (Horowitz, 2014a)), the first compression methods
for neural networks (Han et al., 2015; Lascorz et al., 2019;
Rhu et al., 2018), targeted off-chip accesses primarily. Their
success has increased the relative energy cost of on-chip
accesses. Accordingly, we complement past work on off-
chip compression, data reuse, and blocking by exploring
compression in the on-chip memory hierarchy (Chen et al.,
2016; Gao et al., 2019; Rhu et al., 2018).

On- vs Off-Chip Accesses: Compared to compression
methods for off-chip accesses, on-chip memory compres-
sion presents different trade offs: 1) On-chip access is faster
and requires much less energy (the difference being at least
an order of magnitude for both metrics) (Horowitz, 2014a).
This severely limits the energy and complexity/latency costs
afforded by on-chip compression methods. 2) Since DL
hardware tends to favour wide data-parallel units, the on-
chip memory hierarchy has to support much wider (bits)
than off-chip accesses to keep these units busy. 3) On-chip
data throughput is drastically higher than off-chip accesses
due to on-chip data reuse (Chen et al., 2016). 4) While off-
chip memory interfaces are standardised, on-chip memory
organisation depends on the specific design. This affords us
more flexibility.

The Need and Opportunity for DL-Specific On-Chip
Compression: Data compression in the memory hier-
archy has received extensive attention in the context of

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

general-purpose systems, including compressed on-chip
cache (Alameldeen & Wood, 2004b; Hallnor & Rein-
hardt, 2005; Qureshi et al., 2005) and main memory de-
signs (Abali et al., 2001; Ekman & Stenstrom, 2005; Hong
et al., 2018; Hong et al., 2019; Pekhimenko et al., 2013;
Young et al., 2019), and hardware-based compression algo-
rithms (Alameldeen & Wood, 2004a; Arelakis & Stenstrom,
2014; Arelakis et al., 2015; Pekhimenko et al., 2012). Sec-
tion 5.1 compares with several such methods. The key
challenge for on-chip compression algorithms is the need to
balance the simplicity of the design/implementation and low
compression/decompression latency with effectiveness in
data size reduction. We make three observations that allow
us to find a sweet spot in such a tradeoff in the context of
DL hardware designs:

1) The need to efficiently support random access pattern,
using indexing primitive, that severely restricts general-
purposed compression designs (e.g., the use of indirection to
locate the required data (Alameldeen & Wood, 2004a)) can
be avoided because deep learning workloads predominantly
access data in large sequential blocks to boost data reuse.

2) In contrast to general-purpose processors, which perform
a few narrow L1 data cache accesses per cycle, DL work-
loads favour data-parallel processing units with memory
systems that can serve multiple wide and parallel accesses
(e.g., 10s to 100s of bits per access). A typical general-
purpose compression engine only needs to decode a single
value per access, and hence only needs a fast way to deter-
mine where that single value is stored, and an interconnect
that can quickly and efficiently move this narrow data. For
deep learning, the need to decompress several data elements
concurrently is crucial, but unfortunately, this severely limits
encoding flexibility—i.e., special care is needed to perform
an efficient data layout that would simplify the interconnect
to provide the required parallelism.

3) Neural network values, dominated by feature and filter
maps, do not necessarily exhibit the properties of typical
program variables, such as pointer prefixes or commonly
occurring values (Alameldeen & Wood, 2004a; Arelakis
et al., 2015; Pekhimenko et al., 2012). Instead, these values
are usually short fixed-point values (e.g., 8b) with value
distributions that are heavily biased towards zero or near
zero. Despite this value content, most systems use one
datawidth to store all values regardless of content (e.g., use
8b to store the value Ox1). There is significant opportunity
to reduce storage needs by somehow adapting datawidth to
be only as long as necessary to fit the value content.

This Work: Utilising these observations, we present
Boveda, a lossless on-chip memory compression method
that works with unmodified neural networks. Boveda is di-
rectly compatible with any accelerator that uses data-parallel
processing units such as those in graphics processors includ-

[Encoder

£ Decoder

L1 buffer
MEBPEEDIERA
¥4 pe [pe [pe [pe [pe [pe [pe [pe
4| PE | PE | PE | PE | PE | PE | PE | PE

ve | e[pe | pe [pe [pE [e e

pe | pe [e [pe [pe [PE[e[PE
ve | e [e [pe | pe [pE [e e

L2 Global
Buffer

L2 Global
Buffer

ve | e [e[pe [pe [PE[e[PE
ve | e [pe [pe [pe [pE [e | e

pe | e[e[pe e [PE[e[PE
ve | e | e | pe | pe [pE [e | e

¥4 pe [pe | e | P [P [P [P | PE
e e e e e e e e

(a) Baseline Accelerator (b) Boveda Additions

Figure 1. Incorporating Boveda into an accelerator.

ing Tensorcores with and without support for sparsity (Du-
rant et al., 2017; Jia et al., 2018; NVIDIA, 2020), systolic-
arrays such as those of the TPU family (Jouppi et al., 2017),
grid-like processing units without or with sparsity support
such as SCNN (Parashar et al., 2017). As Figure 1 shows
for an example systolic-array accelerator, Boveda sits in-
between the on-chip memory hierarchy and the processing
units where it decodes and encodes values as they are being
read or written by the compute units. Boveda works with
any desired dataflow transparently packing data in memory
so that they can be fed into the corresponding units with lit-
tle cost, avoiding expensive, long-distance lateral movement.
It sustains high concurrency and wide datawidth. The mem-
ory hierarchy still sees a regular stream of as wide as before
accesses, albeit one containing fewer accesses. The units
see a regular stream of incoming data containing exactly the
same values as if Boveda was not there.

Taking Advantage of the Naturally Occurring Value
Distribution: To achieve high compression ratios, Boveda
exploits the typical value content of neural networks that use
fixed-point values (observation 3 above). Boveda adjusts
datawidth to value content. For example, Boveda may use
just 3b to store 0x2 and 5b to store 0x1b. Unfortunately,
allowing each value to select its datawidth independently
would result in unacceptable metadata overhead (e.g., a
width field per value) and, even worse, would result in an
unacceptably expensive interconnect to unpack the values.

Balancing Metadata Cost and Compression Ratio: The
first design choice in Boveda is straightforward and reduces
metadata cost while getting most of the benefits from adapt-
ing datawidth to value content. Boveda groups values and
selects a common datawidth that is sufficiently wide to ac-
commodate the value with the highest magnitude in the
group. For example, for a group of eight 8b values where
the highest magnitude value is 0x12, Boveda would use a
container of 8 x 5b, whereas, for another group where the
maximum magnitude value is 0x0a, it will use 8 x 4b. In
either case, a metadata field of 3b specifies the datawidth.

The Need for a Hardware Efficient Data Layout: How-
ever, this grouping alone is not only insufficient, worse it
results in an overall increase in energy. The reason is that the
interconnect needed to read the compressed values, expand

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

them, and route them to the execution units turns out to be
very expensive. We studied such a conventional design and
found that it would increase overall energy. Indicatively we
measured energy for a processing unit with 16 8b multipli-
ers and two banks of 8KB SRAM, one per multiplier input
side. The energy needed per access for the interconnect
that expands the values was 78% of the energy needed per
access. A compression rate of 44% would be needed just to
break-even, and that ignores any metadata overhead. Con-
straining datawidth to powers of two helps but only slightly
moving the break-even point at 42% compression ratio.

Boveda’s Data Layout: Boveda’s second design avoids
such expensive interconnects enabling energy savings.
Boveda organises data in such a way so that they are packed
in columns that are aligned with their corresponding pro-
cessing unit inputs. This allows Boveda to use an ensemble
of lightweight per column encoder/decoder units.

Boveda boosts the effective on-chip capacity without requir-
ing any modifications to the neural network model. This
can yield energy and/or performance benefits depending
on whether the model is off-chip or compute bound. At
design time, Boveda reduces the amount of on-chip memory
needed to meet the desired performance target. To a neural
network developer, Boveda presents a system that needs to
go off-chip less often and that rewards quantisation with-
out requiring it for all models. We study these effects by
considering several design points and quantisation methods.
We demonstrate that Boveda is a generic technique that can
be used with many accelerators, including an accelerator
that can exploit sparsity and process sparse tensors. Specif-
ically, we demonstrate Boveda over Tensorcore-like units,
over a TPU-like systolic array, and SCNN, an accelerator
for pruned models. Finally, we incorporate Boveda over an
FPGA accelerator and demonstrate a working prototype.

We highlight the following experimental findings: a) Boveda
compresses 60% and 40% more data than two prior state-
of-the-art compression algorithms (Alameldeen & Wood,
2004a; Panda & Seznec, 2016). b) Boveda reduces the total
model footprint to 53% and the volume of bits accessed
on-chip to 55% on average for 8b models across different
application domains. c) For a 4b model, it reduces average
width to 2.6b, including metadata. d) It reduces total energy
consumption by 23%, 26% and 17% for a Tensorcore-like
accelerator, SCNN, and TPU, respectively.

2 CHALLENGES AND OPPORTUNITIES

Compression in the memory hierarchy has received consid-
erable attention, especially in the context of general-purpose
systems. Section 5.1 considers and compares several such
methods which we adapted for deep learning workloads.
Here we comment further on the different set of challenges

and opportunities that exist for on-chip compression meth-
ods for deep learning workloads.

Indexing: General-purpose systems must support random,
fine-grain accesses. This requires the ability to locate the
compressed values in memory both quickly and at a fine-
grain granularity. This favours compression methods that
use small containers. To support random access some com-
pression methods reduce the amount of data transferred but
not the size of the containers they use in storage. For ex-
ample, they encode data within a cache line so that it needs
to read or write fewer bits. However, the full cache line is
still reserved. Thus they only improve bandwidth but not
effective capacity.

In contrast, deep learning workloads exhibit long sequential
accesses as they are dominated by matrix/vector or ma-
trix/matrix operations. Blocking for data reuse also results
in long sequential streams on- and off-chip. It merely breaks
large tensors into smaller yet still sizeable sub-tensors,
which are too accessed sequentially. Accordingly, there is
no need to support random accesses to fine-grain blocks of
compressed data. For the occasional data structure that may
need random access, we can simply disable compression. It
is convolutional layers that are the most demanding in terms
of indexing across all layer types encountered. Section 3.1
discusses support for these layers in more detail.

Concurrency and Payload: Memory hierarchies for
general-purpose systems need to support a few narrow pro-
cessing cores, whereas deep learning favours data- parallel
execution massively. This needs a highly concurrent and
wide payload memory hierarchy. When data is not com-
pressed, this is easily achieved by using several wide on-
chip memory banks. Individual data values can be laid out
in those memories to align directly with the correspond-
ing functional unit inputs obviating /ateral data movement.
However, once data is compressed, this alignment will be
broken. As wire delay and energy are major considerations
in current technology nodes, care must be taken to avoid as
much as possible data movement over long distances.

Content: Compression methods for general-purpose sys-
tems capitalize on value behaviours found in “typical” pro-
grams, such as full or partial value redundancy. For example,
memory pointers tend to share prefixes (e.g., pointers to the
stack or heap-allocated structures). Programs often use ag-
gregate data structures that tend to exhibit partially repeated
value patterns (e.g., flag fields). Compression methods need
to handle various data types, including integers and floating-
point numbers or characters from various character sets
(e.g., UTF-16). Further, programs manage datatypes of
various power-of-two datawidths, such as 8b, 16b, 32b or
more. Finally, programmers often use the “default” integer
or floating-point datatypes (32b or 64b today). Compression
methods capitalise on these characteristics.

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

The bulk of values in deep learning workloads are for fmaps
and imaps, large arrays of short fixed-point values such
as 16b or 8b with even 4b possible in some cases (Choi
et al., 2018). However, there are models for which 16b is
still necessary, e.g., for certain segmentation models where
even small drops in accuracy translate in obvious artefacts.
Regardless, as Section 5.1 shows, attempting to compress
data using methods developed for “typical” programs yields
unsatisfactory results. Fortunately, however, imaps and
fmaps tend to exhibit a value distribution that is heavily
biased towards zero or a value near zero.

Conventional memory hierarchies do not capitalize on this
property as they store all imap or fmap elements using
the datawidth needed for the largest magnitude possible.
This is excessive for most values and across all networks
studied. This behaviour is exhibited by all models studied.
Appendix B highlights two such cases: ResNet18 (image
classification) (He et al., 2015), and SSD_MobileNet (object-
detection), both quantised to 8b (Reddi et al., 2019). Boveda
capitalizes on these distributions to store elements using a
number of bits (datawidth) that is just long enough to fit
their current value.

Cost Amortization: To amplify bandwidth and capacity
benefits, we favour an on-chip compression scheme where
data remains encoded as much as possible. Preferably, we
would like to decompress data just before the functional
units, which favours simple to implement schemes, espe-
cially for decoding. Many compression methods for general-
purpose systems operate between the last-level cache and
other caches of the on-chip hierarchy where latency is not as
critical and can tolerate additional complexity. The cost of
(de)compression has to be carefully controlled as, ultimately,
the goal is to improve energy efficiency.

First, we need to consider the cost of metadata, that is, of the
additional information stored by the compression scheme.
Rather than storing each value with a different datawidth,
Boveda groups them and uses a sufficiently long datawidth
for all values within the group. This delivers most of the
benefits while keeping metadata costs low.

Second, we need to consider the cost of data decompression,
compression and routing. The encoding and decoding of
data have to be lightweight enough to reduce energy from
having fewer bits from memory vs. the energy cost of
decoding the original value ends up being a net win. It is for
this reason that Boveda avoids any other data manipulation
besides datawidth adaptation.

The cost of routing values is another important consideration.
Of particular concern is lateral data movement, given that
deep learning hardware tends to favour wide memories.
Where in a memory row data is stored relatively to where
it needs to go to (functional unit wires) can significantly

impact energy costs. If the data layout is not carefully
planned, encoded bits will have to traverse potentially the
full datawidth of access resulting in a net increase in energy.

Summary: We wish to develop a lossless on-chip com-
pression scheme which: 1) can support the relatively long
sequential accesses needed by neural networks, 2) can sup-
port multiple wide accesses to maintain high utilisation of
processing units, 3) is simple enough so that decoding can
happen just before the processing units, thus keeping data
compressed for as long as possible, 4) avoids lateral move-
ment of bits over long wires, 5) takes advantage of value
behaviour that is typical of neural networks, and 6) uses
an encoding and decoding method that is low cost so that
overall it results in a net energy win.

3 BOVEDA COMPRESSION

Whether the imap or fmap is a 1D, 2D, or 3D matrix, it
will be mapped onto a flat, 1D address space when laid
out in memory. When this matrix is processed by the data
parallel units of deep learning hardware, the memory will
see a sequence of wide accesses. For example, a process-
ing tile with 32 8b multiply-accumulate units will need
2x32x8b=2x256b inputs per cycle, 256b for imaps and 256b
for fmaps. Without compression, two memory buffers, each
256b wide could be used to supply these values. Here we
describe how Boveda can be used to reduce traffic and foot-
print to such buffers. The buffers will still see 256b wide
accesses. However, there will be fewer of those since in the
common case, Boveda will be using fewer bits per value. To
illustrate that Boveda is compatible with any processing tile
that makes wide accesses to on-chip buffers, we describe
three such configurations: 1) SCNN (Parashar et al., 2017),
a state-of-the-art accelerator for the convolutional layers of
pruned models, 2) Tensorcore- and, 3) TPU-like designs.

3.1 Boveda over SCNN

Since SCNN executes fully-connected layers at reduced effi-
ciency, we limit our discussion to convolutional layers in this
section. The inputs are fmaps (weights which are statically
known), imaps (activations which are runtime calculated),
and the ouputs are the omaps (activations). Appendix E
explains convolutional layers in more detail.

SCNN Primer: SCNN stores values in an N.SAMPLES-
CHANNEL-HEIGHT-WIDTH (NCHW) order and the omap
is calculated by a spatial input stationary convolution. This
allows SCNN to process imaps and fmaps one channel at
time and to exploit sparsity. Figure 9 in Appendix E shows
the organisation of an SCNN tile. For our discussion, it suf-
fices to know that: 1) The tile has three buffers respectively
holding imaps (and omaps), fmaps, and partial sum omap
accumulators. 2) Each cycle, at maximum throughput, the

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

I I Iy I

hilera3 | hilera2 | hileral | hilera0 |

1, I
101111]00001]10] BBlock 1 700

[00do1711]00000001[00070001[00000101] BBlock 1
[00bo1100[00p11111[00010110]00f101100] BBlock 0

101 001]00101]001100{011111]010110{101100] BBlock 0 + 1 101
I Iy s 432

[interconnect |

b 4 b 4 L 43 o 3 T A
N D O

(a) Fixed Datawidth Buffer

(b) Naive Layout w/ Variable Datawidths

011 000 100 001 BBlock 1
: | : BBlock 0+ 1
2 1 o " 4 s B b 7N 4 b
] intc intc intc intc
48 s 43 43 48 48
DI O D

(¢) Boveda’s Layout

Figure 2. Avoiding Long-Distance Lateral Data Movement via the Boveda memory layout.

Boveda Word w

;

swap

4«—
Ti6 ¥
[—shifter ___]«\-[oFs]

el

Value

o

-

(a) Decompression Module
Value

Value Value Value Value w
s a a 3 0 A
l | Shift-and-Mask <
K16 1
cu|cu] |
T B 48 [
[word 3 [word 2 word 1 [word 0] I 1V} S

4s
Boveda word

32
Boveda block w

(b) Compressor Module (c) Compacting Unit

Figure 3. Boveda Decompression and Compression Modules.

tile reads 4 imap values and 4 fmap values from their buffers,
3) calculates the products for all 16 possible (imap,fmap)
pairs, and 4) via a crossbar accumulates these products into
their corresponding partial omaps. To take advantage of
sparsity, the imap and the fmap omit zero values storing
non-zero values as ((value), (skip)) pairs where (skip) is
the number of zero values omitted after each. By using these
(skip) fields, SCNN deduces each value’s original position
and maps the products to their respective accumulators. We
omit the skip fields in our discussion for clarity and assume
8b values common today.

Original Layout and Processing: Let us consider how
the original SCNN would process two consecutive blocks
(Io,...,13) and (a, ..., I7) of 4 imap values each. Henceforth,
called BBlock (Boveda block) 0 and 1. Initially let us as-
sume that these are unsigned numbers. As Figure 2a shows,
SCNN’s imap buffer uses 8b per value and supports 4-value-
wide reads (32b). With this organisation the values as read
from the imap buffer align directly with the multiplier inputs.
However, all values in BBlock 0 have a prefix of at least 2
zero bits, and those in BBlock 1 have of 3 bits. Boveda’s
goal is to avoid storing these prefix bits.

Conventional Variable Datawidth Layout: Figure 2b
shows a straightforward yet undesirable way to store the
compressed values. For each BBlock of four values a width
field specifies bitwidth per value, 5 for BBlock 0 and 6 for
BBlock 1 (encoded as 4 and 5); a single width field per
BBlock amortises its overhead over multiple values. De-

compression comes at a hefty price because the values are
no longer aligned with the multiplier inputs and may even
spread over two rows. Let us first consider the misalignment
of values and multiplier inputs. We need to extract width
bits (varies per BBlock) and route those to a multiplier input
after expanding to 8b. This routing requires a 32b-to-8b
crossbar-like interconnect. Four such crossbars are needed
one per multiplier column, a significant cost in area and en-
ergy. For a larger 8 x 8 multiplier grid 64b-to-8b crossbars
would have been needed.

Boveda’s approach is of much lower complexity and cost.
Boveda treats the values as belonging to one of four hileras
which correspond to multiplier columns; the first value in
each BBlock belongs to hilera 0, the second value to hilera
1, and so on. The approach of Figure 2b breaks this mapping
and allows compressed values to flow freely across hileras.
Boveda instead restricts values to stay within their original
hilera as Figure 2c shows. Iy and I are packed together into
the hilera mapped onto the buffer’s first 8 bits whereas I3 and
I; are packed into the hilera mapped onto the last 8 bits. To
draw an analogy, Boveda uses values as bovedillas (bricks)
to fill its hileras. The “crossbars” needed are now 8b-to-
8b; their size depends only on the maximum datawidth and
is independent of the number of values read per cycle; an
8 x 8 multiplier grid would require eight 8b-to-8b crossbars
instead of eight 64b-to-8b ones.

Decompression Module: Figure 3a shows a decompres-
sion block. It decompresses a single value per cycle prop-
erly handing those values that spread over two rows. Four
such blocks operate in parallel to decompress four values
per cycle. Reads from the buffers remain 32b wide. From
each read, each module grabs the corresponding 8b for its
hilera. Within the module, two 8b registers L and R hold
compressed data. Every time a new set of 8b is read in, it
is written into L while simultaneously the current contents
of L are “copied” into R. Rather than physically copying
L into R a bit pointer (not shown) is used to “swap” the
two. In steady state L and R will contain two consecutive
rows from one hilera from the imap buffer and thus all bits
necessary to decompress an 8b value regardless of width. A
16b-to-8b shifter extracts the current value from the value
formed by concatenating L and R. The shifter only needs
to support shifts up to 7 positions left and as specified by
a 3b “offset” register, OFS. A 3b register W holds the data

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

width of the current BBlock. OFS and W and the associ-
ated control logic is shared among all four decompression
modules. Initially, OFS=0 and W=7 both corresponding to
the maximum datawidth. A “Bit-Extend” block passes the
W LSbs from the shifter’s output and sign-extends them to
8b. The module operates as a two-stage pipeline where the
first stage loads values into L and R while the second stage
extracts the next decompressed 8b value from the contents
of L and R. The module requires 3 cycles in total (an extra
cycle is needed for the initiation interval) for the first mul-
tiplier column to decompress [y and ;. In the steady-state
the module will output a value per cycle. Parts (b) and (c)
of the figure show cycles 2 and 3. Appendix D details the
decoding process for Iy to I4 in detail.

Compressing Values: Once all imap and fmap values for
all channels of a layer are processed, the accumulators con-
tain the output map. SCNN reads out these values, passes
them through the activation function, removes zero, and
copies the remaining into the omap buffer (then swaps a
pointer so that the omap buffer becomes the imap buffer
for the next layer). Boveda taps on the output of the zero
compression module. The number of values per BBlock can
be chosen freely at design time. Figure 3c shows a Boveda
compressor module that processes four input values per cy-
cle and where the BBlock size is four. Figure 3b shows that
the compressor consists of three major components: (1) a
width detector, (2) four compactor units (CUs), and (3) a
32b output register. The compression module reads in four
8b values per cycle and encodes them into a BBlock, storing
them into the output register. When all 32b of the register
are filled in, it sends it to the omap buffer. It is fully capable
of producing a full row per cycle. In practice, however,
it will output buffer rows at a slower pace, since Boveda
compression will allow it to pack more values per row. For
this reason, fewer bits will have to be copied into the imap
buffer, saving energy.

The width detector identifies the bit width necessary for the
highest magnitude value. Let us assume for a moment that
the values are positive (true when using ReLU). The detector
first produces 8 signals, one per bit plane, each being the OR
of all corresponding bits across the four values. A leading-
one detector identifies the MSb among those 8 signals that
is 1. This is the width the BBlock needs and is written into
the width buffer. For layers that may have signed, all that is
needed is to invert them before the detector. The width, in
this case, needs one more bit for the sign.

Figure 3c shows the structure of a compacting module,
which mirrors the decompression module. There is one
compacting module per hilera. Registers L and R hold the
current and the next row for the hilera. Every cycle, the
module processes a value. It extracts its widrh (detector)
least significant bits and via the “shift-and-mask” block,

and stores them into R appropriately. If the value requires
more bits than those currently left unused in R the remaining
bits are written into L. When R fills up, it is copied to the
output row register (component (3)), and the two registers
are swapped using a single bit pointer (not shown). A 3b
OF'S register specifies at which bit position filling R should
continue. The shift-and-mask block contains an 8b-to-16b
shifter and needs to support shifts up to 7 positions to the
right (we never need to shift more than 7 bits since that
would mean that R had no free bits left).

Tiling fmaps and imaps: SCNN sizes its on-chip buffers so
the imap and the omap per layer fit on-chip and reads fmaps
from off-chip in channel order. When there are multiple tiles,
each imap channel is mapped onto the tiles in equally sized
portions and the fmaps are broadcast. The imap portion
sizing depends only on the layer dimensions. However,
since SCNN uses zero compression the number of imap
values per portion will vary. Boveda is directly compatible
with this arrangement: processing still starts at the beginning
of the imap buffer and, when values are written at the output
of the layer, they are placed starting at the first position of
the local omap buffer (which is becomes the imap for the
next layer). SCNN stores fmaps channel first packing the
values for all fmaps together. The tiles cycle through all
fmap values in channel order. SCNN can determine when
it reaches the end of each channel since the fmaps and the
count of values they contain are known statically. Boveda is
directly compatible with this processing order.

Width and Zero Skip Fields: SCNN uses a per value skip
field to remove zeroes. Since the skip fields are used only in
the control logic of the tile (e.g., to determine the original
positions of values), it is better to store them into a separate
structure next to the control logic rather than close to the
datapath. We widen this buffer also to store the per BBlock
width fields. If we assume, skip fields of 3b, and 8b values
then the width field requires an overhead of 3b per BBlock,
or less than 7% with BBlocks of 4 values.

3.2 Boveda over Tensorcores+

We extend a Tensorcore-like architecture (Durant et al.,
2017; Jia et al., 2018) with Boveda. This architecture does
not target pruned models but can execute any type of layer.
The accelerator has a global buffer to reduce off-chip ac-
cesses and a grid of tensorcores (TCs). The TCs can process
a [4x4]x[4x4] matrix multiply per cycle producing a [4x4]
omap. Every cycle, the tensorcores read 4x4 imaps, 4x4
fmaps and 4x4 partial omaps values in parallel. Each TC
has its own local imap, fmap and omap buffers. The TC’s
local memories read values from the global buffer at which
point they are decompressed. Omap values are compressed
before writing them to the global buffer. The width fields
use a separate bank and address space of the global buffer.

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

There are two key differences vs. the SCNN implemen-
tation: (a) On-chip Boveda does not need to implement
zero compression. (b) For energy efficiency, Boveda has
to work with the diverse set of dataflows and the resulting
data blocking at various levels of the i/f/o/maps that Tensor-
cores support. This requires being able to locate the starting
point for each reuse block as needed by the dataflow. Sup-
porting other dataflows requires additional support since,
with Boveda the mapping of values to memory addresses be-
comes content dependent. Boveda uses pointers to support
the blocking scheme of the chosen dataflow. Fortunately,
only a few pointers are needed, and only a few of them have
to be explicitly stored when the data is compressed on- or
off-chip. Pointers can be generated in a timely fashion while
processing and can be discarded once used. This is possible
because: (a) dataflows use blocking to maximise reuse, and
(b) as processing proceeds according to the dataflow, the
accelerator naturally encounters the starting positions for
the reuse block(s) that will be processed next. Appendix F
explains this process in more detail.

Alignment: To perform wide reads, we restrict the starting
positions for some BBlocks to align with rows in the on-
chip memories. This depends on the dataflow. For our
experiments, this alignment is enforced 1) at the first value
of every fmap, and 2) every S channel values along a single
(x,y) column of the imap (where S is the stride). Padding is
occasionally needed but never ends up increasing footprint
compared to no compression.

Other Layers: Boveda works well with any other layer
such as depthwise separable convolutions, fully-connected,
transformer, and pooling. Since each BBlock can be decoded
in parallel, Boveda will need to store P xblocksize pointers
and align them to initiate P operations in parallel.

3.3 Boveda over the TPU

The first generation Tensor Processing Unit (TPU) (not
enough is publicly known about later generations) is a large
accelerator designed for datacenters. It uses a systolic array,
of 256x256 MAC units and aims to hold all imap values
on-chip to maximize systolic array utilization. To keep the
systolic array utilised, the TPU’s on-chip memory buffers
can sustain two wide reads per cycle. We insert Boveda
decompressor between the buffers and the systolic array,
and compressors at the output. Appendix G reviews the
TPU and details the Boveda extensions.

4 RELATED WORK

Related work falls into the following categories: compres-
sion methods for general-purpose systems and domain spe-
cific methods for machine learning. We limit attention to
methods targeting specifically deep learning. Gist presents

three imap compression methods during the backward pass
when training on GPUs (Jain et al., 2018): two lossless
for ReLU-pool and ReLLU-convolution layer pairs, and one
lossy. Boveda targets inference and is lossless. It relies
on the expected distribution of all values, and while it ben-
efits from sparsity, it does not require it. The Efficient
Inference Engine (EIE) uses Deep Compression (Han et al.,
2015) to drastically reduce fmap sizes for fully-connected
layers (Han et al., 2016). Deep Compression alters the
fmap to use a limited set of values (originally 16), uses
Huffman encoding and lookup tables to decode values at
runtime. Boveda operates with out-of-the-box networks.
For models where Deep Compression can be applied, it will
naturally outperform Boveda. However, Deep Compres-
sion is a specialised method. Compressing DMA uses a bit
vector per block to remove zero values off-chip (Rhu et al.,
2018). Boveda targets on-chip compression and all values.
ShapeShifter is an off-chip compression method which like
Boveda adapts the data container to value content and also
uses a zero bit vector (Lascorz et al., 2019). ShapeShifter’s
containers are stored sequentially in memory space with no
regards to alignment. Decompression per block is done a
value sequentially at a time per block. For these reasons, it
is not appropriate for on-chip compression. Diffy extends
ShapeShifter by storing values as deltas (Mahmoud et al.,
2018). Diffy targets computational imaging neural networks
where the imap values exhibit high spatial correlation. It
is more expensive than Boveda as encoding and decoding
require calculating deltas. Proteus stores values on- and
off-chip using profile-derived per layer data widths and can-
not exploit the lopsided distribution of the values within the
layer (Judd et al., 2016); the maximum magnitude per layer
dictates the width for all its values. Boveda adapts the data
width at a finer granularity.

5 EVALUATION

Running experiments through RTL simulation is too time-
consuming and constrains design space exploration. Hence,
a custom cycle-accurate simulator models execution time
and energy, while RTL is used for validation. The simulator
uses DRAMSim?2 (Rosenfeld et al., 2011) to model off-chip
memory accesses. All accelerators and hardware modules
are implemented in Verilog, synthesised with the Synopsys
Design Compiler and laid out with Cadence Innovus for a
TSMC 65nm cell library due to licensee constraints. Power
is estimated via Innovus using the circuit activity reported
by Mentor Graphics ModelSim. CACTI (Muralimanohar
et al., 2009) models the area and power of the on-chip mem-
ories. All accelerators operate at 1GHz matching CACTTI’s
speed estimate for the on-chip memories. Table 3 in Ap-
pendix C lists the network models studied, which cover a
wide spectrum of applications and include four models from
MLPerf (Reddi et al., 2019). Most models are quantised to

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

[FPC [BPC N DISH = BAI [Boveda BAI I Boveda

Memory Footprint

% Specialised hardware
0% 10050180 A0 I 6O L
é«é e‘“« ‘\é S

N & oF I’ ¥ ab o &
[& P &S F PSS s
O S PP R Y
& & @ o S oS
& & ¥ & P

Figure 4. Boveda vs General-Purpose Compression Methods.

8b. Several models use more aggressive quantisation and
were originally developed in conjunction with specialised ar-
chitectures. We demonstrate that Boveda delivers the highest
memory benefits possible without requiring method-specific
hardware.

5.1 General-Purpose Compression Methods

Figure 4 reports the memory footprint in bits for the whole
network and with different compression algorithms relative
to the baseline. First, we compare Boveda to Frequent Pat-
tern Compression (Alameldeen & Wood, 2004a) (FPC) and
Bit-Plane Compression (Kim et al., 2016) (BPC) which are
cache compression schemes for general-purpose systems
that exploit value content. Appendix H provides more in-
formation on these and the rest of the methods considered
here. FPC, on average it reduces its footprint by 15% due
to removing zero values. Ignoring alignment and padding,
BPC achieves 40%, mostly from removing zero 32b rows.

Also, we compare to Dictionary Sharing (Panda & Seznec,
2016) (DISH) and Base-Delta-Immediate (Pekhimenko
et al., 2012) (BAI), which target value content. On aver-
age, DISH reduces its footprint to 75%. BAI exploits the
low-dynamic range of values in programs via delta encod-
ing. At best, it reduces its footprint by 7% ResNet50S-OA
where it takes advantage of zero values. We evaluate a vari-
ant of Boveda, Boveda-BAI, which incorporates elements
from BAI: It applies the per value compression method of
BAI but at a smaller granularity: all bits are zero and delta
sizes of (8b, 4b, and 2b). We pack values in hileras so that
decompression can be processed in parallel and without re-
quiring a large crossbar at the output. The base is set to be 1
byte, while we reduce the working set of values to BBlocks
of 8. Boveda-BAI achieves 40% compression on average
ignoring the overheads of width and pointer metadata. This
is close to what Boveda achieves. However, decompressing
values with Boveda-BAl is considerably more complex and
requires more energy than Boveda. For example, decom-
pressing a block needs 8 additions in parallel, plus broad-
casting the base across all of them. Compression is also
more involved: it performs all compression possibilities in
parallel before choosing the best. Boveda both achieves a

better compression rate and is simpler to implement.

On average, Boveda reduces footprint to 53% while re-
quiring lower hardware complexity. SSD-MobileNet and
MobileNet benefit the least at 16%. Figure 4 highlights mod-
els with specialised quantisation showing the ideal memory
footprint, where the memory hierarchy was designed specif-
ically for them. Not only Boveda reduces their footprints to
within 4% of that, for ResNet18-PACT, but it also reduces
it much more than what would have been possible on 4b
hardware. This is because Boveda takes advantage of actual
value content. reports the memory footprint for the whole
network. Boveda footprint includes a) the encoded values,
b) the per BBlock width metadata, c) padding due to memory
alignment, d) pointers sized for the dense accelerator. Total
overhead accounts for less than 10% of the total compressed
footprint on average.

5.2 Tensorcores+

This section studies Boveda in the context of the Tensorcore-
like accelerator with 64 Tensorcores organised in 8 x 8 rows.
Each processing engine performs 64 MACS in parallel pro-
ducing a single value. Each TC has 128-entry imap, fmap,
and omap buffers. Boveda uses a BBlock size of 16. A
16-bank global buffer supplies the processing engines.

On-Chip Traffic: Figure 5a reports the reduction in on-
chip memory traffic. since with Boveda an access may also
read metadata we report two measurements: a) accesses
and b) bits transferred, both are normalised to the base-
line. Boveda performs 48% fewer transfers on average and
transfers 55% fewer bits. The metadata traffic is small.

Reduction in On-Chip Capacity Needs: A significant
design choice when architecting accelerators is the amount
of on-chip storage. We study four on-chip sizing policies.
Being able to fit: a) the imap, omap and the fmaps for the
largest layer (Chen et al., 2014), b) the fmaps and a full
row of windows from the imap (Siu et al., 2018), ¢) a full
row of windows from the imap and an fmap per processing
engine (Chen et al., 2014; Siu et al., 2018). Under “a” only
the input and the final output go off-chip. Policy ’b* guaran-
tees per layer that each value is accessed once from off-chip.
Policy ”c* guarantees a single access per layer only for the
imap and the omap. We also consider d) layer fusion which
processes subsets of several layers without going off-chip
for the intermediate i/omap values (Alwani et al., 2016).

Figure 5b reports the on-chip memory capacity needed un-
der each sizing policy, each normalised to a baseline under
the same policy (it is different per policy). Overall, the
reduction in storage needs follows the compression rates
closely. In one case, SSD-MobileNet with policy ‘a’ (full
layer on-chip), no reduction is possible. There is a single
layer for which Boveda does not reduce overall on-chip data

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

B Imap [Fmap [Omap EY Bit volume

On-chip traffic

(a) Relative on-chip traffic and bit volume

WM Layer on-chip 53 Imap row and fmaps (=] Imap row and fmap set (=] Layer fusion
1.52 MB

100%
2 " 1 292127 KB
T 8o%{ = 2 2 o2t 2
% 60% N> 8« . P H d e
§ hEz oo [222055, I N Flnee ?
I e e e
s a0% 35 nror g .
2 Nlsl s o) Nl NE) Nt S| NS MR N
BB EREE R
Rl Ll
0% !.' 2l ANA S AR SHA NBA1 SHA N2 SHdl NEE
& & PU—
a“e\ o‘fa \f’&‘b é"‘:o 0”9 \\"‘;o \\"‘& %"e © R"é q'bov o"'ov é‘”’,’o
F TN TS E S
& A PGS Y O
1% & R CARNC A

(b) On-chip capacity needs with four sizing policies.

Off-chip Traffic
N W s 0 e N @ ©

32KB 64KB 96KB 128KB 192KB 256KB 384KB 512KB
—&— Bov. GoogleNet-MIT —— Bov. SSD-MobileNet -4 GoogLeNetMIT - SSD-MobileNet

"~ Bov. SegNet Bov. ResNet18-INQ - SegNet ResNet18-INQ
—#— Bov. ResNet18-Q —#*— Bov. - -

(c) Off chip traffic with and without Boveda

N Bov. Speedup

2x7,1x

I Bas. Speedup & Bas. Energy * Bov. Energy

3.5 * * 100%
A
sof Il s . 2
5 a 5 75% o
2.5 o, A *
g 256K8 * % am e T A g
T 2.0 a [
§ 20 50% o
2 1.5 2
n 196KB, ﬁ
e 25% g
0.5 e«
0.0 £ & Q‘ & ' 0‘ 0‘ & 0‘ ' ' !) 0%
&
0«? "é & c@\ 0};@ \f}‘l& e \o‘g \°‘§ e‘b\\; Qv'é 'Vov"apv&zo
O TSNS S S S
2 K P O 0 & O &
& ¢ ¥ e <)“b < S S @
& & Uy @o‘° @

(d) Speedup and relative energy.

Figure 5. Boveda with Tensorcore+.

volume. Boveda improves energy and performance regard-
less since it reduces overall model traffic and footprint.

Reduction in Off-Chip Traffic: Figure Sc reports off-
chip traffic per model with Boveda (solid lines) and without
(dotted lines). For clarity, only a subset of the networks is
shown. Traffic is normalised to that possible when every
value is accessed once per layer. As the on-chip memory
size increases, traffic approaches this minimum. Boveda
allows us to use smaller on-chip memories. Moreover, for

Table 1. Hardware Costs.

Area (um?) Power (mW)

BBlock 8b 16b 8b 16b
. 4 109.8 247.68 0.042 0.498
Width detector ¢ 19908 44748 0054 0652
Compressor - 288.36 710.64 0.238 0.470
Decompressor - 345.6 810 0.205 0.419

Table 2. FPGA Prototype: Resource utilization.

Resource Count Available % Utilization
LUT 42204 537,600 7.9
LUTRAM 88 76,800 0.1
FF 46744 1,075,200 4.3
BRAM 595 1,728 34.4
DSP 256 768 33.3
Per Boveda Resource Utilisation

Component LUT FF BRAM

Compressor 245 (0.05%) 120 (0.01%) 0 (0.00%)
Decompressor 378 (0.07%) 273 (0.03%) 0 (0.00%)
Total 623 (0.12%) 393 (0.04%) 0 (0.00%)

a given memory capacity Boveda reduces off-chip traffic.
For example, in the case of SegNet, even 512KB of on-chip
storage is not enough to achieve minimal traffic without
Boveda. With 32KB of on-chip storage, Boveda reduces
off-chip traffic by 3.8x for ResNet18 (traffic with Boveda
is 1.48x and 5.66x without vs. reading values once) and by
2.6x for ResNet50S OA.

Execution Time: We measure performance for three config-
urations with on-chip global buffers of 96KB, 192KB, and
256KB. All use DDR4-3200 dual-channel off-chip mem-
ory. Figure 5d reports speedups normalised to the baseline
with the 96KB global buffer. Boveda improves performance
by 1.4x, 1.23x and 1.13x on average respectively. Improve-
ments are the highest for SegNet whose convolutional layers
are rather large and where Boveda compresses data con-
siderably. Benefits with Boveda are also pronounced for
MobileNetV2-OA, MobileNet, and ResNet18-INQ, where
Boveda manages to avoid spilling off-chip for several lay-
ers. Since our on-chip hierarchy is designed to sustain peak
execution bandwidth for the baseline, performance benefits
with Boveda come from additional on-chip reuse leading to
reduced off-chip traffic.

Energy: Figure 5d shows relative energy for the same mem-
ory configurations. Boveda saves 23%, 14% and 8% of the
energy on average for the 96KB, 192KB and 256KB con-
figurations. These benefits are due to less off- and on-chip
traffic. As the on-chip capacity increases, off-chip accesses
and their overall energy cost decrease.

Layout Measurements: Table 1 reports area and power
for the (de)compression modules. The width detector is
shared per BBlock. Total area overhead is 3.8%, 2.4%, and
1.2% for the 96KB, 192KB, and 256KB on-chip configura-
tions. However, if we use this area for extra memory for the

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

2 Zero indices B Width
- Values [Padding

100%

[Pointers
BEN Bas. Speedup BN Bov. Speedup

A Bas. Energy

2.5

£ 8oy
£ 8o% 2.0
‘:‘. 60% g’
o 15
£ 3
o
2 a0% 21.0
o w
H
s 20% 0.5
0% 0.0
& & o o
SO S
c"‘ c‘b °¢a° ‘\‘5' & & &
S A A
& & & S &
W& N =
& @ ¥ P

(a) SCNN: Model footprint (b) SCNN: Speedup and Energy with and without Boveda

523 Computi B0 Unified Buffer [Accumul lators EEE Unpacker
Bov. Energy = DRAM =] Weight FIFO == Packer
100% 100%]
> 2 80% = o
s B B oo% i =[lr=
60% 5 & 60% £ 14 v IS v
> 2 (<1 X1 (X (<4 0
40% 5 5 40% K1 KK K { KX <A
] 15 14 1 1<) X
s 3 KR o %% <
20% & & 20% K K] K $ 154 R
2 !Bl Bl
& &
K2 &S o N v o
M o,“&' 9&&“\'\@ ‘°°e§ zoych’ge”y&f’e &
& AR o a"e ,}‘@ © S
I & LPCAROAR

(c) TPU: Energy breakdown with Boveda

Figure 6. a), b) SCNN: Compression, execution time speedup, and relative energy. ¢) TPU: relative energy.

baseline, Boveda is still 1.40x, 1.21x, and 1.11x faster on
average and is slightly more energy efficient since on-chip
accesses for the baseline become slightly more expensive.

5.3 SCNN and TPU

SCNN: SCNN used zero compression on- and off-chip. For
the 16b networks used in the original study, SCNN used 4b
zero skip indexes. We use 3b indexes instead for the 8b net-
works with a negligible effect on the number of eliminated
zeros. Boveda does not compress the zero skip indexes.
Figure 6a reports the reduction in total model footprint with
Boveda over SCNN’s zero compression which is 34% on
average. The original SCNN sized its on-chip memory to
fit all imaps on-chip for AlexNet, and Googl.eNet. This
configuration results in larger networks such as ResNet50
spilling data off-chip. Furthermore, accumulator count lim-
its the number of omap values and the number of concurrent
filters. By amplifying on-chip storage capacity, Boveda re-
duces spill. We study this effect over three different per PE
imap/accumulator configurations: 10KB/6KB as in the orig-
inal paper; 4KB/4KB; and 2KB/2KB. The off-chip memory
uses two channels of DDR4-3200. The area overhead for
these configurations is 3.1%, 2.3% and, 1.8%, respectively,
for SCNN 16b. Overheads are smaller for SCNN 8b.

Figure 6b reports speedup over the 2KB/2KB configuration
with and without Boveda. On average, Boveda improves per-
formance by 29%. Speedups are pronounced for the more
recent ResNet50 models, which have comparatively larger
imaps. With the original 10KB/6KB Boveda improves per-
formance by 15%. Figure 6b shows that Boveda reduces
energy by 26%, 24%, and 20% on average respectively
for the three configurations. Boveda always reduces energy.
Compute-bound models, e.g., GoogLeNet or ResNet50, ben-
efit more since on-chip traffic accounts for a higher fraction
of overall energy.

TPU: Figure 6¢c shows the memory energy breakdown with
and without Boveda for BBlocks of 16 and the TPU (Jouppi,
2016). Appendix I studies different BBlock sizes. Boveda’s
area overhead is less than 0.1%. On average Boveda reduces
TPU energy by 17%.

5.4 Sensitivity Study: Extreme Quantisation

Appendix J studies Boveda under extremely narrow dataw-
idths. Such extremely short datawidths are presently possi-
ble only on a handful of cases and typically at the expense
of accuracy (Cai et al., 2017; Colangelo et al., 2018; Cour-
bariaux & Bengio, 2016).

5.5 Boveda on an FPGA

We integrate Boveda into an FPGA design for accelerating
fully connected layers. The design resembles that of Fig-
ure 1 with an 16x16 8b MAC array. Each column works
on calculating an activation along a different channel of the
omap of the fully connected layer. All columns share an
on-chip imap buffer, the same activations are broadcasted
to all columns. Each column has its own on-chip fmap
buffer. The outputs are written to an on-chip omap buffer
once all the columns have completed. We modify this de-
sign by adding Boveda compression and decompression
units (16x8b BBlock) to the imap, fmap, and omap buffers.
We implement the design on an Alpha Data 8V3 FPGA
card (Data, 2017), which uses a Xilinx Virtex UltraScale
VU095-2 FPGA (Xilinx, 2016). The design operates at 259
MHz after placement and routing, with the critical path not
being in any Boveda units. Table 2 shows the total resource
utilization of the design with the Boveda additions, and
breaks down the resources required by Boveda to augment
a single on-chip buffer.

6 CONCLUSION

Boveda is simple to implement and effective on-chip com-
pression method for neural networks that is plug-in com-
patible with many accelerators. We have demonstrated that
it reduces on-chip traffic while boosting the effective on-
chip capacity. As a result, it reduces the amount of on-chip
storage needed to avoid excessive off-chip accesses.

Acknowledgements This work was supported by the
NSERC COHESA Research Network, two NSERC Dis-
covery Grants, NSERC Strategic and CRD Grants.

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

REFERENCES

Abali, B., Franke, H., Poff, D. E., Saccone, R. A., Schulz,
C. O., Herger, L. M., and Smith, T. B. Memory expansion
technology (mxt): Software support and performance.
IBM Journal of Research and Development, 45(2):287—
301, March 2001. ISSN 0018-8646. doi: 10.1147/rd.452.
0287.

Alameldeen, A. and Wood, D. Frequent pattern com-
pression: A significance-based compression scheme for
12 caches. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2004a.

Alameldeen, A. R. and Wood, D. A. Adaptive cache com-
pression for high-performance processors. In Proceedings
of the 31st Annual International Symposium on Computer
Architecture, ISCA *04, pp. 212—, Washington, DC, USA,
2004b. IEEE Computer Society. ISBN 0-7695-2143-
6. URL http://dl.acm.org/citation.cfm?
1id=998680.1006719.

Alwani, M., Chen, H., Ferdman, M., and Milder, P. Fused-
layer cnn accelerators. In 49th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO),
2016.

Arelakis, A. and Stenstrom, P. Sc2: A statistical compres-
sion cache scheme. In 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pp. 145—
156, June 2014. doi: 10.1109/ISCA.2014.6853231.

Arelakis, A., Dahlgren, F., and Stenstrom, P. Hycomp:
A hybrid cache compression method for selection of
data-type-specific compression methods. In Proceedings
of the 48th International Symposium on Microarchitec-
ture, MICRO-48, pp. 38—49, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-4034-2. doi: 10.1145/2830772.
2830823. URL http://doi.acm.org/10.1145/
2830772.2830823.

Cai, Z., He, X., Sun, J., and Vasconcelos, N. Deep learning
with low precision by half-wave gaussian quantization,
2017.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li,
L., Chen, T., Xu, Z., Sun, N., and Temam, O. Dadiannao:
A machine-learning supercomputer. In Microarchitecture
(MICRO), 2014 47th Annual IEEE/ACM International
Symposium on, pp. 609-622, Dec 2014. doi: 10.1109/
MICRO.2014.58.

Chen, Y., Emer, J., and Sze, V. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional
neural networks. In 2016 ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA),
pp. 367-379, 2016.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. 1., Srini-
vasan, V., and Gopalakrishnan, K. PACT: parameterized
clipping activation for quantized neural networks. CoRR,
abs/1805.06085, 2018. URL http://arxiv.org/
abs/1805.06085.

Colangelo, P., Nasiri, N., Nurvitadhi, E., Mishra, A., Mar-
gala, M., and Nealis, K. Exploration of low numeric preci-
sion deep learning inference using intel® fpgas. In 2018
IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pp- 73-80, 2018.

Courbariaux, M. and Bengio, Y. Binarynet: Training deep
neural networks with weights and activations constrained
to +1 or -1. CoRR, abs/1602.02830, 2016. URL http:
//arxiv.org/abs/1602.02830.

Dally, B. Power, programmability, and granularity: The
challenges of exascale computing. In 2011 IEEE Inter-
national Parallel Distributed Processing Symposium, pp.
878-878, May 2011. doi: 10.1109/IPDPS.2011.420.

Data, A. ADM-PCIE-8V3. "https://www.alpha-
data.com/pdfs/adm-pcie-8v3.pdf", 2017.

Durant, L., Giroux, O., Harris, M., and Stam, N. Nvidia de-
veloper blog, May 2017. URL https://devblogs.
nvidia.com/inside-volta/.

Ekman, M. and Stenstrom, P. A robust main-memory
compression scheme. In Proceedings of the 32Nd An-
nual International Symposium on Computer Architec-
ture, ISCA °05, pp. 74-85, Washington, DC, USA, 2005.
IEEE Computer Society. ISBN 0-7695-2270-X. doi:
10.1109/ISCA.2005.6. URL https://doi.org/10.
1109/ISCA.2005.6.

Gao, M., Yang, X., Pu, J., Horowitz, M., and Kozyrakis, C.
Tangram: Optimized coarse-grained dataflow for scalable
nn accelerators. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
19, pp. 807-820, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450362405.
doi: 10.1145/3297858.3304014. URL https://doi.
0rg/10.1145/3297858.3304014.

Hallnor, E. G. and Reinhardt, S. K. A unified compressed
memory hierarchy. In 11th International Symposium on
High-Performance Computer Architecture, pp. 201-212,
Feb 2005. doi: 10.1109/HPCA.2005 4.

Han, S., Mao, H., and Dally, W. J. Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding. arXiv:1510.00149
[cs], October 2015. URL http://arxiv.org/abs/
1510.00149. arXiv: 1510.00149.

http://dl.acm.org/citation.cfm?id=998680.1006719
http://dl.acm.org/citation.cfm?id=998680.1006719
http://doi.acm.org/10.1145/2830772.2830823
http://doi.acm.org/10.1145/2830772.2830823
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
"https://www.alpha-data.com/pdfs/adm-pcie-8v3.pdf"
"https://www.alpha-data.com/pdfs/adm-pcie-8v3.pdf"
https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/inside-volta/
https://doi.org/10.1109/ISCA.2005.6
https://doi.org/10.1109/ISCA.2005.6
https://doi.org/10.1145/3297858.3304014
https://doi.org/10.1145/3297858.3304014
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M. A., and Dally, W. J. EIE: efficient inference engine
on compressed deep neural network. In 43rd ACM/IEEE
Annual International Symposium on Computer Architec-
ture, ISCA 2016, Seoul, South Korea, June 18-22, 2016,
pp. 243-254, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Hong, S., Nair, P. J., Abali, B., Buyuktosunoglu, A., Kim,
K., and Healy, M. Attaché: Towards ideal memory com-
pression by mitigating metadata bandwidth overheads. In
2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 326-338, 2018.

Hong, S., Abali, B., Buyuktosunoglu, A., Healy, M. B.,
and Nair, P. J. Touché: Towards ideal and efficient
cache compression by mitigating tag area overheads. In
Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’52,
pp. 453-465, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450369381.
doi: 10.1145/3352460.3358281. URL https://doi.
0rg/10.1145/3352460.3358281.

Horowitz, M. Computing’s energy problem ((and what we
can do about it). In 2014 IEEE International Solid-State
Circuits Conference - Digest of Technical Papers, ISSCC
2014. 1IEEE, 2014a.

Horowitz, M. 1.1 computing’s energy problem (and what we
can do about it). volume 57, pp. 10-14, 02 2014b. ISBN
978-1-4799-0920-9. doi: 10.1109/ISSCC.2014.6757323.

Jain, A., Phanishayee, A., Mars, J., Tang, L., and Pekhi-
menko, G. Gist: Efficient data encoding for deep neural
network training. In Proceedings of the 45th Annual In-
ternational Symposium on Computer Architecture, ISCA
18, pp. 776-789, Piscataway, NJ, USA, 2018. IEEE
Press. ISBN 978-1-5386-5984-7. doi: 10.1109/ISCA.
2018.00070. URL https://doi.org/10.1109/
ISCA.2018.00070.

Jia, Z., Maggioni, M., Staiger, B., and Scarpazza, D. P.
Dissecting the NVIDIA volta GPU architecture via mi-
crobenchmarking. CoRR, abs/1804.06826, 2018. URL
http://arxiv.org/abs/1804.06826.

Jouppi, N. Google supercharges machine learn-
ing tasks with TPU custom chip. https:
//cloudplatform.googleblog.com/
2016/05/Google-supercharges-machine-
learning-tasks-with-custom-chip.html,
2016. [Online; accessed 3-Nov-2016].

Jouppi, N. P,, Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., Cantin, P.-1., Chao, C., Clark, C., Coriell, J.,
Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami,
T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R.,
Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey,
A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D.,
Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le,
D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean,
G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick,
M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek,
A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M.,
Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson,
G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter,
R., Wang, W., Wilcox, E., and Yoon, D. H. In-datacenter
performance analysis of a tensor processing unit. In
Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA °17, pp. 1-12, New
York, NY, USA, 2017. ACM. ISBN 978-1-4503-4892-8.
doi: 10.1145/3079856.3080246. URL http://doi.
acm.org/10.1145/3079856.3080246.

Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M.,
Jerger, N. E., and Moshovos, A. Proteus: Exploiting
numerical precision variability in deep neural networks.
In Proceedings of the 2016 International Conference on
Supercomputing, 1CS ’16, pp. 23:1-23:12, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4361-9. doi:
10.1145/2925426.2926294. URL http://doi.acm.
org/10.1145/2925426.2926294.

Kim, J., Sullivan, M., Choukse, E., and Erez, M. Bit-plane
compression: Transforming data for better compression
in many-core architectures. In 2016 ACM/IEEE 43rd An-
nual International Symposium on Computer Architecture
(ISCA), pp. 329-340. IEEE, 2016.

Lascorz, A. D., Sharify, S., Edo, L., Stuart, D. M., Awad,
O. M., Judd, P., Mahmoud, M., Nikolic, M., Siu, K.,
Poulos, Z., and Moshovos, A. Shapeshifter: Enabling
fine-grain data width adaptation in deep learning. In
Proceedings of the 52Nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 52, pp. 2841,
New York, NY, USA, 2019. ACM. ISBN 978-1-4503-
6938-1. doi: 10.1145/3352460.3358295. URL http:
//doi.acm.org/10.1145/3352460.3358295.

Mahmoud, M., Siu, K., and Moshovos, A. Diffy: A

dEjA vu-free differential deep neural network acceler-
ator. In Proceedings of the 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO-
51, pp. 134-147, Piscataway, NJ, USA, 2018. IEEE
Press. ISBN 978-1-5386-6240-3. doi: 10.1109/MICRO.
2018.00020. URL https://doi.org/10.1109/
MICRO.2018.00020.

http://arxiv.org/abs/1512.03385
https://doi.org/10.1145/3352460.3358281
https://doi.org/10.1145/3352460.3358281
https://doi.org/10.1109/ISCA.2018.00070
https://doi.org/10.1109/ISCA.2018.00070
http://arxiv.org/abs/1804.06826
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/2925426.2926294
http://doi.acm.org/10.1145/2925426.2926294
http://doi.acm.org/10.1145/3352460.3358295
http://doi.acm.org/10.1145/3352460.3358295
https://doi.org/10.1109/MICRO.2018.00020
https://doi.org/10.1109/MICRO.2018.00020

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

Muralimanohar, N., Balasubramonian, R., and Jouppi, N.
Cacti 6.0: A tool to model large caches. HP Laboratories,
01 2009.

NVIDIA. NVIDIA AMPERE GA102 GPU ar-
chitecture. White Paper, 2020. URL https:
//www.nvidia.com/en-us/geforce/news/
rtx-30-series—ampere—-architecture-
whitepaper—download/.

Panda, B. and Seznec, A. Dictionary sharing: An efficient
cache compression scheme for compressed caches. In
2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 1-12, 2016.

Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkate-
san, R., Khailany, B., Emer, J., Keckler, S. W., and
Dally, W. J. Scnn: An accelerator for compressed-
sparse convolutional neural networks. In Proceedings
of the 44th Annual International Symposium on Com-
puter Architecture, ISCA ’17, pp. 27-40, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-4892-8. doi:
10.1145/3079856.3080254. URL http://doi.acm.
0rg/10.1145/3079856.3080254.

Park, E., Kim, D., and Yoo, S. Energy-efficient neural
network accelerator based on outlier-aware low-precision
computation. In ISCA, pp. 688-698. IEEE Computer
Society, 2018.

Park, J., Li, S., Wen, W., Tang, P. T. P, Li, H., Chen, Y., and
Dubey, P. Faster CNNs with Direct Sparse Convolutions
and Guided Pruning. In 5th International Conference on
Learning Representations (ICLR), 2017.

Pekhimenko, G., Seshadri, V., Mutlu, O., Gibbons, P. B.,
Kozuch, M. A., and Mowry, T. C. Base-delta-immediate
compression: Practical data compression for on-chip
caches. In Proceedings of the 21st International Con-
ference on Parallel Architectures and Compilation Tech-
niques, PACT 12, pp. 377-388, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1182-3. doi: 10.1145/
2370816.2370870.

Pekhimenko, G., Seshadri, V., Kim, Y., Xin, H., Mutlu, O.,
Gibbons, P. B., Kozuch, M. A., and Mowry, T. C. Lin-
early compressed pages: A low-complexity, low-latency
main memory compression framework. In Proceed-
ings of the 46th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO-46, pp. 172-184,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2638-4. doi: 10.1145/2540708.2540724. URL http:
//doi.acm.org/10.1145/2540708.2540724.

Qureshi, M. K., Thompson, D., and Patt, Y. N. The v-way
cache: demand-based associativity via global replace-
ment. In 32nd International Symposium on Computer

Architecture (ISCA’05), pp. 544-555, June 2005. doi:
10.1109/ISCA.2005.52.

Reddi, V. J.,, Cheng, C., Kanter, D., Mattson, P,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., Chukka, R., Coleman, C.,
Davis, S., Deng, P., Diamos, G., Duke, J., Fick, D., Gard-
ner, J. S., Hubara, 1., Idgunji, S., Jablin, T. B., Jiao, J.,
John, T. S., Kanwar, P., Lee, D., Liao, J., Lokhmotov,
A., Massa, F., Meng, P., Micikevicius, P., Osborne, C.,
Pekhimenko, G., Rajan, A. T. R., Sequeira, D., Sirasao,
A., Sun, F,, Tang, H., Thomson, M., Wei, F., Wu, E., Xu,
L., Yamada, K., Yu, B., Yuan, G., Zhong, A., Zhang, P.,
and Zhou, Y. Mlperf inference benchmark, 2019.

Rhu, M., O’Connor, M., Chatterjee, N., Pool, J., Kwon,
Y., and Keckler, S. W. Compressing DMA engine:
Leveraging activation sparsity for training deep neural
networks. In IEEE International Symposium on High
Performance Computer Architecture, HPCA 2018, Vi-
enna, Austria, February 24-28, 2018, pp. 78-91, 2018.
doi: 10.1109/HPCA.2018.00017. URL https://doi.
org/10.1109/HPCA.2018.00017.

Rosenfeld, P., Cooper-Balis, E., and Jacob, B. Dramsim2: A
cycle accurate memory system simulator. /EEE Computer
Architecture Letters, 10(1):16-19, Jan 2011. ISSN 2473-
2575. doi: 10.1109/L-CA.2011.4.

Siu, K., Stuart, D. M., Mahmoud, M., and Moshovos, A.
Memory requirements for convolutional neural network
hardware accelerators. In IEEE International Symposium
on Workload Characterization, 2018.

Xilinx. UltraScale FPGA Product Selection
Guide. "https://www.xilinx.com/
support/documentation/selection-
guides/ultrascale-plus—-fpga-product-
selection—-guide.pdf", 2016.

Yang, Tien-Ju and Chen, Yu-Hsin and Sze, Vivienne. De-
signing Energy-Efficient Convolutional Neural Networks
using Energy-Aware Pruning. In /IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

Young, V., Kariyappa, S., and Qureshi, M. K. Enabling
transparent memory-compression for commodity mem-
ory systems. In 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp.
570-581, 2019.

Zhou, A., Yao, A., Guo, Y., Xu, L., and Chen, Y. Incre-
mental network quantization: Towards lossless cnns with
low-precision weights. CoRR, abs/1702.03044, 2017.
URL http://arxiv.org/abs/1702.03044.

https://www.nvidia.com/en-us/geforce/news/rtx-30-series-ampere-architecture-whitepaper-download/
https://www.nvidia.com/en-us/geforce/news/rtx-30-series-ampere-architecture-whitepaper-download/
https://www.nvidia.com/en-us/geforce/news/rtx-30-series-ampere-architecture-whitepaper-download/
https://www.nvidia.com/en-us/geforce/news/rtx-30-series-ampere-architecture-whitepaper-download/
http://doi.acm.org/10.1145/3079856.3080254
http://doi.acm.org/10.1145/3079856.3080254
http://doi.acm.org/10.1145/2540708.2540724
http://doi.acm.org/10.1145/2540708.2540724
https://doi.org/10.1109/HPCA.2018.00017
https://doi.org/10.1109/HPCA.2018.00017
"https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf"
"https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf"
"https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf"
"https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf"
http://arxiv.org/abs/1702.03044

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

Zmora, N., Jacob, G., Zlotnik, L., Elharar, B., and Novik,
G. Neural network distiller, June 2018. URL https:
//doi.org/10.5281/zenodo.1297430.

https://doi.org/10.5281/zenodo.1297430
https://doi.org/10.5281/zenodo.1297430

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

A APPENDIX OVERVIEW

The following sections complement the material presented
in the main paper. The following additional material is
included:

* Appendix B presents experimental evidence that shows
that the value distribution in neural networks is such
that most values tend to cluster near zero or some other
value near zero. This observation motivated the simple
and effective compression scheme adopted by Boveda.

* Appendix C lists the neural networks we used in our
study.

e Appendix D complements Section 3.1 by presenting
an example of how Boveda decompresses values.

» Appendix E reviews the tile architecture of SCNN and
complements the description of Section 3.

* Appendix F reviews convolutional layers’ operation
and details how Boveda can seamlessly process acti-
vation windows even though the starting positions in
memory are value-dependent.

* Appendix G reviews the TPU architecture and explains
how Boveda can enhance it.

* Appendix H reviews previously proposed compression
methods, including those Section 5.1 compares against.

* Appendix I studies memory footprint and energy re-
duction for different BBlock sizes on top of TPU.

* Finally, Appendix J studies Boveda under hypothetical
extreme quantisation schemes. Extreme quantisation
(e.g., using 6b or narrows operands) is not generally
possible today.

B TYPICAL VALUE DISTRIBUTIONS IN
NEURAL NETWORKS

This appendix reports measurements of the value content
of neural networks. The data support our observation that
choosing a data container whose bitwidth is sufficient to
store the values with the highest magnitude is excessive for
the bulk of the rest of the values. This is because imaps
and fmaps tend to exhibit a value distribution that is heavily
biased towards zero or a value near zero.

Conventional memory hierarchies do not capitalize on this
property as they store all imap or fmap elements using
a datawidth which is sufficiently long to accommodate
any value possible. This is excessive for most values and
across all networks studied. This behaviour is exhibited
by all models studied. This section highlights two such
cases: ResNetl8 (image classification) (He et al., 2015),
and SSD_MobileNet (object-detection), both quantised to
8b (Reddi et al., 2019).

Figure 7 shows the regular and cumulative distributions
of imap and fmap values for representative convolutional
and fully-connected layers. Figures 7a and 7c show imap

values over a batch of 64 randomly selected inputs, whereas
Figures 7b and 7d shows fmaps which are input independent.

Figures 7a and 7c show that in ResNet18’s res2a_branchl,
most imap values fit within 5b, which under ideal condi-
tions translates into a 37.5% reduction in footprint over
the original 8b. Just 4b, a 50% reduction over 8b, are suf-
ficient for virtually all imap values in its fully-connected
layer £c. SSD_Mobilenet exhibits similar behaviour. In
its 2D convolution layer depthwisel2 90% of the values
need 6b or fewer, which is also enough to represent virtually
all imap values in its object detection SSD module layer
pointwisel3_2_2. Figures 7b and 7d report similar trends
for the fmaps. ResNet18’s res2 branchl only 5b are suf-
ficient for most of the fmap values whereas 6b are sufficient
for virtually all values in its fc layer. However, in fc 95%
of the fmap values need at most 5b. SSD-MobileNet’s fmaps
are similar. Virtually all values fit in 6b, 90% fit in 5b and
more than 80% in 4b.

C NEURAL NETWORKS STUDIED

Table 3 reports the models we use in this study. Several
models use more aggressive quantisation and were origi-
nally developed in conjunction with specialised architec-
tures. We demonstrate that Boveda delivers the highest
memory benefits possible without requiring method-specific
hardware. These models include: Intel’s INQ (Zhou et al.,
2017), whose fmap values are limited to sixteen signed pow-
ers of two or zero. Representing weights as magnitudes
requires 16b whereas 5b are enough with specialised hard-
ware. PACT(Choi et al., 2018) requires a modified ReLU
with a configurable saturation threshold and uses 4b imaps
and fmaps for all but the first and last layers that use 8b.
Outlier-Aware quantisation aggressively reduces the num-
ber of bits for most values (e.g., 4b), except for a few large
values (outliers of 8b) that are handled separately (Park
et al., 2018). Since SCNN excels for pruned models, we
include such models from Intel’s Skim Caffe (Park et al.,
2017) repository and MIT’s Eyeriss group (Yang, Tien-Ju
and Chen, Yu-Hsin and Sze, Vivienne, 2017). We highlight
MobileNet and SSD-MobileNet from MLPerf, and GNMT
and NCF post-trained quantised by Intel from MLPerf im-
plementation (Reddi et al., 2019; Zmora et al., 2018). We
study symmetric vs. asymmetric quantisation difference in
compression for GNMT, which was around 8% better for
symmetric. However, we use asymmetric due to archiving a
higher BLEU score.

D BOVEDA DECOMPRESSION EXAMPLE

This appendix complements Section 3.1 and details the de-
compression for Iy and 14, assuming the Boveda layout ex-
ample of Figure 2c. For convenience Figure 8a shows the

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

100% 100%

i =
20% 20% i i //f
75% 75% -
15% / e
R B
10% \ 50% — i
........ \\ / g
5% N 25% - 25%

—is
0% VDN ey /,x"

0 2 4 6 8 0% &= 0%

6 4 2 0 2 4 6 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Width (log scale) Width (log scale) Width Width

50%

Percentage of values
Percentage of values

-

S

5
Percentage of values
Percentage of values

(a) Imaps: Value distribution (b) Fmaps: Value distribution (c) Imaps: Cumulative distribution(d) Fmaps: Cumulative distribution

-- ResNet18 res2a_b1 ® ResNet18 fc SSD-MobileNet Depthwise12 = = SSD-MobileNet Pointwise13_2_2

Figure 7. Value and cumulative distribution for some layers of two 8b models: ResNet18 and SSD-MobileNet

Table 3. Neural network models studied.

I Datasct Application Data Type Pruned Specialised Q imap (MB) fmap (MB) |
BERT MRP NLP int8 10.12 81.56
GNMT WMT 2016 NMT int8 0.37 121.55
NCF ml-20m Recommendation int8 0.75KB 0.10
SegNet CamVid Segmentation int8 29.39 1.35
Bi-dir LSTM Flickr8k Captioning int8 0.59 77.26
AlexNet-Q ImageNet Classification int8 0.41 58.32
ResNet18-Q ImageNet Classification int8 2.32 11.14
SSD-MobileNe COCO Object Detection int8 10.14 6.48
MobileNet ImageNet Classification int8 5.27 4.02
ResNet18-INQ ImageNet Classification int4(log)/16 v’ 4.64 6.96-22.28
ResNet18-PACT ImageNet Classification int4/int8 v’ 1.24-2.32 5.82-11.14
MobileNetV2-OA ImageNet Classification int4/int8 v’ 4.57-9.14 1.65-3.31
ResNet50S-OA ImageNet Classification int3/int8 v’ v’ 3.71-9.91 9.12-24.32
AlexNet-MIT ImageNet Classification int8 N 0.41 58.14
GoogLeNet-MIT ImageNet Classification int8 v’ 4.65 6.67
AlexNet-Intel ImageNet Classification intl6 v’ 0.95 116.27
GooglLeNet-Intel ImageNet Classification intl6 v’ 9.19 25.50
ResNet50-Intel ImageNet Classification intl6 v’ 19.81 48.64
Bovma{word . Y 101100 1o1]
i . ' jlera 2 —— ——
) Cmn R . e | _ﬂ— i =l
BBlock0+1
L,_ PR SR e 1=+ 0081 | — om0t o
ILI ILI I%I I%I
"‘ .“ .:‘ ’:‘ Va'fje Vaf:e Val{x:e
(a) Boveda’s Layout (b) Decompression Module (c) Decompressing I (d) Decompressing Iy

Figure 8. Boveda Decompression Example

input buffer contents as laid out by Boveda (copy of Fig-
ure 2c), Figure 8b shows the decompression module, and
Figures 8c and 8d show how Iy and I are decompressed.

In cycle 1, the imap buffer supplies the first set of 8b 0110
1100 written into register L. Concurrently, W is loaded
from the width memory with the datawidth 101 for BBlock
0. OFS is updated to OFS=(OFS+W+1) MmoD 8=0. Since
OFS+W+1 exceeded 8 (carry out from the adder), R con-
tains no useful bits and thus the positions of L are R are
swapped at the end of cycle 1 and a read from the imap
buffer is triggered for the next cycle.

In cycle 2 (Figure 8c) the module reads in the next 8b copy-
ing them into L at the end of the cycle. Now L and R contain
two consecutive rows of compressed values from the same

hilera. We are now in steady-state. During cycle 2 and
since OFS is 0, the 16b output of (L,R) is shifted by O
thus aligning the LSb of the compressed [y with the LSb
of the output. The bit-extension block upon the guidance
of W passes through the lower 6 bits and fills in the up-
per 2 bits accordingly. Here it zero extends the value to
8b since this imap is known to have only positive values.
If the layer had signed imap values, the extender would
sign-extend instead. As a result, the value 0010 1100, the
original Iy is sent to the multipliers. OFS is updated as
before: OFS = (0+5+1) MOD 8 = 6. Since this does not
exceed 8 we will not read a value from the imap buffer in
the next cycle. A new width field is read into W by the end
of the cycle. This is the width for BBlock 1.

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

omap indices
imap indices Halos
RelU

omap Compress
—

imap

e
g g
HIEAER 3 ;
g £)
£ o]
&= NG N ©
LI

4x4 Multiplier Array Accumulator buffer

Figure 9. SCNN processing engine organization.

In cycle 3, as Figure 8d shows, OFS instructs the shifter to
slide the (L,R) by 6 positions. The extender block passes
through the 5 least significant bits since W is 100 zero-
extending to 8b. (OFS) will be updated to (64+4-+1) MOD 8,
and since this exceeds 8, L and R will be swapped, and the
next imap row will be loaded into L in the next cycle.

E SCNN

SCNN excels at processing the convolutional layers of
pruned neural models. The inputs to a convolutional layer
are K fmaps of dimension SXRxC (height, width, channel),
an H xW xC imap where typically H > S and W > R and
a stride s. The fmaps are statically known values (weights),
whereas the imaps are runtime calculated values (activa-
tions). The output is an ([Z£=57+1)x ([Y=2] + 1) xK
omap (activations). Each omap value is calculated as the
3D convolution of an fmap with an equally sized window
of the imap. Each fmap produces the omap values for one
channel by sliding the window over the imap using the stride
s along the H and W dimensions. The 3D convolution en-
tails the pair-wise multiplication of an fmap element with
its corresponding imap element, followed by the accumu-
lation of all these products into the omap value. Each 3D
convolution is equivalently the sum of C 2D convolutions
on each input channel.

Figure 9 shows the organisation of an SCNN tile and com-
plements Section 3.1. The tile has three buffers holding
imaps (and omaps), fmaps, and partial sum omap accumula-
tors. A spatial dataflow performs all 2D convolutions for all
windows of a single channel of the imap at a time. SCNN
builds on the observation that in convolutional layers the
product of any fmap value with any imap value from the
same channel contributes to some omap value. At max-
imum throughput, the tile processes 4 imap and 4 fmap
values all from the same channel and calculates the prod-
ucts for all 16 possible (imap,fmap) pairs. It then directs
via a crossbar all these products into their corresponding
accumulator. The accumulator buffer is organized into 32
banks to reduce conflicts that occur when multiple products
map onto accumulators in the same bank. To take advantage

of sparsity, the imap and the fmap omit zero values stor-
ing non-zero values as ((value), (skip)) pairs where (skip)
is the number of zero values omitted after each. By us-
ing these (skip) fields SCNN deduces each value’s original
position and maps the products to their respective accumu-
lators. Boveda compresses values after SCNN eliminates
zeros using the Post-Processing Unit (PPU). Thus, zeros do
not affect hileras organisation.

F PROCESSING CONVOLUTIONAL LAYERS
IN TENSORCORES+

Convolutional Layers: N.Samples-Height-Width-Channel
(NHWC) memory mapping is commonly used to increase
data locality for convolutional layers. Compared to other lay-
ers, the added challenge for convolutional layers is the need
to initiate accesses to multiple, often overlapping windows.
Without loss of generality, let us consider a channel-first
output stationary dataflow where each window is processed
in channel-width-height order. We will use the term COL-
UMN to refer to all imap values with the same (width,height)
coordinates. To compute a single omap our dataflow will
access the values within a COLUMN sequentially and then
access other COLUMNS in width-height order. Boveda can
group values into BBlocks sequentially along each COLUMN,
adhering to the NHWC mapping.

However, each COLUMN’s starting position is no longer a
linear function of its (width,height) coordinates. A naive so-
lution is to keep pointers to each COLUMN (2D coordinates
of the first channel). This is excessive since each COLUMN
is needed during the processing of a few windows (e.g.,
for a 3 x 3 fmap, each column will be accessed 9 times).
Furthermore, a typical first layer with imap dimensions
230x230 imap would need around 52k pointers to process
the whole layer. This overhead would make the compression
impractical. Instead, we made two observations: a) win-
dows typically overlap and thus the starting position of each
COLUMN will be encountered while processing an earlier
window due to well-known access pattern, and b) address
mapping is known beforehand (NHWC), hence we know
which addresses are consecutive. By these two observations,
Boveda reduces the number of pointers explicitly stored as
metadata while “recovering” the rest during processing and
keeping them around only as long as necessary. Figure 10
shows an example 2D convolution with Boveda compres-
sion using reduced pointers for a 5x5 imap, 3x3 fmap, and a
stride of 1. This example is equivalent to a 3D convolution
due to channels that are stored first in NHWC. During the
computation of the first window in Figure 10a, we “recover’
the starting position of the second column. This is possible
due to the dataflow’s well-known access pattern and the
linear accesses from A-C, E-G, and I-K. Also, since the dis-
tances between addresses are relatively small; the starting

l

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

(a) First window

Bases e : Bases Next Bases
A|lB|C1iD &A AiB|CID:] ™
1 ate
&E . . g |5 a
E|F|G1H = E: F | G| H i AL
Deltas Next Deltas 1] Deltas Next Deltas
']
| J K L 0 Recover aE I J K L ! ae Reset g
0 — AF R I I i AF — 0
0 A Al 0
M N (0] P M N (0) P

(b) Second window

Figure 10. Example convolution with Boveda compression for a 5x5 imap, 3x3 fmap, and a stride of 1.

position of a column is stored as a delta to the first column.
This “recovering” operation is repeated for all the windows
in a row of windows but the last one. After computing the
last window in a row, the next window to start is located
in the next row. This is the case of Figure 10b. Hence, we
retrieve the starting position of the window from the second
observation. We know that the next address after L is M
due to the address mapping we are using, and the deltas are
rested to zero. This pointers reduction can be performed
for other dataflows and address mappings. We generate
the pointers on-the-fly for convolutional layers whose filter
dimensions are larger than the stride. There are layers in
ResNet having 1x1 kernels and stride of 2; for those, we
keep all pointers. This is affordable since the layers are
small.

The number of pointers stored along the imap depends on
the imap and fmap dimensions and the number of windows:
we use max(H X [(ng‘é"ﬁ)]) where H, S and windows re-
spectively the imap rows, fmap rows, and the maximum
number of windows we wish to process concurrently. On-
chip we need two sets of registers. One for holding the
current set of points and one to “recover’” the next set. For
example for a layer with an 230x230 imap and a 3 x3 fmap,
storing around 700 pointers is enough to support concurrent
processing of more than 200 windows. Since each fmap is
read once per window, Boveda also keeps a pointer per fmap.
The overhead is small, and except for depthwise separable
convolutions, even the smallest filters are of 3 x 3 width and
height and several tens of channels deep. Finally, Boveda
stores a base address and all other pointers as offsets rather
than storing absolute pointers

G BOVEDA OVER THE TPU

This section details how Boveda can be incorporated into the
first generation Tensor Processing Unit (TPU) (not enough
is publicly known about later generations). The TPU is a
large accelerator designed for datacenters. It uses a large

systolic array of 256x256 MAC units and aims to hold
all imap values on-chip to maximize systolic array utiliza-
tion. To keep the systolic array utilised, the TPU’s on-chip
memory buffers can sustain two wide reads per cycle. For
this purpose, it uses a Unified Buffer of 24MB for imaps,
while another 4MB are used to accumulate omaps. Fmaps
are streamed from off-chip DRAM with a weight stationary
dataflow in a FIFO fashion. Four on-chip 64KiB tiles reduce
memory synchronization latency for the fmaps.

A Systolic Data Setup module between the Unified Buffer
and the Systolic array sets up the imap to match the TPU
dataflow. The imap read order can be adjusted to best fit
each layer. Fmaps are read in blocks of 64k and loaded over
256 cycles into the Systolic Array, which is double-buffered.
Loading the weights into the compute matrix requires 256
reads of 256 x 8b weights. TPU’s dataflow preloads a matrix
of 64K weights, and feeds the imaps in a wave-fashion.
Every cycle, imap values are moved to the next column
of the systolic array so that each imap value is multiplied
by all the weights in the row. Similarly, partial omaps are
moved to the next row to be accumulated. As a result, every
column contributes to the same omap. This dataflow needs
256 cycles for an imap to meet all fmap values and an extra
256 cycles for an omap to accumulate with all rows.

Boveda extension: We insert a Boveda decompressor be-
tween the imap and fmap buffers and the systolic array, and
compressors at the output. Since weights are read in chunks
of 256x8b to feed the systolic array, they are kept com-
pressed until they need to be loaded. Since Boveda arranges
values in BBlocks, the per value overhead of a 256 wide read
is the same as SCNN or the Tensorcore+. However, we use
BBlocks of 16 to avoid broadcasting the same BBlock width
to 256 decompressors. Imaps are decompressed before the
Systolic Data Setup Module to support all dataflows. Imaps
are kept compressed in processing other depending on the
layer architecture. Compressors are located after the Ac-
tivation Pipeline to compress the imap for the next layer
before storing them in the Unified Buffer. As with Ten-

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

sorcore+ Boveda uses pointers and appropriate alignment
where needed.

H GENERAL-PURPOSE COMPRESSION
METHODS CONSIDERED

Figure 4 reported the memory footprint in bits for the whole
network and with different compression algorithms relative
to the baseline. First, the figure compared Boveda to Fre-
quent Pattern Compression (Alameldeen & Wood, 2004a)
(FPC) and Bit-Plane Compression (Kim et al., 2016) (BPC)
which are cache compression schemes for general-purpose
systems. Both target value width in addition to other proper-
ties. Since programmers tend to use 32b variables regardless
of actual value range needs, FPC detects whether values can
be stored in power of two-sized containers (4b being the
smallest). On average, it reduces footprint by 15%. This is
mostly from removing zeros. BPC preprocess the 32x32b in-
put matrix by calculating deltas, bit-transposing the matrix,
and XOR-ing neighbours. This is done to reduce entropy of
bits. Then, the zero 32b rows of the matrix are run-length
encoded, while for the non-zeros, FPC-like patterns are ap-
plied. Ignoring alignment and padding, BPC achieves 40%,
mostly from removing zero 32b rows.

Also, the figure compared to Dictionary Sharing (Panda &
Seznec, 2016) (DISH) and Base-Delta-Immediate (Pekhi-
menko et al., 2012) (BAI), which target value content. DISH
applies 8-dictionary encoding to 64B input blocks. If dif-
ferent blocks have the same dictionary values, they can
share the overhead. Moreover, when a block cannot be
compressed within 8 entries, the same process is repeated,
comparing only the top bits. If the range is still to large, it
is not compressed. On average, it reduced its footprint to
75%.

BAI exploits the low-dynamic range of values in programs
(neighbouring values tend to be close in value). It operates
on chunks of 64 bytes and reduces width at a byte granu-
larity. It represents values as deltas of 4,2 or 1 bytes from
either zero or the first value of 8§, 4 or 2 bytes. All zero
chunks are represented as 1 byte plus metadata. This byte
granularity is too large for neural networks. At best, it re-
duces its footprint by 7% ResNet50S-OA where it takes
advantage of zero values.

We evaluate a variant of Boveda, Boveda-BAl, which incor-
porates elements from BAI: It applies the per value com-
pression method of BAI but at a smaller granularity. The
compression options are: all bits are zero and delta sizes of
(8b, 4b, and 2b). As in Boveda, it packs values in hileras so
that decompression can be processed in parallel and without
requiring a large crossbar at the output. The base is set to be
1 byte, while we reduce the working set of values to BBlocks
of 8. Boveda-BAI achieves 40% compression on average

40%

Memory Footprint
P
3
=
)
3
R
Relative energy

N
2
R
o
S
=

0% Baa BB3 BB16 BB32 BB64 BB128 BB356 7
—&— Footprint BERT —#— Footprint SSD-MobileNet -4~ Energy BERT -#- Energy SSD-MobileNet
Footprint GNMT Footprint Resnet18-PACT Energy GNMT Energy Resnet18-PACT
—e- Footprint #- Footprint - Energy *- Energy

Figure 11. Memory Footprint and Energy reduction for different
BBlocks sizes

120%

E Ly peel

£ 100% conva/dw

Qo

0,

5 80% o o0 O O ¢ o @O o’ O

o - a® Classifier - convl g convl3/pw5 ma

'L 60%] [FNTEBIKE E-LSTMZ o Ciassifier e LinGar convi3fpw2

E' D-LSTM2 res2a_bl

g 40% ¢ Base 6b
<

g 20% Base 4b
¢ Base 3b

0% .
BERT GNMT ResNetl18-Q SSD-MobileNet

Figure 12. Effectiveness with Smaller Datatypes

ignoring the overheads of width and pointer metadata. This
is close to what Boveda achieves. However, decompressing
values with Boveda-BAl is considerably more complex and
requires more energy than Boveda. For example, decom-
pressing a block needs 8 additions in parallel, plus broad-
casting the base across all of them. Compression is also
more involved: it performs all compression possibilities in
parallel before choosing the best. Boveda both achieves a
better compression rate and is simpler to implement.

I BBLOCK: SENSITIVITY STUDY

TPU uses a 256 x256 systolic array that is fed through wide
256-value on-chip. Boveda however can be configured with
a smaller BBlock size to better balance costs. The larger
the BBlock size the lower the metadata overhead, yet the
higher the probability that a higher magnitude value will be
included reducing compression effectiveness. Moreover, the
longer the distance the metadata has to be broadcast. The
smaller the BBlock size the higher the compression rate and
the shorter the distance the per BBlock metadata needs to be
communicated. However, a smaller BBlock size increases
metadata overhead and requires support for more indepen-
dent accesses to the buffers. Given that the buffers will
be banked, supporting the required independent accesses is
unlikely to be a significant cost. Accordingly, this section
studies how BBlock size impacts Boveda performance by
varying the BBlock size from groups of 4 to 256 values.

Figure 11 reports memory footprint (solid lines) and energy
reduction (dotted lines) per model for TPU on-chip memo-
ries with different BBlock sizes. For clarity, only a subset
of the networks is shown. Memory footprint and energy re-
duction are normalised to the baseline TPU without Boveda

Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick

compression. In general, larger BBlock sizes present lower
compression rates, and in some cases they even increase
footprint due to the padding. Since metadata is relatively
small, BBlocks of 4, 8, and 16 show similar compression,
except for SSD-MobileNet where increasing the BBlock
increases the memory footprint. SSD-MobileNet has sev-
eral small layers which benefit with smaller BBlocks as this
reduces padding overhead. In contrast, the sweet spot for
energy efficiency is a BBlock of 16. While the compression
rate is virtually identical with other smaller BBlock sizes,
using a BBlock size of 16 uses fewer and wider memory
reads and fewer metadata reads.

J QUANTISATION: SENSITIVITY STUDY

To investigate Boveda’s potential effectiveness should quan-
tisation to even smaller bitwidths becomes possible by gen-
erate synthetic 6b, 4b (we studied PACT), and 3b models by
scaling existing 8b layers to fewer bits while maintaining
the relative distribution of values. Figure 12 shows ideal

compression rates for a representative subset of these layers
compressed in BBlocks of 8. The results show that Boveda
remains effective for 4b layers. For 3b layers, on occasion
Boveda fails to reduce its footprint or even expands it.

In general, Boveda’s compression rate depends on the value
distribution and is given by:

yhmas P(X = bl) x bi 4 [og(bmax)]

C =1—
omp Bmax

ey

where Bmax is the maximum bit length, P(X) the probability
to have a certain bit length given by the value distribution,
and Bmin is 2 for signed values and 1 otherwise. For signed
values, maximum compression is achieved when P(X =
2) = 1. For 3b and a group size of 8, maximum compression
is limited to 25%, while for 4b it is limited to 43.75%.
This formula ignores padding and pointer overhead which
depends on the dataflow, accelerator, and layer dimensions.

