PLINK: DISCOVERING AND EXPLOITING DATACENTER NETWORK
LOCALITY FOR EFFICIENT CLOUD-BASED DISTRIBUTED TRAINING

Liang Luo'! Peter West! Arvind Krishnamurthy ' Luis Ceze'!? Jacob Nelson?

ABSTRACT
Training deep learning models has become an important workload on the public cloud. Scaling cloud-based
distributed training faces unique challenges from the hierarchical network topology of the datacenter and the
dynamic nature of the multi-tenant environment. Timely training of deep learning models requires effective use of
topology-induced locality in the datacenter network. This work proposes PLink, an optimized communication
library that probes the physical network then generates and executes a fitted hierarchical aggregation plan to take
advantage of such locality, and evolves the plan to adapt to changing network conditions. PLink needs no support
from cloud providers and operates out-of-the-box on unmodified public clouds. PLink serves as a direct plug-in to
many training frameworks, delivering up to 2.3x better end-to-end training throughput for popular deep learning

models on Azure and

1 INTRODUCTION

The distributed training pipeline consists of two stages: local
computation (e.g., forward and backward passes) and global
communication (parameter exchange). Efficient distributed
training involves optimizing both stages. Past work has
focused on building specialized hardware clusters with fast
interconnects (Smith et al.,|2017; You et al., 2018; |Akiba
et al.,[2017; Jia et al.l 2018al [Mikami et al., [2018}; |Sun et al.|
2019} \Goyal et al.,|2017; [landola et al., 2016). While the
results are encouraging, these approaches demand steep
investments and are not universally available.

On the other hand, public cloud-based learning has become
a popular, more accessible alternative, as all major cloud
providers offer racks of nodes with specialized accelerators
(such as GPUs, TPUs, and custom FPGAs) (Google; |Mi{
crosoft, [c; JAmazon, [aje}; |[Fowers et al., 2018} Jouppi et al.,
2017;|Xiao et al.l 2018a) for deep learning workloads.

Unfortunately, even with modern frameworks and recent
optimizations (e.g., gradient compression and quantiza-
tion (Lin et al. 2017 |Seide et al.l 2014; Lim et al.,
2018)), latency-hiding (Zhang et al.| 2017} |Jayarajan et al.,
2019; Hashemi et al., 2018)), optimized communication li-
braries (Facebook; Nvidia; [PSLite) and large batch opti-
mizations (Goyal et al.,2017)), distributed training at scale
on the public cloud still incurs high overhead: up to 90%

!'University of Washington >OctoML *Microsoft Research. Cor-
respondence to: Liang Luo <liangluo@cs.washington.edu>.

Proceedings of the 3™ MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

compared to state of the art.

of total training time can be wasted waiting on the network
(Figure [TI). While existing solutions focus solely on ad-
dressing the bandwidth bottleneck, the cloud environments
pose additional challenges (§3). The hierarchical network
structure breaks the usual assumption of link speed being
uniform; multi-tenancy and the dynamic nature of the cloud
traffic cause high variation in performance. All these add
to the complexity of scaling up distributed training and can
render existing solutions less effective (§3.1). These issues,
coupled with the fact that the speed at which the throughput
of emerging accelerators is improving significantly outpaces
that of the networking devices (Luo et al.}[2017)), keep cloud-
based training communication bound.

Our work focuses on designing a communication scheme
for efficient gradient aggregation in the context of public
clouds. We address three specific challenges in developing
our communication scheme. First, we need an aggregation
mechanism that is appropriate for network topologies that
display bandwidth oversubscription, and that makes appro-
priate use of underprovisioned links. Second, we need to be
able to identify the underlying network topologies and band-
width/latency constraints (or collectively, locality) even if
the public cloud does not expose such information. Finally,
we need communication schemes that can react to changing
network conditions, especially in the presence of interfering
traffic generated by other tenants.

We propose PLink, an optimized, locality-aware, dynamic
system that uses a hierarchical aggregation scheme for cloud-
based, high-performance deep learning (DL) training. PLink
uses three components to address the challenges above: (1)
ProbeEmbed (§4.1)), a general-purpose technique that uses

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

Azure

13 12 05 04 03 0.7 1.0

[&] o~ >
) ¢ =
<
>
=

-
(X}
=3
=3
e
=3
(]
()

pc2 [;
vx [l
vx+cc [l
pc2 Il ¢
vx Il

Time
Breakdown

S
o =

AlexNet ResNet 50 AlexNet

e
=

mx+cc [l

X.Y Iteration time (s)
0. .0 I Explicit Communication

l l Overhead (%. Azure,)
bad [&]
= ¢

x

=

-
=]
-
o
-
=)
o
~

rc2 I

vx [
mx+cc Il :

rc2 [

-]
=

. Computation (%)

PC2: Pytorch/Caffe2

MX: MxNet

GC: Gradient Compression Enabled
64 nodes. 64 samples/GPU (V100)

Azure: Standard NC24v3 : p3.8xLarge.

VGG ResNet 50

Figure 1. Even with state of the art training frameworks and recent optimizations, up to 90% of time during cloud-based training of

popular models is wasted explicitly waiting on the network.

data from measurement probes to embed cloud VMs in a
multi-dimensional space in order to accurately infer net-
work topology and group VM nodes based on their physical
affinity; (2) AggEngine (§4.2)), a hierarchical aggregation
execution engine codesigned with the DL training workload
that generates and executes a balanced hierarchical aggrega-
tion plan using topology information; (3) Autotune (§4.3)),
a reactive mechanism to quickly adjust to network changes
by rebalancing the aggregation workload between VMs and
continuously fine-tuning aggregation communication paths
to match each VM’s current network performance.

PLink serves as a direct plug-in to popular frameworks and
requires no support from cloud providers. On unmodified
public clouds (both Azure and), PLink is able to deliver
up to 95% accuracy in inferring datacenter network topology,
and 2.3x faster end-to-end training performance for popular
DL models compared to state of the art.

2 BACKGROUND

We provide an overview of typical structures and perfor-
mance implications for datacenter networks and common
approaches to the communication phase of training.

2.1 Datacenter Networks

A typical datacenter network has a hierarchical, multi-tiered
topology (Mysore et al.|[2009; |Greenberg et al.| 2009; Roy
et al., 2015; |Liu et al., 2017). Machines are grouped into
racks, each connecting to a top-of-rack (7oR) switch. ToR
switches are connected to upper level devices. In this set-
ting, the communication performance of two end-hosts is
affected by where they reside: they enjoy full link bisec-
tion bandwidth within a rack, because link capacity is not
shared at the rack-level, but if they are on different racks,
the performance depends on link load and oversubscription
ratio (Bilal et al.,[2012). In this paper, we use locality to re-
fer to the cause of variation in communication performance,
which includes: (1) physical topology: the location of the
nodes and (2) dynamic network load. Efficient communica-
tion requires carefully architecting software to tap into both
aspects (Jeyakumar et al.| 2012; mixpanel): solutions that
ignore physical topology are subject to long-term communi-
cation imbalances, and those that ignore dynamic network

load suffer from short-term inefficiencies.

2.2 Parameter Exchange in Distributed Training

Parameter exchange is the bottleneck phase in cloud-based
distributed training. The underlying mechanism for parame-
ter exchange can be classified into one of the following:

Parameter Servers (PS) (Smola & Narayanamurthyl, 2010
L1 et al.| [2014ajb; Zhang & Ré| 2014; [Luo et al.l 2018;
Zhang et al., [2017;|Cui et al.,2016). PSs are centralized or
sharded key-value stores, where keys and values represent
the model’s layer IDs and weights. In each iteration, all
workers update the model stored in PSs with their gradients.

Collective AllReduce (CA) (Sackl 2011; [Thakur et al.,
2005; [Rabenseifner, 2004; [Blum et al., |2000; [Bala et al.,
1995)). Popular in the context of MPI, all nodes in CA partici-
pate in the communication, usually running symmetric tasks.
The end goal of CA is that all nodes have a globally-reduced
copy of the data. Widely used CA in training deep learning
models include halving-doubling (Goyal et al.,2017), ring,
and double binary tree (Nvidia; Sergeev & Balsol 2018)).

Hierarchical Aggregation (HA). Pervasive in the HPC
world (Graham et al.,[2016), HA refers to the generic tech-
nique of aggregating data in multiple steps, first locally and
then globally. Examples of HA usage for distributed training
include landola et al.|(2016)); /Cho et al.; Geng et al.|(2018));
Wangt et al.[(2018), though not in a cloud datacenter context,
and all require the network topology to be known.

The existing approach to using a given communication
paradigm in the cloud is straightforward. The user requests
a list of VMs from the cloud provider directly or from
a service (e.g., Batch Al (Microsoft,), Dynamic Train-
ing (Amazon, c)), and then the list of node addresses are
used to launch a deep learning framework. Therefore, this
unordered list determines the identity and rank of each node,
which dictates the communication pattern.

3 MOTIVATION

Two major challenges exist in cloud-based training.

Non-uniform link bandwidth. Host-to-host bandwidth in
the cloud is non-uniform due to the hierarchical structure of

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

|

0—
0 - 10 0 w10

l h Bandwidth (Gbps) l Bandwidth (Gbps)
I C5 Nodes Azure F Nodes

Figure 2. Pairwise bandwidth probes with 32 C5 and Azure F

instances show non-uniform link bandwidth.

!

u
| /\[

um}‘

! | | | W |
600 700 800 900 1000 1100 1200 130C
C5, Azure F agg. perf. distribution

o 100 200 300 400 500
C5, Azure F latency tracing

Figure 3. Left: 8 hour latency (us) tracing (1 minute average) be-
tween two VMs on both clouds show steep fluctuations due to
volatile cloud traffic. Right: Wide performance distribution of the
same, periodically launched Gloo aggregation task on both clouds.

the datacenter (§2.1)). Figure 2] shows a pairwise bandwidth
probe of 32 VMs in and Azure, in the same availability
zone/datacenter. In both cases, faster pairs can deliver more
than 2x the throughput of slower pairs.

Volatile traffic. The performance variability in the public
cloud is well known (Farley et al, 2012} Tosup et al., 2011}
[Maricq et al}[2018). Although mechanisms for performance
isolation have been proposed (Shieh et al, 2010} 2011), we

still observe interference from other workloads, leading to
volatile latency and aggregation performance (Figure [3).

3.1 Inefficiencies in Existing Approaches

We motivate our design by analyzing why some existing ap-
proaches do not perform optimally, as they rely on assump-
tions that aren’t typically valid in the datacenter setting.

Figure[dshows a theoretical analysis of widely used commu-
nication patterns. PS (a) and popular choices of CA such as
halving-doubling (b) and ring (c) are shown in a setup where
nodes (0-3, enclosed in a circle) are spread equally among
two clusters (purple and gold). The left side of the figure
shows patterns that achieve optimal locality in the setting
by exchanging data among nodes with high locality (high-
performance links in green) while minimizing transfers over
the bottleneck links (slow links in red). The right side shows
alternative reduction routes with poor locality. All patterns
achieve the same result, but with different efficiency.

The problem with poor locality happens when the communi-
cation pattern in the algorithm is not optimally aligned with
physical topology. Mapping logical ranks to physical hosts

Parameter Server

oy

(b) Recursive Halving and Doubling

ku

(e:i

<a
(o

Step1 Step 1
Step 2 Step 2
(c) Ring

2
S
5}
o
°
o
<]
S}
£
=
0
&
=
o
7}
<
[}
(%]
&
3}
4

.

)
Q
3
[
o
=
@
o
<
o
)
S
5
°
5]
<]
=3
1]
2
<

(d) Tree

ok

Step 1

o

Steg 1

Step 2 Step 2

)
o

1

— Intra rack traffic — Cross rack traffic

Clusters are color-coded : parameter server i. @ :node j.

Figure 4. Existing aggregation approaches can suffer from poor
locality if not taking physical network topology into account.

in a locality-preserving way is contingent on awareness of
the physical network structure. Hence, fopology-awareness
is crucial for efficient aggregation in a datacenter network.

Even with careful mapping, not all algorithms work opti-
mally in the datacenter environment. Table [I|summarizes
network characteristics of these algorithms, with a simpli-
fied, flattened datacenter network topology model where
nodes are simply placed in different racks. Centralized PSs
are known to suffer from incast congestion and do not scale
to a large number of workers ([andola et al, 2016; [Geng]
letall 2018} [Luo et al., [2018). Sharded PSs incur high cross
rack traffic. CAs usually trade off lower per-link traffic on
the wire with more rounds of communication, which is not
suitable when the latency is high. Tree reduction inherits
the problems of both PS and CA: high fan-out causes in-
cast problems; a low fan-out adds more rounds. Ultimately,
we need an algorithm that bounds communication steps,
takes advantage of fast links, and localizes traffic to avoid
interference from competing traffic.

3.2 2-level Hierarchical Aggregation (2LHA)

HA is not new, but most applications of 2LHA are in con-
texts with known network topologies. HA does not reduce
the total amount of data transferred on the wire, but it can
create more localized traffic and avoid slow links.

One important parameter in HA is the number of levels.
Similar to (Alfatafta et al.l, 2018), we choose 2 as the level
based on our domain knowledge of datacenter networks,
that oversubscription mostly hurts at the rack level. Thus,

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

Name Rounds/Hops Bytes on Wire XR Bytes
PS (fully sharded) 2 2(NC —1)S 2N(C —1)S
Halving doubling 2loga NC' 2(NC —1)S 2(C —1)S
Ring-Chunked 2NC — 1 (2NC —1)S (2C —1)S
Tree (fanout=C) | 2(logcN +1) | 2088=1g [~2c& =3
[2-level hierarchical | 4 [2S(NC—-1) [2(C-1)S]

Table 1. Network characteristics of various algorithms featuring
rounds of communication (Rounds), minimum total traffic (Bytes
on Wire), and minimum cross rack traffic (Min XR Bytes, corre-
sponding to red arrows in Figure[d) to allreduce with NC nodes
on C' racks, each with N nodes. Each node has a buffer of size S
bytes. PS and aggregators in HA are colocated and sharded.

by separating inter- and intra-rack aggregation, we can best
capture the static aspect of locality and minimize latency.
The use of more levels (> 2) suffers from higher latency and
volatile performance, as messages need to traverse multiple
links with unpredictable latency, but provides no benefit
compared to PS if links don’t have enough non-uniformity
(e.g., in the same cluster).

2L HA partitions nodes into different groups (clusters) based
on their affinity. 2LHA starts by chunking the buffer across
members in the same group. For each chunk, a node is
designated as the local master (LM) for that group, for
aggregating locally. One of the LMs across all groups is
chosen as the global master (GM) for global aggregation.
Visually, the reduction trees of all chunks form a 2-level
forest. Communication for 2LHA is done in the following
steps:

1. Each group member sends all chunks to their respective
LMs (intra-group traffic only).

2. All LMs send per-group aggregated chunk to the GM
for global aggregation (inter-group traffic only).

3. The GM aggregates the chunk, then uses the reversed
routes for propagating the globally-aggregated chunk
back to the LMs.

4. The LMs fan out the globally aggregated chunk to all
group members.

Efficient execution of 2LHA requires overlapped intra- and
inter-group aggregation and load-balanced LM and GM as-
signments. §4] provides an implementation that satisfies
these. Table [1| shows the desirable properties of 2LHA.
Compared to CAs, the number of rounds in 2LHA is con-
stant with respect to the number of nodes, compared to PSs,
it requires significantly less cross-rack bandwidth.

4 DESIGN AND IMPLEMENTATION

We now describe PLink, a topology-aware and dynamic
system that leverages HA for efficient cloud-based training.
PLink includes three components.

* ProbeEmbed: a network probing and clustering approach
to capture physical locality in the datacenter network.

ProbeEmbed groups nodes based on their physical affin-
ity, so intra-group links have better communication per-
formance than inter-group links.

* AggEngine: a high-performance implementation of
2LHA that is codesigned to take advantage of deep learn-
ing properties. AggEngine uses clustering information to
distribute the aggregation workload efficiently and exe-
cute the aggregation schedule.

* Autotune: a mechanism that tracks training performance
and adjusts the current GM and LM assignments to adapt
to changes in the network conditions.

4.1 Capturing Network Locality with ProbeEmbed

For accurate network topology discovery, ProbeEmbed must
probe quickly and should not rely on knowledge of a par-
ticular datacenter. ProbeEmbed: (1) probes communication
links between nodes to measure pairwise node distances, (2)
denoises probed distances, and (3) clusters nodes.

4.1.1 Running ProbeEmbed probes

ProbeEmbed starts by issuing measurements to identify com-
munication locality and determine pairwise node distances.
Distance is defined using universal networking concepts,
like latency or inverse bandwidth. ProbeEmbed uses two
different probes: an inhouse DPDK-based (dpdk) probe to
provide near bare-metal latency measurements for supported
VMs on Azure and , and iPerf (iperf). ProbeEmbed runs
these networking probes one-to-one. O(N?) time would be
required to probe IV nodes if run sequentially. To accelerate
this process, ProbeEmbed picks as many pairs (up to %) as
possible in each round without having a node appear twice,
to avoid interference from concurrent tests. This allows
ProbeEmbed to probe in O (V) rounds.

ProbeEmbed derives pairwise distances with probe results
(in case of bandwidth measurements, bandwidth are con-
verted to distance by taking the inverse (scikit learn)).
ProbeEmbed then proceeds to denoise the collected data.

4.1.2 Denoising probe data with embedding

ProbeEmbed embeds nodes in a Euclidean coordinate space,
obtaining a set of coordinates whose distances agree with the
probed distances. This works to: (1) denoise measurements
by leveraging Euclidean space to approximate the physical
location of nodes; and (2) obtain a set of “virtual coordinates’
for a clustering algorithm to identify groups.

i

To embed nodes, we identify node coordinates (v; and op-
tional h;) that minimize the following objective:
n 1—1
D> (i)™ + 1 [hi +] = pij)?

i=1 j=1

(D

where 7 is the number of nodes, d; ; = ||vi — v;|, is the

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

64 Azure D32 VM nodes

7.5 . e "l ot
. . o . -

5.0 L L 1
25
0.0 .. ’ . . 0 .

. . . .
-2.5

— . -1 s, v

-5.0 . . < - % ~.
-7.5 . — * e

-7.5 -5.0 -2.5 0.0 25 50 7.5 -1 [1 2

An example clustering. Nodes in the same cluster have the same color.

Figure 5. oo = 2 (right) generates more consistent clusters (higher
AMI across 100 generated clusters) compared to o = 1 (left)

Euclidean distance between embedded node coordinates for
nodes ¢ and j, p; ; is their probed distance, parameter o
takes a value between 1 and 2, h; is a non-negative startup
cost parameter for node i, and 1, is a switch for h;. We use
the Adam algorithm (Kingma & Ba, |[2014)) to optimize this.

ProbeEmbed embeds VMs in a coordinate space that pre-
serves the probed distances between VMs. The denoising
effect of the embedding process stems from its tendency
to keep mutually close nodes together, which enforces our
domain knowledge that VMs that are close to one particular
reference VM are probably close to each other as well in the
datacenter. Thus, this effect has a correcting influence when
the mutual-closeness property is violated by a particular
observation but is observed in a majority of nodes. A lower
number of embedding dimensions strengthens this effect.

« tunes how longer distances are treated in the Euclidean
space: a = 1 fits the embedded distances to probe distances
exactly. For o > 1, we can achieve increased “compaction”
of distance while maintaining relative distance order. This
effect is desired because small physical distances can be
magnified disproportionately in the probe due to competing
traffic. Setting @« = 2 causes the long probed values to
be “compacted” more than the smaller ones (but it never
changes the relative order of distances). Figure 5] suggests
empirically, a larger o pushes VMs with short distances
even closer on the embedded plane, leading to more consis-
tent clusters evidenced by higher adjusted mutual informa-
tion (Vinh et al.l 2010) (0.59 vs 0.76) across 100 runs.

Inspired by (Dabek et al.| 2004)), ProbeEmbed includes an
optional parameter h;, the node-specific, network-agnostic,
fixed latency of sending a packet (e.g. traversing the operat-
ing system network stack).

Multiple clusters are generated at once, and ProbeEmbed
favors clusters with smaller diversity in the sizes of groups.
If there is a tie, ProbeEmbed makes a random choice.

4.1.3 Grouping Nodes for 2LHA

We now outline how ProbeEmbed partitions VMs into
groups for 2LHA. The goal is to generate groups that are
(1) balanced, so no single group becomes a bottleneck and

(2) cohesive, so VMs in the same group have good locality.
We first compute the number of groups to generate, then
determine the members of each group.

GMs are more likely to be the bottleneck during 2LHA, as
they must receive and aggregate messages at both levels. For
a uniform key distribution, the following term approximates
the bytes-on-wire sent or received by a GM:

b=0 (7 +k) 2
with 7 total VMs, and k groups. The GM sends and receives
a message from each node within its group (3 — 1) for
local aggregation, and from every other group (k — 1) for

global aggregation. This expression achieves a minimum at
k = /n, giving a natural choice for group count.

Once group count is selected, we use a constrained k-means
clustering algorithm with k-means++ initialization (Bradley
et al., [2000; |Arthur & Vassilvitskiil, 2007) to generate bal-
anced, locality-preserving groups. This accepts a minimum
cluster size and the number of groups to generate as input.
For perfect balance, both parameters are set to /7.

Enforcing perfect balance is not optimal in cases where
VMs are naturally clustered in almost balanced but distant
clusters, because in those cases some group can contain a
distant member which could be assigned to a much more
cohesive group with a slight imbalance, forcing an onerous
bottleneck on the local aggregation step. Thus, we include
a parameter, balance elasticity, which enables a slight im-
balance among clusters. We empirically found best results
with values between 1.0 (perfectly balanced) and 2.0 (each
group has at least v N /2 nodes).

In order to evaluate the performance of ProbeEmbed, we
also define Balanced Random, a grouping method for 2LHA
that operates without considering probe distances and sim-
ply produces +/n groups of size y/n uniformly at random.
This is used later as a baseline.

4.2 Efficient HA with AggEngine

AggEngine transforms grouping information from ProbeEm-
bed into a hierarchical reduction plan and efficiently exe-
cutes it. AggEngine supports various communication back-
ends, including TCP, RoCE (SoftRoCE)), iWarp (Metzler
et al.| [2010), and InfiniBand.

4.2.1 Generating an Aggregation Plan

AggEngine chunks buffers for better load-balancing across
processor cores and overlapping of the transmission of gra-
dients with aggregation.

Since AggEngine is bottlenecked by the slowest inter-group
transfer, which in turn is bottlenecked by the slowest intra-
group transfer, AggEngine assigns chunk GMs and LMs

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

such that each group (or node) has a number of GMs (or
LMs) proportional to its cardinality. AggEngine uses an
approximation set partition algorithm to achieve this.

AggEngine then generates a schedule that executes the steps
in for each chunk. A schedule consists of a set of
chunk-action pairs, where action is one of the followin

¢ SendTo(nids): send the content in the current merge
buffer to the list of nodes specified in nids. SendTo is
a non-blocking operation, and its status is inferred by
whether subsequently anticipated data is received.

¢ ReceiveFrom(nids): block until the chunks from nids
are received and aggregated into the merge buffer.

* Fetch: notifies AggEngine that a framework-supplied
buffer is ready to be processed.

 Deliver: writes the content in the merge buffer back to
the framework-supplied buffer.

A schedule is represented as a DAG where dependencies are
edges and nodes are primitives, avoiding false dependencies
between local and global aggregation.

4.2.2 Executing an Aggregation Schedule

AggEngine first performs rendezvous with an out-of-band
mechanism (e.g., Redis), establishing multiple connections
per pair of VM as cloud providers can restrict per-stream
bandwidth (Amazon,|d). AggEngine preserves intra-node
locality by maintaining a load-balanced map from a chunk to
a connection, and then by further associating the connection
to a particular processor core (Pesterev et al.l 2012).

‘We now focus on how AggEngine efficiently supports the
four actions, hiding communication latency and avoiding
excessive synchronization.

When a framework calls reduce (chunk), AggEngine re-
trieves the thread ID, suspends it, and enqueues chunk to
the ready queue. Its worker threads poll the ready queue to
retrieve chunk and transition the buffer into the Fetch state,
copying gradients from the supplied address, then set the
state of buffer to SendTo.

SendTo is an asynchronous operation that simply enqueues
data to a send FIFO queue. A cursor is used for each TCP
connection if a send operation cannot finish. AggEngine
enforces that the order of bytes on the wire corresponds
exactly to the order in which SendTos are issued. This
saves metadata overhead as only a 4B integer per flow that
encodes the chunk ID is required.

SendTo is followed by ReceiveFrom. AggEngine allows
streaming aggregation for each buffer in ReceiveFrom state
to a merge buffer. A counter is incremented when a chunk is

"With these action primitives, AggEngine can support arbitrary
reduction graphs.

Property AggEngine Optimization

Fixed comm. pattern No explicit acknowledgement

Fixed buffer size Minimal metadata

One reduction per layer
per iteration

Only 2 merge buffers per layer;
Eagerly accepts chunks

Training is stochastic Switching plans quickly and cheaply

Table 2. Codesigning AggEngine with training workload.

fully received from a peer, and when the counter reaches the
target, this step concludes. AggEngine transitions current
buffer state to SendTo or Deliver based on schedule.

The last step of a schedule is Deliver, where AggEngine
copies the final value to the framework-supplied address.
AggEngine then wakes up the thread that called reduce.
AggEngine alternates between two merge buffers per chunk
for synchronous training to overlap local computation on a
chunk with transfers of that chunk to peer nodes.

Table |2| summarizes how AggEngine is designed to take
advantage of properties in the distributed training workload
to lower its overhead.

4.3 Reacting to Network Changes with Autotune

Autotune collects performance information from
AggEngine and watches for sudden changes in link
conditions, reflected by the current training speed. The goal
of Autotune is to dynamically compensate for link changes
by redistributing LMs and GMs to VMs, so the time to
finish an iteration is similar at both local and global levels.

A perfect initial LM and GM assignment is hard, even if we
have bandwidth probe measurements. Consider an aggre-
gation plan S, where the effective bandwidth of node i to j
while running aggregation S is BW (4, j). Clearly, finding
the best .S analytically relies on BW (i, j) to be precisely
measured or modeled, but BW (i, j) has a circular depen-
dency on S itself. Autotune thus makes approximations
when optimizing the assignments.

At a high level, Autotune works in two phases: (1) a Quick-
tune phase where a one-shot, global adjustment of GM and
LM assignments is done to adapt to the network change
immediately; and (2) a Finetune phase where Autotune uses
a performance model to find the current performance bottle-
neck in the system, and moves GMs and LMs away from it
in a stepwise, increasingly aggressive manner.

4.3.1 Quicktune

Quicktune aims to minimize the maximum transfer time of
each node. Quicktune can be best summarized formally as
follows: let GM (i,¢) € {0,1} and LM (i,c) € {0,1} be
the boolean variables to be solved, which indicate whether
node i is the GM or LM of chunk c¢. Let G(4) be the group
of node i, |G| the number of groups and S(c) the size of ¢

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

in bytes. Our goal is to:

maa(t; = 2. S(e) (LM (i, ¢)|G(3)| + GM(@,C)|G|))
' S, BW(i,n)
subject to

Vie GM(i,c)=1 = LM(i,c)=1
Vo Y GM(ic)=1

Vegea Y, LM(i,c)=1
1€G(g)

Quicktune solves this with an approximation: it first dis-
tributes GMs to different groups, with the number of GMs
assigned to each group proportional to the group aggregate
bandwidth 3, c ;) 2ngc(q) BW (m, n), then distributes
LMs inside each group to different members in a similar
fashion, using aggregate per node bandwidth.

4.3.2 Finetune

Quicktune is limited as it assumes constant effective band-
width across different schedules and ignores node balance.
Finetune, however, amends this by gradually evolving the
current schedule, using both the currently measured D(i, j)
and B(i, 7) to pinpoint the current bottleneck node in the
system, and then moves away its load while maintaining bal-
ance based on blame. Blame for node i (B(%)) has two ma-
jor weighted parts: time t(i) and imbalance (). Autotune
collects per connection stats including link RT'T'(4, j), band-
width BW (i, j) through the OS (Wikipedia; [Mathis et al.,

2003), and computes ¢(i) = max; RTT(i,5) + %
) = __t) ;

and normalized t(i) = ean o - Further, we let [(1) =
>, D(i,j) and weighted I(i) = —t0ominaln, gy

mazpl(n)—ming,l(n)"

nally, blame is defined as 31() + vt(i).

With blame for each node available, Finetune attempts a
move of a single GM (or if not available, an LM) from the
node with highest blame to the lowest, if % >e(a
configuration parameter). If Finetune repeatedly identifies
the same bottleneck node, it moves exponentially more LMs

and GMs in each step.

Autotune uses a central daemon to collect performance met-
rics and generate new schedules, and is triggered by a sud-
den change (e.g., larger than 20%) in training performance.
Autotune signals AggEngine to install the new schedule.

4.4 Integration with Training Frameworks

Integrating PLink with a training framework is straightfor-
ward. PLink’s initialization requires only a list of nodes and
buffer sizes/addresses from the training framework. Here we

1.97 2.27 B ~zurenNc24v3

Q
=]
g9 1.24 153 137113
=3 . P3.8xLarge
a
AlexNet VGG 19 ResNet 50 Batch=64/GPU

Figure 6. PLink’s collective optimizations achieve up to 2.27x
speedup on public clouds training popular neural network models,
compared to original Pytorch/Caffe2.

demonstrate how PLink can be integrated with systems with
training frameworks that have different design decisions.

Caffe2/Pytorch uses blocking reduction. PLink integration
is done by extending Gloo (Facebook))’s algorithm ob-
ject. Caffe2/Pytorch, by default, uses a concurrency limit to
control the number of established connections per peer and
simultaneous allreduce calls. PLink instead uses a single
AggEngine instance to multiplex all requests.

MxNet uses an asynchronous callback pattern, but PLink’s
reduce is blocking. A separate thread is launched for in-
voking callbacks through kv_apps’s infrastructure when
a chunk has finished. Support for MxNet is enabled by
extending PSLite (PSLite)’s van object.

S EVALUATION

Our evaluation goals are as follows: (1) Measure PLink’s im-
pact on end-to-end training. (2) Demonstrate the efficiency
of AggEngine. (3) Quantify the benefit of hierarchical aggre-
gation and topology-awareness. (4) Evaluate the accuracy
of ProbeEmbed’s inference of physical affinity. (5) Assess
how well Autotune reacts to network changes.

5.1 Environment Setup

We run experiments on both Azure and , in the same
region or availability zone. Each VM runs Linux kernel 4.18
with SoftiWarp support (IBM), Cuda 9.2, CuDNN 7, and net-
work enhancements (Microsoft, |b; |]Amazon, b) if possible.
All VMs have at least 10 Gbps network throughput, using
DCTCP (Alizadeh et al.l 2010) as SoftRoCE and SoftiWarp
do not yield better performance. AggEngine uses a chunk
size tuned to its best performance, usually 16 to 64KB. All
experiments use 64 nodes unless specified. Some experi-
ments involve comparing results generated with uncertainty.
In those cases, we report speedup in terms of mean and
percentile metrics together with performance distribution
of 50 runs. Each sample represents mean performance of
20 iterations using a potentially different cluster assignment
generated by the underlying mechanism.

5.2 End to end training performance

We start our evaluation with the impact of PLink’s collective
optimizations on the end-to-end training performance of

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

%8 mPLink FA = Gloo HD PS-Lite Gloo Ring

32 Lo 3.2%

29 15 . 1.4

7S N 05 004 [. 0.05
(P3.8xlarge) Azure (Standard NC24 v3)

4B/Node (Latency Sensitive)
jy

33 33

3 B

i 2 16 o8 09 08

%} - K O%x K

: . -l
(P3.8xlarge) Azure (Standard NC24 v3)

128MB/Node (Bandwidth Sensitive)
*PS-Lite’s performance is overestimated as it does not support GPU to GPU test.

Figure 7. GPU to GPU aggregation speedup of various systems
on Azure and in terms of mean latency for large and small
buffers, normalized to NCCL’s performance.

popular neural networks. Then we breakdown the effect of
each optimization in the following sections. We compare
PLink to original Pytorch/Caffe2 performance by replac-
ing Gloo. We represent training speedup as mean speedup
in throughput of 50 iterations to save experimental cost.
This directly translates to a reduction in end-to-end training
time as PLink’s optimization does not change convergence
because it keeps the computation intact.

Figure 6] shows the speedup of PLink, which ranges from
1.37-2.27x on Azure, and 1.13x-1.53x on E|when train-
ing popular vision models. We expect larger speedups for
neural networks with higher communication to computa-
tion ratios (such as AlexNet and VGG) on VMs with faster
networks, as we observe near line-rate network utilization
when training them with PLink. For models with smaller
communication to computation ratios (such as ResNet-50),
PLink’s speedup comes from its reduced reduction latency.

5.3 Efficiency of AggEngine

This section evaluates the performance of AggEngine it-
self, disabling ProbeEmbed and Autotune. For clarity, we
first set up our baseline with communication libraries used
in major training frameworks, including MxNet PS-Lite,
Nvidia NCCL 2.4, and Facebook Gloo, covering ring (Gloo,
NCCL), tree (NCCL), halving-doubling (Gloo) and param-
eter server (PS-Lite). We use each library’s benchmark
program to measure its performance. On both Azure and
, we use instances with V100 GPUs and test end-to-end
reduction performance involving copying from/to a GPU.

Figure [7]shows the speedup in terms of mean (20 iterations)
GPU to GPU reduction latency normalized to NCCL'’s result
of aggregating a large (128MB) and a small (4B) buffer.
To provide a fair comparison, we limit AggEngine to use a
single connection per peer (in a typical scenario, multiple
connections are used). Overall, AggEngine’s flat aggrega-

2While we report only data-parallel results for its dominance
in distributed training, PLink optimizations are paradigm-agnostic,
as all the scheduling of transfers is done by the framework.

Il ProbeEmbed Balanced Random

a 3.9 3.8 4.5

S 2016 1915 2321

3 : : 1.0 1.0 . 1.2
i m m m H”° B

@ Mean P50 P95

Speedup summary on Azure D48 (left) and C5n.18xLarge (right) for various
2LHA over PLink FA (Strong Baseline)

Figure 8. Mean, P50, and P95 additional speedup of 2LHA using
different approaches over FA (strong baseline). Run on 64 Azure
D64 series and C5n.18xLarge instances, with a constant VM
topology throughout this experiment.

1.004 |

> - |

Qo025 i | é‘ 0.80

g : !

3 o0.20 ! H 2 o.60

o o.

g o1 3 0.a0
w

0.20

~8— o000
200 300 400 500 1000 100 320 340 360 380 400 420

Azure D48 Agg. Performance (ms) C5n.18xLarge Agg. Performance (ms)
[ProbeEmbed Balanced Random [l FlatAggregation

Figure 9. Empirical reduction latency distribution of ProbeEmbed-,
Balanced Random- guided 2LHA and FA on Azure and

tion (FA) leads the pack and is thus used as a strong baseline.

5.4 Effectiveness of Hierarchical Aggregation

We continue with a detailed comparison between PLink FA
and 2LHA, reducing a real-world model (ResNet-50, vary-
ing buffer sizes totalling ~100MB). We use 4 connections
per peer to fully utilize VM bandwidth. We separately tuned
chunk sizes to ensure baseline perform well in both clouds.
We present the speedup summary in Figure [8} then, each
subsection details the benefits associated with the individual
technique. Performance distribution is found in Figure 9]

Comparing with ground-truth-guided 2LHA. Cloud
providers can expose topology information to assist in
locality-aware scheduling and communication. We obtain
ground-truth topology information from Azure. We look
at the effectiveness of using physical topology on Azure to
form a reduction schedule for 2LHA, grouping VMs based
on their physical locality.

Our experiment shows that ProbeEmbed-guided 2LHA
beats ground-truth-guided 2LHA by 1.15x on average. The
performance of ground-truth-guided 2LLHA relies on a “luck”
factor related to the physical topology of the VMs: the more
compactly the VMs are allocated, and the more balanced
the allocation in each rack is, the better performance of
ground-truth-guided 2LHA should be. But VM spawn lo-
cation is in total control of the scheduler, and sometimes
it is impossible to guarantee a compact allocation due to
current VM occupancy. It is difficult to splice/split under-
sized/oversized racks for a more balanced 2LHA without
probing for network properties, which ProbeEmbed does.

Comparing with Balanced Random-guided 2LHA. We
observe an additional 1.3x and 3.9x expected performance
gain of the clusters generated by ProbeEmbed over those of

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

Quicktune Finetune Quicktune Finetune

> repa >

1

= Network

3 throughput at

2 o8 5Gbps ¥~ 7

g’ 0.6 Unbalanced Achieves Balanced
[¢] ! Assignment Assignment

=

c 04

'q_) 0.2 Node 0 bandwidth T Node 0 bandwidth

= limited to 2Gbps restored

= 0

B 0 5 10 15 20 25
@x Steps

Balanced (No Autotune) ~ —— Autotune Current

Figure 10. Autotune adapts to bandwidth changes by assigning
LMs based on current metrics of AggEngine. Dotted lines: aver-
aged throughput. Solid lines: snapshot throughput.

Balanced Random on Azure and . ProbeEmbed leads to
better and more stable performance by generating cohesive,
locality-preserving group assignments. On the other hand,
Balanced Random can include VMs that are far away in the
same group, creating a bottleneck in the system.

5.5 Accuracy of ProbeEmbed

Effective exploitation of locality requires capturing both
static and dynamic aspects of the network (which is di-
rectly captured by the probes). In this section, we evaluate
ProbeEmbed’s ability to discover the network topology in
terms of physical affinity.

Physical Affinity Inference Accuracy (PAIA). We define
affinity score as an intuitive metric to quatify how well
ProbeEmbed captures network topology: for any two VMs
(a,b) that have comparable distance to an observer ¢, let
T(a,c),T(b,c) be the ground-truth distance (in terms of
hops) from a to ¢ and b to ¢, and let M (a, ¢), M (b, ¢) be the
ProbeEmbed measured distance. We define an affinity score
A(a, b, ¢) for triplet (a, b, ¢) as:

{ 1if M(a,c) < M(b,c) and T'(a,c) < T(b,c)
A(a,b,c) = or M(a,c) > M(b,c) and T'(a,c) > T(b,c)

0 otherwise

For a given ¢, A(a, b, ¢) captures whether ProbeEmbed’s
measurement agrees with the actual hop distance between
a and b. A(a,b, c) is only defined for comparable nodes a
and b to ¢: each node’s position is encoded as a tuple of
format (region, datacenter, cluster, row, rack, host). a and b
are comparable to c if they have different longest common
prefix to c. Longer common prefix means higher affinity.
We now define PAIA as the total sum of all A(a, b, ¢) over
the count of all defined A(a, b, ¢)s. A higher PAIA means a
better comprehension of the datacenter network.

Quality of Various ProbeEmbed Probes. We evaluate
base affinity accuracy achieved by running latency and band-
width probes, without the embedding process, on 64 VMs,
in 2 datacenters, 7 clusters, 15 rows and 61 racks in the US
West 2 region with a total of 81.3K triplets to infer. Latency-
based measurements better reflect underlying topology, with
the DPDK Echo probe yielding a PAIA score of 95.6% com-

pared to 77.4% with iperf, likely because bandwidth is not
necessarily determined by distance.

Embedding’s Effect on Affinity Inference. ProbeEm-
bed’s probe readings can be affected by measurement noise.
We now show how the embedding boosts ProbeEmbed’s in-
ference accuracy, in a case with 64 VMs in a single datacen-
ter with 75.2K triplets. This effectively shrinks the latency
distribution and makes it more difficult to infer topology.
DPDK Echo probes without embedding yield a PAIA score
of 81.3%. We apply embeddings with different o values
to this dataset and found an average PAIA improvement of
5.0% with o = 1, and 8.1% with o = 2.

5.6 Effectiveness of Autotune

We conclude our evaluation with the real-world impact of
Autotune on training ResNet-50 with Pytorch/Caffe2 on 8
nodes with FA. We report Autotune’s effects in terms of
end-to-end training performance. We run Autotune continu-
ously, ignoring the stop condition, and assess how Autotune
adapts to bandwidth changes and discovers a balanced LM
assignment. We start by imposing no limits on bandwidth;
then we limit the bandwidth of node 0, and eventually re-
store it. This shows how instantaneous training throughput
changes as we apply Autotune decisions.

Figure|10|shows this process. We perform a step of Auto-
tune every 10 iterations and report the snapshot reading of
current throughput after the schedule change. At step=0,
node 0’s network throughput is =5 Gbps. At step=1, we
limit its bandwidth to 2 Gbps. This causes an immedi-
ate drop in training performance and triggers Autotune at
step=3. Quicktune moves LMs away from node 0. The
training throughput then bumps up immediately, and Au-
totune enters fine-tuning mode through step=11. During
this period, Autotune continues to move LM assignments
away from 0. When 0 is out of LMs, Finetune moves LMs
among the rest of the nodes based on their blame score. At
step=11, node 0’s bandwidth is restored, causing an imme-
diate jump in training performance, but this time node 0
is underloaded. At step=12, this is partially corrected by
Quicktune. Autotune continues to monitor and rebalance

workloads throughout, arriving at a balanced assignment at
_ s mazy >, D(n,i)
t=25, Wlth ming, y_, D(n,i) i
near optimally balanced LM assignment alone, Autotune
delivers 1.27x speedup when node 0 is the bottleneck, and

can quickly recover when node 0’s limit is lifted.

< 1.05. Compared to using this

6 RELATED WORK AND DISCUSSION

Network topology discovery. We use similar embedding
approach to (Dabek et al.,[2004) with a different goal: they
embed peers on the globe, whereas we use embedding to
denoise ProbeEmbed probes with a novel objective.

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

(Battre et al., 2011) provides a technique for topology infer-
ence. In contrast, we are interested in clustering based on
locality that encompasses both topology and dynamic load.
Further, (Battre et al.,|201 1)) explored using jitter and loss
experienced by train-like (Hu & Steenkiste}, [2003)) probes to
infer topology, but acknowledged that it was ineffective in a
fully virtualized environment (Section III.C), the setting that
we target (public clouds). We confirmed such methods for
locality discovery performed poorly given the low latency of
modern switches; jitter introduced by queueing is too small
to provide meaningful measurements. Lastly, (Lawrence &
'Yuanl [2008)) assumes store-and-forward switches in homo-
geneous clusters forming trees without virtualization.

Cloud-aware MPI. We share some similarities in terms
of using measurements to guide a hierarchical aggregation
mechanism used in (Gong et al.,[2015; |Alfatafta et al., 2018)).
Our work differs in the following ways: (1) ProbeEmbed in-
cludes denoising techniques to provide accurate embeddings
in a noisy cloud environment, and we morph reduction trees
to adapt to dynamic load. (2) We target allreduce operations
as opposed to the simpler reduce/scatter/gather primitives
considered by (Gong et al.|[2015)). (3) We exploit locality
both in the network and within each node, through the design
of AggEngine. As a result, we achieve better performance
at a larger scale than (Gong et al., [2015) (which achieved
13-27% speedup on 32 EC2 nodes). (4) We demonstrate
actual end-to-end application-level speedups by integrat-
ing with ML frameworks for real world workloads, while
(Gong et al 2015) ran microbenchmarks and (Alfatafta
et al.,[2018)) did an analytical evaluation.

Cross region training. Many (Cano et al., 2016}, [Hsich
et al.,[2017) have explored the possibility of geo-distributed
learning. PLink can help here both by reducing traffic
through bottleneck links (inter-datacenter, inter-availability
zone) and by reducing the cost of training as cloud providers
usually charge for cross-region/zone transfers.

Large batch optimization. Large batch sizes reduce com-
munication frequency (FastAl; \Goyal et al.,[2017; [Sridharan
et al.| [2018; Jia et al.| |2018a), but also eliminates the poten-
tial of achieving a larger speedup with a fast communication
plane: with ResNet-50, (Shen et al.,|2019) shows only 10
samples are needed to utilize a recent GPU fully, and thus
the computation of large batches can be further spread to
more GPUs, provided that communication overhead is low.

Quantization, compression, and matrix decomposition.
Communication bottlenecks can be alleviated by trading
potentially more iterations for fewer bytes sent per iteration,
with sigma-delta modulation (Seide et al., [2014)), or fully-
connected layer decomposition (Zhang et al.,|2017;|Chilimbi
et al., [2014), or with redundancy reduction in SGD (Lin
et al., [2017). These techniques push the communication
bottleneck towards latency and work well with PLink to take

advantage of its lower latency stack. §5.3|suggests in the
extreme case of a single-bit reduction, PLink still achieves
meaningful speedup; comparing Figure [6] with Figure []
PLink boosts the training throughput of Pytorch/Caffe2 with
full gradient precision to be similar to MxNet with gradient
compression and 2-bit quantization.

Reinforcement and active learning. While past work has
shown promising results on the use of reinforcement learn-
ing on scheduling and placement (Chen et al., 2018bja;
Kraska et al., 2018; Mirhoseini et al., [2017; [Bodin et al.,
2018), our preliminary assessment of end-to-end RL for
PLink is unfavourable. RL requires a large samples cover-
ing all conditions, and collecting training throughput on the
public cloud has prohibitive costs. Further, an agent is un-
likely to see a significant fraction of the possible topologies
with a constantly evolving cloud. However, a coordinated ef-
fort by cloud providers across customer jobs may be feasible
as it could train on more samples with greater diversity.

Predicting bandwidth changes. Autotune currently reacts
to bandwidth changes only after they happen. This can be
improved by carefully monitoring connection state variables
such as the congestion window to anticipate an incoming
bandwidth change (Haeri & Rad, 2006} Biaz & Vaidyal
1998; [Kong et al.} 2018;Li et al., 2016).

Scheduling for locality. Some cluster schedulers make
placement decisions that consider network locality (Xiao
et al.,[2018b; |Gu et al., 2019; Jia et al.l 2018b), but this can
increase scheduling time. Autotune is complimentary in
that it can provide better throughput when good placements
are not possible.

7 CONCLUSION

Accelerating distributed training in the public cloud has
unique challenges, making communication a bottleneck in
the training process. We proposed PLink, a system that accu-
rately probes the network and efficiently generates and exe-
cutes topology-aware, hierarchical aggregation plans, taking
advantage of the locality in datacenter networks, and con-
tinuously balances workloads across VM nodes to adapt to
changing network conditions. We show that PLink achieves
an end-to-end training speedup in unmodified commercial
clouds of up to 2.3x with popular neural network models.

ACKNOWLEDGEMENTS

This work was supported in part by NSF award CNS-
1614717 and CCF-1518703; by CRISP, one of six centers in
JUMP, a Semiconductor Research Corporation (SRC) pro-
gram sponsored by DARPA; by gifts from Xilinx, Intel (un-
der the CAPA program), Oracle, Amazon, Qualcomm, Face-
book, Futurewei, Google, and other anonymous sources.

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

REFERENCES

Akiba, T., Suzuki, S., and Fukuda, K. Extremely large
minibatch SGD: training resnet-50 on imagenet in 15
minutes. CoRR, abs/1711.04325, 2017. URL jhttp:
//arxiv.org/abs/1711.04325.

Alfatafta, M., AlSader, Z., and Al-Kiswany, S. Cool: A
cloud-optimized structure for mpi collective operations.
In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 746753, July 2018. doi: 10.
1109/CLOUD.2018.00102.

Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel,
P, Prabhakar, B., Sengupta, S., and Sridharan, M. Data
center tcp (dctecp). SIGCOMM Comput. Commun. Rev.,
40(4):6374, August 2010. ISSN 0146-4833. doi: 10.
1145/1851275.1851192. URL https://doi.org/
10.1145/1851275.1851192.

Amazon. Deep learning on aws.
amazon.com/deep—learning/, a. (Accessed on

12/06/2018).

Amazon. Enable and configure enhanced network-
ing for ec2 instances.
com/premiumsupport/knowledge—center/
enable-configure-enhanced-networking/

b. (Accessed on 01/06/2019).

Amazon. Introducing dynamic training for
deep learning with amazon ec2 — aws
machine learning blog. https://aws.

amazon.com/blogs/machine-learning/

https://aws,

https://aws.amazon,

Battre, D., Frejnik, N., Goel, S., Kao, O., and Warneke, D.
Evaluation of network topology inference in opaque com-
pute clouds through end-to-end measurements. In 2011
IEEE 4th International Conference on Cloud Computing,
pp. 17-24, July 2011. doi: 10.1109/CLOUD.2011.30.

Biaz, S. and Vaidya, N. H. Performance of tcp congestion
predictors as loss predictors. Department of Computer
Science Technical Report, 98(7), 1998.

Bilal, K., Khan, S. U., Kolodziej, J., Zhang, L., Hayat, K.,
Madani, S. A., Min-Allah, N., Wang, L., and Chen, D. A
comparative study of data center network architectures.
In ECMS, 2012.

Blum, E. K., Wang, X., and Leung, P. Architectures and
message-passing algorithms for cluster computing: De-
sign and performance. Parallel Computing, 26(2-3):313—
332, 2000.

Bodin, B., Nardi, L., Wagstaff, H., Kelly, P. H. J., and
O’Boyle, M. Algorithmic performance-accuracy trade-
off in 3d vision applications. In 2018 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 123-124, April 2018. doi:
10.1109/ISPASS.2018.00024.

Bradley, P., Bennett, K., and Demiriz, A. Constrained k-
means clustering. Microsoft Research, Redmond, 20(0):
0, 2000.

Cano, 1., Weimer, M., Mahajan, D., Curino, C., and Fu-
marola, G. M. Towards geo-distributed machine learning,
2016.

introducing-dynamic—training-for—-deep—-learning—-with—amazon-ec2/,

c. (Accessed on 12/07/2018).

Amazon. Placement groups - amazon elastic compute cloud.
https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/placement—-groups.
html, d. (Accessed on 12/07/2018).

Amazon. Amazon ec2 fl instances.
amazon.com/ec2/instance-types/fl/, e.

(Accessed on 03/04/2019).

Arthur, D. and Vassilvitskii, S. k-means++: The advan-
tages of careful seeding. In Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms,
pp.- 1027-1035. Society for Industrial and Applied Math-
ematics, 2007.

Bala, V., Bruck, J., Cypher, R., Elustondo, P., Ho, A., Ho,
C.-T., Kipnis, S., and Snir, M. Ccl: A portable and
tunable collective communication library for scalable

parallel computers. IEEE Transactions on Parallel and
Distributed Systems _6(2):154-164_1995

https://aws.

Chen, T., Moreau, 1., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin,
C., and Krishnamurthy, A. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pp. 578-594, Carlsbad, CA,
2018a. USENIX Association. ISBN 978-1-931971-47-8.
URL https://www.usenix.org/conference/
osdil8/presentation/chen.

Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze,
L., Guestrin, C., and Krishnamurthy, A. Learning to opti-
mize tensor programs. arXiv preprint arXiv:1805.08166,
2018b.

Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanara-
man, K. Project adam: Building an efficient and
scalable deep learning training system. In 1l1th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pp. 571-582, Broomfield,
CO, 2014. USENIX Association. ISBN 978-1-
931971-16-4 __URI. https://www._nsenix._orqg/

http://arxiv.org/abs/1711.04325
http://arxiv.org/abs/1711.04325
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/1851275.1851192
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/deep-learning/
https://aws.amazon.com/premiumsupport/knowledge-center/enable-configure-enhanced-networking/
https://aws.amazon.com/premiumsupport/knowledge-center/enable-configure-enhanced-networking/
https://aws.amazon.com/premiumsupport/knowledge-center/enable-configure-enhanced-networking/
https://aws.amazon.com/blogs/machine-learning/introducing-dynamic-training-for-deep-learning-with-amazon-ec2/
https://aws.amazon.com/blogs/machine-learning/introducing-dynamic-training-for-deep-learning-with-amazon-ec2/
https://aws.amazon.com/blogs/machine-learning/introducing-dynamic-training-for-deep-learning-with-amazon-ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

conference/osdil4/technical-sessions/
presentation/chilimbi.

Cho, M., Finkler, U., and Kung, D. Blueconnect: Novel
hierarchical all-reduce on multi-tired network for deep
learning.

Cui, H., Zhang, H., Ganger, G. R., Gibbons, P. B., and
Xing, E. P. Geeps: Scalable deep learning on dis-
tributed gpus with a gpu-specialized parameter server.
In Proceedings of the Eleventh European Conference on
Computer Systems, pp. 4. ACM, 2016.

Dabek, F., Cox, R., Kaashoek, F., and Morris, R. Vi-
valdi: A decentralized network coordinate system.
SIGCOMM Comput. Commun. Rev., 34(4):15-26, Au-
gust 2004. ISSN 0146-4833. doi: 10.1145/1030194.
1015471. URL http://doi.acm.org/10.1145/
1030194.1015471.

dpdk. Home - dpdk. https://www.dpdk.org/. (Ac-
cessed on 09/01/2019).

Facebook. facebookincubator/gloo: Collective
communications library with various primi-
tives for multi-machine training. https:

//github.com/facebookincubator/glool
(Accessed on 12/22/2018).

Farley, B., Juels, A., Varadarajan, V., Ristenpart, T., Bow-
ers, K. D., and Swift, M. M. More for your money:
Exploiting performance heterogeneity in public clouds.
In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC *12, pp. 20:1-20:14, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1761-0. doi:
10.1145/2391229.2391249. URL http://doi.acm.
org/10.1145/2391229.23912409.

FastAI. Now anyone can train imagenet in 18 min-
utes fast.ai. https://www.fast.ai/2018/
08/10/fastai—-diu-imagenet/. (Accessed on
12/20/2018).

Fowers, J., Ovtcharov, K., Papamichael, M., Massengill, T.,
Liu, M., Lo, D., Alkalay, S., Haselman, M., Adams, L.,
Ghandi, M., et al. A configurable cloud-scale dnn proces-
sor for real-time ai. In Proceedings of the 45th Annual
International Symposium on Computer Architecture, pp.
1-14. IEEE Press, 2018.

Geng, J., Li, D., Cheng, Y., Wang, S., and Li, J. Hips:
Hierarchical parameter synchronization in large-scale
distributed machine learning. In Proceedings of the
2018 Workshop on Network Meets Al and ML, Ne-
tAI’18, pp. 1-7, New York, NY, USA, 2018. ACM.
ISBN 978-1-4503-5911-5. doi: 10.1145/3229543.
3229544. URL http://doi.acm.org/10.1145/
3229543.3229544.

Gong, Y., He, B., and Zhong, J. Network performance aware
mpi collective communication operations in the cloud.
IEEE Transactions on Parallel and Distributed Systems,
26(11):3079-3089, Nov 2015. ISSN 2161-9883. doi:
10.1109/TPDS.2013.96.

Google. Google cloud training. google cloud. https:
//cloud.google.com/training/courses/
machine-learning-tensorflow—gcp. (Ac-
cessed on 03/04/2019).

Goyal, P., Dollar, P, Girshick, R., Noordhuis, P,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch SGD: Training ImageNet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Graham, R. L., Bureddy, D., Lui, P., Rosenstock, H.,
Shainer, G., Bloch, G., Goldenerg, D., Dubman, M.,
Kotchubievsky, S., Koushnir, V., Levi, L., Margolin, A.,
Ronen, T., Shpiner, A., Wertheim, O., and Zahavi, E.
Scalable hierarchical aggregation protocol (sharp): A
hardware architecture for efficient data reduction. In
Proceedings of the First Workshop on Optimization of
Communication in HPC, COM-HPC ’16, pp. 1-10, Pis-
cataway, NJ, USA, 2016. IEEE Press. ISBN 978-1-5090-
3829-9. doi: 10.1109/COM-HPC.2016.6. URL https:
//doi.org/10.1109/COM-HPC.2016.6,

Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S.,
Kim, C., Lahiri, P, Maltz, D. A., Patel, P., and Sen-
gupta, S. VI2: A scalable and flexible data cen-
ter network. SIGCOMM Comput. Commun. Rev., 39
(4):5162, August 2009. ISSN 0146-4833. doi: 10.
1145/1594977.1592576. URL https://doi.org/
10.1145/1594977.1592576.

Gu, J., Chowdhury, M., Shin, K. G., Zhu, Y., Jeon, M.,
Qian, J., Liu, H., and Guo, C. Tiresias: A GPU
cluster manager for distributed deep learning. In 16th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pp. 485-500, Boston,
MA, February 2019. USENIX Association. ISBN 978-
1-931971-49-2. URL https://www.usenix.org/
conference/nsdil9/presentation/qgu.

Haeri, M. and Rad, A. H. M. Adaptive model pre-
dictive tcp delay-based congestion control. Computer
Communications, 29(11):1963-1978, 2006.

Hashemi, S. H., Jyothi, S. A., and Campbell, R. H. Tictac:
Accelerating distributed deep learning with communica-
tion scheduling. arXiv preprint arXiv:1803.03288, 2018.

Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D.,
Ganger, G. R., Gibbons, P. B., and Mutlu, O. Gaia: Geo-
distributed machine learning approaching LAN speeds.
In 14th USENIX Symposium on Networked Systems

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
http://doi.acm.org/10.1145/1030194.1015471
http://doi.acm.org/10.1145/1030194.1015471
https://www.dpdk.org/
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
http://doi.acm.org/10.1145/2391229.2391249
http://doi.acm.org/10.1145/2391229.2391249
https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
http://doi.acm.org/10.1145/3229543.3229544
http://doi.acm.org/10.1145/3229543.3229544
https://cloud.google.com/training/courses/machine-learning-tensorflow-gcp
https://cloud.google.com/training/courses/machine-learning-tensorflow-gcp
https://cloud.google.com/training/courses/machine-learning-tensorflow-gcp
https://doi.org/10.1109/COM-HPC.2016.6
https://doi.org/10.1109/COM-HPC.2016.6
https://doi.org/10.1145/1594977.1592576
https://doi.org/10.1145/1594977.1592576
https://www.usenix.org/conference/nsdi19/presentation/gu
https://www.usenix.org/conference/nsdi19/presentation/gu

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

Design and Implementation (NSDI 17), pp. 629-647,
Boston, MA, 2017. USENIX Association. ISBN 978-
1-931971-37-9. URL https://www.usenix.org/
conference/nsdil7/technical-sessions/
presentation/hsieh.

Hu, N. and Steenkiste, P. Evaluation and characterization of
available bandwidth probing techniques. IEEE Journal
on Selected Areas in Communications, 21(6):879-894,
Aug 2003. ISSN 0733-8716. doi: 10.1109/JSAC.2003.
814505.

Tandola, F. N., Moskewicz, M. W., Ashraf, K., and Keutzer,
K. Firecaffe: near-linear acceleration of deep neural
network training on compute clusters. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2592-2600, 2016.

IBM. Softiwarp for linux-rdma. https://githubl
com/zrlio/softiwarp-for-1linux—rdmal
(Accessed on 11/06/2019).

Tosup, A., Yigitbasi, N., and Epema, D. On the per-
formance variability of production cloud services. In
Proceedings of the 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CC-
GRID 11, pp. 104-113, Washington, DC, USA, 2011.
IEEE Computer Society. ISBN 978-0-7695-4395-6.

doi: 10.1109/CCGrid.2011.22. URL http://dx.doi!

org/10.1109/CCGrid.2011.22,

iperf. iperf - the tcp, udp and sctp network bandwidth
measurement tool. https://iperf.fr/l (Accessed
on 09/01/2019).

Jayarajan, A., Wei, J., Gibson, G., Fedorova, A., and Pekhi-
menko, G. Priority-based parameter propagation for dis-
tributed dnn training. arXiv preprint arXiv:1905.03960,
2019.

Jeyakumar, V., Alizadeh, M., Mazieres, D., Prabhakar, B.,
and Kim, C. Eyeq: Practical network performance isola-
tion for the multi-tenant cloud. In HotCloud, 2012.

Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F.,
Xie, L., Guo, Z., Yang, Y., Yu, L., Chen, T., Hu, G., Shi,
S., and Chu, X. Highly scalable deep learning training
system with mixed-precision: Training imagenet in four
minutes, 2018a.

Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model
parallelism for deep neural networks. arXiv preprint
arXiv:1807.05358, 2018b.

Jouppi, N. P,, Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., Cantin, P.-1., Chao, C., Clark, C., Coriell, J.,
Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami,

T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R.,
Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey,
A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D.,
Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le,
D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean,
G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omer-
nick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M.,
Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snel-
ham, M., Souter, J., Steinberg, D., Swing, A., Tan, M.,
Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan,
V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H.
In-datacenter performance analysis of a tensor process-
ing unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA °17, pp. 1-
12, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-
4892-8. doi: 10.1145/3079856.3080246. URL http
//doi.acm.org/10.1145/3079856.3080246.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kong, Y., Zang, H., and Ma, X. Improving tcp congestion
control with machine intelligence. In Proceedings of the
2018 Workshop on Network Meets Al & ML, pp. 60-66.
ACM, 2018.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis, N.
The case for learned index structures. In Proceedings
of the 2018 International Conference on Management
of Data, SIGMOD ’18, pp. 489-504, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-4703-7. doi:
10.1145/3183713.3196909. URL http://doi.acm.
org/10.1145/3183713.3196909.

Lawrence, J. and Yuan, X. An mpi tool for automatically
discovering the switch level topologies of ethernet clus-
ters. In 2008 IEEE International Symposium on Parallel
and Distributed Processing, pp. 1-8, April 2008. doi:
10.1109/1IPDPS.2008.4536545.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J.,
Ahmed, A., Josifovski, V., Long, J., Shekita, E. J.,
and Su, B.-Y. Scaling distributed machine learning
with the parameter server. In Proceedings of the
11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, pp. 583-598, Berke-
ley, CA, USA, 2014a. USENIX Association. ISBN
978-1-931971-16-4. URL http://dl.acm.orqg/
citation.cfm?i1d=2685048.2685095.

Li, M., Andersen, D. G., Smola, A., and Yu, K. Communi-
cation efficient distributed machine learning with the pa-
rameter server. In Proceedings of the 27th International
Conference on Neural Information Processing Systems,
NIPS’14, pp. 19-27, Cambridge, MA, USA, 2014b.

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://github.com/zrlio/softiwarp-for-linux-rdma
https://github.com/zrlio/softiwarp-for-linux-rdma
http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1109/CCGrid.2011.22
https://iperf.fr/
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3183713.3196909
http://doi.acm.org/10.1145/3183713.3196909
http://dl.acm.org/citation.cfm?id=2685048.2685095
http://dl.acm.org/citation.cfm?id=2685048.2685095

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

MIT Press. URLhttp://dl.acm.org/citationl
cfm?1d=2968826.2968829.

Li, W., Zhou, F., Meleis, W., and Chowdhury, K. Learning-
based and data-driven tcp design for memory-constrained
iot. In Distributed Computing in Sensor Systems
(DCOSS), 2016 International Conference on, pp. 199-
205. IEEE, 2016.

Lim, H., Andersen, D. G., and Kaminsky, M.
3lc: Lightweight and effective traffic compression
for distributed machine learning. arXiv_preprint
arXiv:1802.07389, 2018.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J.
Deep gradient compression: Reducing the communica-
tion bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

Liu, M., Luo, L., Nelson, J., Ceze, L., Krishnamurthy, A.,
and Atreya, K. IncBricks: Toward in-network compu-
tation with an in-network cache. SIGOPS Oper. Syst.
Rev., 51(2):795-809, April 2017. ISSN 0163-5980. doi:
10.1145/3093315.3037731. URL http://doi.acm,
org/10.1145/3093315.3037731l

Luo, L., Liu, M., Nelson, J., Ceze, L., Phanishayee, A., and
Krishnamurthy, A. Motivating in-network aggregation for
distributed deep neural network training. In Workshop
on Approximate Computing Across the Stack, 2017.

Luo, L., Nelson, J., Ceze, L., Phanishayee, A., and Kr-
ishnamurthy, A. Parameter hub: A rack-scale param-
eter server for distributed deep neural network train-
ing. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC 18, pp. 41-54, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-6011-1. doi:
10.1145/3267809.3267840. URL |http://doi.acm}
org/10.1145/3267809.3267840.

Maricq, A., Duplyakin, D., Jimenez, 1., Maltzahn, C.,
Stutsman, R., and Ricci, R. Taming performance variabil-
ity. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pp. 409-425,
Carlsbad, CA, 2018. USENIX Association. ISBN 978-
1-931971-47-8. URL https://www.usenix.orqg/
conference/osdil8/presentation/maricaq.

Mathis, M., Heftner, J., and Reddy, R. Webl00: ex-
tended tcp instrumentation for research, education and
diagnosis. ACM SIGCOMM Computer Communication
Review, 33(3):69-79, 2003.

Metzler, B., Frey, P., and Trivedi, A. Softiwarp project
update: A software iwarp driver for openfabrics. 03 2010.
doi: 10.13140/2.1.4422.3363.

Microsoft. Azure batch ai — train ai models — mi-
crosoft azure. https://azure.microsoft.com/
en-us/services/batch-ai/, a. (Accessed on

12/07/2018).

Microsoft. Create an azure virtual ma-
chine with accelerated networking — mi-
crosoft docs. https://docs.microsoft.

com/en-us/azure/virtual-network/
create-vm-accelerated-networking-cli,
b. (Accessed on 01/06/2019).

Microsoft. Machine learning studio. microsoft azure.
https://azure.microsoft.com/en-us/
services/machine—learning—-studio/, c.

(Accessed on 12/06/2018).

Mikami, H., Suganuma, H., U.-Chupala, P., Tanaka, Y.,
and Kageyama, Y. Imagenet/resnet-50 training in 224
seconds. CoRR, abs/1811.05233, 2018. URL http!
//arxiv.org/abs/1811.05233!

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R.,
Zhou, Y., Kumar, N., Norouzi, M., Bengio, S., and Dean,
J. Device placement optimization with reinforcement
learning. arXiv preprint arXiv:1706.04972, 2017.

mixpanel. 27 — october — 2011 — mixpanel engineer-
ing. |https://engineering.mixpanel.com/
2011/10/27/. (Accessed on 12/07/2018).

Mysore, R. N., Pamboris, A., Farrington, N., Huang, N.,
Miri, P, Radhakrishnan, S., Subramanya, V., and Vahdat,
A. Portland: a scalable fault-tolerant layer 2 data center
network fabric. In SIGCOMM, 2009.

Nvidia. Operations - nccl 2.3.4 documentation.
https://docs.nvidia.com/deeplearning/
sdk/nccl-developer—guide/docs/usage/
operations.html. (Accessed on 12/07/2018).

Pesterev, A., Strauss, J., Zeldovich, N., and Morris,
R. T. Improving network connection locality on
multicore systems. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys
12, pp. 337-350, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1223-3. doi: 10.1145/2168836.
2168870. URL http://doi.acm.org/10.1145/
2168836.2168870.

PSLite. dmlc/ps-lite: A lightweight parameter server in-
terface. https://github.com/dmlc/ps-1lite.
(Accessed on 12/22/2018).

Rabenseifner, R. Optimization of collective reduction
operations. pp. 1-9, 06 2004. doi: 10.1007/
978-3-540-24685-5_1.

http://dl.acm.org/citation.cfm?id=2968826.2968829
http://dl.acm.org/citation.cfm?id=2968826.2968829
http://doi.acm.org/10.1145/3093315.3037731
http://doi.acm.org/10.1145/3093315.3037731
http://doi.acm.org/10.1145/3267809.3267840
http://doi.acm.org/10.1145/3267809.3267840
https://www.usenix.org/conference/osdi18/presentation/maricq
https://www.usenix.org/conference/osdi18/presentation/maricq
https://azure.microsoft.com/en-us/services/batch-ai/
https://azure.microsoft.com/en-us/services/batch-ai/
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
http://arxiv.org/abs/1811.05233
http://arxiv.org/abs/1811.05233
https://engineering.mixpanel.com/2011/10/27/
https://engineering.mixpanel.com/2011/10/27/
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html
http://doi.acm.org/10.1145/2168836.2168870
http://doi.acm.org/10.1145/2168836.2168870
https://github.com/dmlc/ps-lite

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

Roy, A., Zeng, H., Bagga, J., Porter, G., and Snoeren,
A. C. Inside the social network’s (datacenter) network.
Computer Communication Review, 45:123-137, 2015.

Sack, P. D. Scalable Collective Message-passing
Algorithms. PhD thesis, Champaign, IL, USA, 2011.
AAI3503864.

scikit learn. 4.8. pairwise metrics, affinities
and kernels. scikit-learn 0.20.2 documentation.
https://scikit-learn.org/stable/
modules/metrics.htmll (Accessed on
02/06/2019).

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
tic gradient descent and application to data-parallel dis-

tributed training of speech DNNs. In Interspeech 2014,
September 2014.

Sergeev, A. and Balso, M. D. Horovod: fast and
easy distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018.

Shen, H., Chen, L., Jin, Y., Zhao, L., Kong, B., Phili-
pose, M., Krishnamurthy, A., and Sundaram, R. Nexus:
A gpu cluster engine for accelerating dnn-based video
analysis. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP 19, pp. 322337,
New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450368735. doi: 10.1145/
3341301.3359658. URL hhttps://doi.org/10.
1145/3341301.3359658.

Shieh, A., Kandula, S., Greenberg, A., and Kim, C. Sea-
wall: Performance isolation for cloud datacenter net-
works. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’10,
pp- 1-1, Berkeley, CA, USA, 2010. USENIX Asso-
ciation. URL http://dl.acm.org/citation.
cfm?id=1863103.1863104.

Shieh, A., Kandula, S., Greenberg, A., Kim, C., and Saha,
B. Sharing the data center network. In Proceedings
of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pp. 309-
322, Berkeley, CA, USA, 2011. USENIX Associ-
ation. URL http://dl.acm.org/citation.
cfm?id=1972457.1972489.

Smith, S. L., Kindermans, P., and Le, Q. V. Don’t de-
cay the learning rate, increase the batch size. CoRR,
abs/1711.00489, 2017. URL http://arxiv.org/
abs/1711.00489.

Smola, A. and Narayanamurthy, S. An architecture for
parallel topic models. Proc. VLDB Endow., 3(1-2):703—
710, September 2010. ISSN 2150-8097. doi: 10.14778/

1920841.1920931. URL http://dx.doi.org/10,
14778/1920841.1920931.

SoftRoCE. Soft rdma over ethernet (roce) driver.
https://github.com/SoftRoCE/rxe—dev/
wiki/rxe—dev:—-Homel (Accessed on 12/16/2018).

Sridharan, S., Vaidyanathan, K., Kalamkar, D., Das, D.,
Smorkalov, M. E., Shiryaev, M., Mudigere, D., Mellem-
pudi, N., Avancha, S., Kaul, B., and Dubey, P. On scale-
out deep learning training for cloud and hpc, 2018.

Sun, P, Feng, W., Han, R., Yan, S., and Wen, Y. Optimizing
network performance for distributed dnn training on gpu
clusters: Imagenet/alexnet training in 1.5 minutes. arXiv
preprint arXiv:1902.06855, 2019.

Thakur, R., Rabenseifner, R., and Gropp, W. Opti-
mization of collective communication operations in
mpich. Int. J. High Perform. Comput. Appl., 19(1):49—
66, February 2005. ISSN 1094-3420. doi: 10.1177/
1094342005051521. URL http://dx.doi.org/
10.1177/1094342005051521.

Vinh, N. X., Epps, J., and Bailey, J. Information theoretic
measures for clusterings comparison: Variants, proper-
ties, normalization and correction for chance. Journal of
Machine Learning Research, 11(Oct):2837-2854, 2010.

Wangt, G., Phanishayee, A., Venkataraman, S., and Stoicat,
I. Blink: A fast nvlink-based collective communication
library. 2018.

Wikipedia. Netlink wikipedia. https://en.
wikipedia.org/wiki/Netlink#cite_
note—4. (Accessed on 12/22/2018).

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M.,
Kwatra, N., Han, Z., Patel, P., Peng, X., Zhao, H.,
Zhang, Q., Yang, F., and Zhou, L. Gandiva: Intro-
spective cluster scheduling for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pp. 595-610, Carlsbad, CA,
2018a. USENIX Association. ISBN 978-1-931971-47-8.
URL https://www.usenix.org/conference/
0sdil8/presentation/x1ao0.

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M.,
Kwatra, N., Han, Z., Patel, P., Peng, X., Zhao, H.,
Zhang, Q., Yang, F., and Zhou, L. Gandiva: Intro-
spective cluster scheduling for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pp. 595-610, Carlsbad, CA,
October 2018b. USENIX Association. ISBN 978-1-
939133-08-3. URL https://www.usenix.orqg/
conference/osdil8/presentation/xiao.

https://scikit-learn.org/stable/modules/metrics.html
https://scikit-learn.org/stable/modules/metrics.html
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
http://dl.acm.org/citation.cfm?id=1863103.1863104
http://dl.acm.org/citation.cfm?id=1863103.1863104
http://dl.acm.org/citation.cfm?id=1972457.1972489
http://dl.acm.org/citation.cfm?id=1972457.1972489
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
http://dx.doi.org/10.14778/1920841.1920931
http://dx.doi.org/10.14778/1920841.1920931
https://github.com/SoftRoCE/rxe-dev/wiki/rxe-dev:-Home
https://github.com/SoftRoCE/rxe-dev/wiki/rxe-dev:-Home
http://dx.doi.org/10.1177/1094342005051521
http://dx.doi.org/10.1177/1094342005051521
https://en.wikipedia.org/wiki/Netlink##cite_note-4
https://en.wikipedia.org/wiki/Netlink##cite_note-4
https://en.wikipedia.org/wiki/Netlink##cite_note-4
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi18/presentation/xiao

PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training

You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., and Keutzer,
K. Imagenet training in minutes. In Proceedings of
the 47th International Conference on Parallel Processing,
ICPP 2018, pp. 1:1-1:10, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-6510-9. doi: 10.1145/3225058.
3225069. URL http://doi.acm.org/10.1145/
3225058.3225069.

Zhang, C. and Ré, C. Dimmwitted: A study of main-
memory statistical analytics. Proc. VLDB Endow., 7
(12):1283-1294, August 2014. ISSN 2150-8097. doi:
10.14778/2732977.2733001. URL|http://dx.doi|
org/10.14778/2732977.2733001.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X.,
Hu, Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An
efficient communication architecture for distributed deep
learning on GPU clusters. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pp. 181-193,
Santa Clara, CA, 2017. USENIX Association. ISBN 978-
1-931971-38-6. URL https://www.usenix.org/
conference/atcl7/technical-sessions/
presentation/zhangl

http://doi.acm.org/10.1145/3225058.3225069
http://doi.acm.org/10.1145/3225058.3225069
http://dx.doi.org/10.14778/2732977.2733001
http://dx.doi.org/10.14778/2732977.2733001
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang

	Introduction
	Background
	Datacenter Networks
	Parameter Exchange in Distributed Training

	Motivation
	Inefficiencies in Existing Approaches
	2-level Hierarchical Aggregation (2LHA)

	Design and Implementation
	Capturing Network Locality with ProbeEmbed
	Running ProbeEmbed probes
	Denoising probe data with embedding
	Grouping Nodes for 2LHA

	Efficient HA with AggEngine
	Generating an Aggregation Plan
	Executing an Aggregation Schedule

	Reacting to Network Changes with Autotune
	Quicktune
	Finetune

	Integration with Training Frameworks

	Evaluation
	Environment Setup
	End to end training performance
	Efficiency of AggEngine
	Effectiveness of Hierarchical Aggregation
	Accuracy of ProbeEmbed
	Effectiveness of Autotune

	Related Work and Discussion
	Conclusion

