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(a) Frame 1 (b) Frame 2

Figure 6. Two example frames from the same scene with an incon-
sistent attribute (the identity) from the TV news use case.

(a) Example error 1.

(b) Example error 2.

Figure 7. Examples errors when three boxes highly overlap (see
multibox in Section 5). Best viewed in color.

A EXAMPLES OF ERRORS CAUGHT BY
MODEL ASSERTIONS

In this section, we illustrate several errors caught by the
model assertions used in our evaluation.

First, we show an example error in the TV news use case in
Figure 6. Recall that these assertions were generated with
our consistency API (§4). In this example, the identifier is
the box’s sceneid and the attribute is the identity.

Second, we show an example error for the visual analytics
use case in Figure 7 for the multibox assertion. Here, SSD
erroneously detects multiple cars when there should be one.

Third, we show two example errors for the AV use case in
Figure 8 from the multibox and agree assertions.

(a) Example error flagged by multibox. SSD predicts three
trucks when only one should be detected.

(b) Example error flagged by agree. SSD misses the car on the
right and the LIDAR model predicts the truck on the left to be too
large.

Figure 8. Examples of errors that the multibox and agree as-
sertions catch for the NuScenes dataset. LIDAR model boxes are
in pink and SSD boxes are in green. Best viewed in color.
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Assertion class
Assertion
sub-class Description Examples

Consistency Multi-source Model outputs from multiple
sources should agree

• Verifying human labels (e.g., number of la-
belers that disagree)

• Multiple models (e.g., number of models that
disagree)

Multi-modal Model outputs from multiple
modes of data should agree

• Multiple sensors (e.g., number of disagree-
ments from LIDAR and camera models)

• Multiple data sources (e.g., text and images)

Multi-view Model outputs from multiple views
of the same data should agree

• Video analytics (e.g., results from overlap-
ping views of different cameras should agree)

• Medical imaging (e.g., different angles
should agree)

Domain
knowledge

Physical Physical constraints
on model outputs

• Video analytics (e.g., cars should not flicker)

• Earthquake detection (e.g., earthquakes
should appear across sensors in physically
consistent ways)

• Protein-protein interaction (e.g., number of
overlapping atoms)

Unlikely
scenario

Scenarios that are
unlikely to occur

• Video analytics (e.g., maximum confidence
of 3 vehicles that highly overlap),

• Text generation (e.g., two of the same word
should not appear sequentially)

Perturbation Insertion Inserting certain types of data
should not modify model outputs

• Visual analytics (e.g., synthetically adding a
car to a frame of video should be detected as
a car),

• LIDAR detection (e.g., similar to visual ana-
lytics)

Similar Replacing parts of the input with
similar data should not modify
model outputs

• Sentiment analysis (e.g., classification should
not change with synonyms)

• Object detection (e.g., painting objects differ-
ent colors should not change the detection)

Noise Adding noise should not
modify model outputs

• Image classification (e.g., small Gaussian
noise should not affect classification)

• Time series (e.g., small Gaussian noise
should not affect time series classification)

Input
validation

Schema
validation

Inputs should
conform to a schema

• Boolean features should not have inputs that
are not 0 or 1

• All features should be present

Table 6. Example of model assertions. We describe several assertion classes, sub-classes, and concrete instantiations of each class. In
parentheses, we describe a potential severity score or an application.
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B CLASSES OF MODEL ASSERTIONS

We present a non-exhaustive list of common classes of
model assertions in Table 6 and below. Namely, we de-
scribe how one might look for assertions in other domains.

Our taxonomization is not exact and several examples will
contain features from several classes of model assertions.
Prior work on schema validation (Polyzotis et al., 2019;
Baylor et al., 2017) and data augmentation (Wang & Perez,
2017; Taylor & Nitschke, 2017) can be cast in the model
assertion framework. As these have been studied, we do not
focus on these classes of assertions in this work.

Consistency assertions. An important class of model
assertions checks the consistency across multiple models or
sources of data. The multiple sources of data could be the
output of multiple ML models on the same data, multiple
sensors, or multiple views of the same data. The output from
the various sources should agree and consistency model
assertions specify this constraint. These assertions can be
generated via our API as described in §4.

Domain knowledge assertions. In many physical do-
mains, domain experts can express physical constraints or
unlikely scenarios. As an example of a physical constraint,
when predicting how proteins will interact, atoms should
not physically overlap. As an example of an unlikely sce-
nario, boxes of the visible part of cars should not highly
overlap (Figure 7). In particular, model assertions of un-
likely scenarios may not be 100% precise, i.e., will be soft
assertions.

Perturbation assertions. Many domains contain input and
output pairs that can be perturbed (perhaps jointly) such that
the output does not change. These perturbations have been
widely studied through the lens of data augmentation (Wang
& Perez, 2017; Taylor & Nitschke, 2017) and adversarial
examples (Goodfellow et al., 2015; Athalye et al., 2018).

Input validation assertions. Domains that contain
schemas for the input data can have model assertions that
validate the input data based on the schema (Polyzotis et al.,
2019; Baylor et al., 2017). For example, boolean inputs
that are encoded with integral values (i.e., 0 or 1) should
never be negative. This class of assertions is an instance of
preconditions for ML models.

C HYPERPARAMETERS

Hyperparameters for active learning experiments. For
night-street, we used 300,000 frames of one day of
video for the training and unlabeled data. We sampled 100
frames per round for five rounds and used 25,000 frames of
a different day of video for the test set. Due to the cost of

obtaining labels, we ran each trial twice.

For the NuScenes dataset, we used 350 scenes to bootstrap
the LIDAR model, 175 scenes for unlabeled/training data
for SSD, and 75 scenes for validation (out of the original
850 labeled scenes). We trained for one epoch at a learning
rate of 5× 10−5. We ran 8 trials.

For the ECG dataset, we train for 5 rounds of active learning
with 100 samples per round. We use a learning rate of 0.001
until the loss plateaus, which the original training code did.

Hyperparameters for weak supervision experiments.
For night-street, we used 1,000 additional frames with
750 frames that triggered flicker and 250 random frames
with a learning rate of 5× 10−6 for a total of 6 epochs.

For the NuScenes dataset, we used the same 350 scenes to
bootstrap the LIDAR model as in the active learning exper-
iments. We trained with 175 scenes of weakly supervised
data for one epoch with a learning rate of 5× 10−5.

For the ECG dataset, we use 1,000 weak labels and the same
training procedure as in active learning.


