A WORKLOADS

Table 2 is the full list of workloads and their batch sizes we used in our evaluation.

Figure 15 is the same peak and average GPU memory usage
measurement done in PyTorch, except overfeat, which
we could not find a working implementation.

Model	Туре	Batch Sizes
alexnet	Classification	25, 50, 100
googlenet	Classification	25, 50, 100
inception3	Classification	25, 50, 100
inception4	Classification	25, 50, 75
overfeat	Classification	25, 50, 100
resnet50	Classification	25, 50, 75
resnet101	Classification	25, 50, 75
resnet152	Classification	25, 50, 75
vgg11	Classification	25, 50, 100
vgg16	Classification	25, 50, 100
vgg19	Classification	25, 50, 100
vae	Auto Encoder	64, 128, 256
superres	Super Resolution	32, 64, 128
speech	NLP	25, 50, 75
seq2seq	NLP	Small, Medium, Larg

Table 2. DL models, their types, and the batch sizes we used. Note that the entire network must reside in GPU memory when it is running. This restricts the maximum batch size we can use for each network.

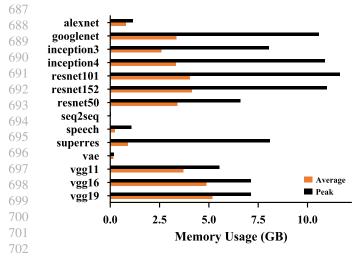


Figure 15. Average and peak GPU memory usage per workload,
measured in PyTorch and running on NVIDIA P100 with 16 GB
memory. The average and peak usage for vae is 156 MB, 185 MB,
which are too small to show in the figure.