
SALUS: FINE-GRAINED GPU SHARING PRIMITIVES
FOR DEEP LEARNING APPLICATIONS

Peifeng Yu 1 Mosharaf Chowdhury 1

ABSTRACT
Unlike traditional resources such as CPU or the network, modern GPUs do not natively support fine-grained
sharing primitives. Consequently, implementing common policies such as time sharing and preemption are
expensive. Worse, when a deep learning (DL) application cannot completely use a GPU’s resources, the GPU
cannot be efficiently shared between multiple applications, leading to GPU underutilization.

We present Salus to enable two GPU sharing primitives: fast job switching and memory sharing, to achieve
fine-grained GPU sharing among multiple DL applications. Salus is an efficient, consolidated execution service
that exposes the GPU to different DL applications, and it enforces fine-grained sharing by performing iteration
scheduling and addressing associated memory management issues. We show that these primitives can then be
used to implement flexible sharing policies. Our integration of Salus with TensorFlow and evaluation on popular
DL jobs shows that Salus can improve the average completion time of DL training jobs by 3.19×, GPU utilization
for hyper-parameter tuning by 2.38×, and GPU utilization of DL inference applications by 42× over not sharing
the GPU and 7× over NVIDIA MPS with small overhead.

1 INTRODUCTION

Deep learning (DL) has received ubiquitous adoption in
recent years across many data-driven application domains,
ranging from machine translation and image captioning
to chat bots and personal assistants (LeCun et al., 2015).
Consequently, both industry and academia are building DL
solutions – e.g., TensorFlow (Abadi et al., 2016), CNTK (Yu
et al., 2014), and others (Dean et al., 2012; Chen et al., 2015;
Paszke et al., 2019; Bergstra et al., 2011) – to enable both
training DL models using large datasets as well as serving
DL models for inference.

GPUs have emerged as a popular choice in this context be-
cause they excel at highly parallelizable matrix operations
common in DL jobs (Jia et al., 2018; Zhu et al., 2016; Jouppi
et al., 2017; Abadi et al., 2016). Unfortunately, the mini-
mum granularity of GPU allocation today is often the entire
GPU – an application can have multiple GPUs, but each
GPU can only be allocated to exactly one application (Jeon
et al., 2019). While such exclusiveness in accessing a GPU
simplifies the hardware design and makes it efficient in the
first place, it leads to two major inefficiencies.

1Department of Electronic Engineering and Computer Sci-
ence, University of Michigan, Michigan, USA. Correspondence to:
Peifeng Yu <peifeng@umich.edu>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

First, the coarse-grained, one-at-a-time GPU allocation
model1 hinders the scheduling ability of GPU cluster man-
agers (Gu et al., 2019; Xiao et al., 2018; Hindman et al.,
2011; Bernstein, 2014; Vavilapalli et al., 2013; Dutta &
Huang, 2019; NVIDIA, 2020b). For flexible scheduling, a
cluster manager often has to suspend and resume jobs (i.e.,
preempt), or even migrate a job to a different host. However,
a running DL job must fully be purged from the GPU before
another one can start, incurring large performance over-
head. As such, GPU clusters often employ non-preemptive
scheduling, such as FIFO (Dutta & Huang, 2019; Jeon et al.,
2019), which is susceptible to the head-of-line (HOL) block-
ing problem; or they suffer large overhead when using pre-
emptive scheduling (Gu et al., 2019).

Second, not all DL jobs can fully utilize a GPU all the time
(§2). On the one hand, DL training jobs are usually con-
sidered resource-intensive. But for memory-intensive ones
(e.g., with large batch sizes), our analysis shows that the
average GPU memory utilization is often less than 50%
(§2.1) due to varied memory usage over time and between
iterations. Similar patterns can also be observed in compute-
intensive training jobs. DL model serving also calls for
finer-grained GPU sharing and packing. Because the re-
quest rate varies temporally within the day as well as across
models, the ability to hold many DL models on the same
GPU when request rates are low can significantly cut the

1It is possible to forcibly run multiple processes on the same
GPU, but that leads to high overhead compared to exclusive mode.

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

cost by decreasing the number of GPUs needed in serving
clusters (Crankshaw et al., 2017; Migacz, 2017).

Additionally, the increasingly popular trend of automatic
hyper-parameter tuning of DL models (Bergstra et al., 2013;
Li et al., 2016; Rasley et al., 2017) further emphasizes the
need to improve GPU utilization. This can be viewed as “pre-
training.” One exploration task usually generates hundreds
of training jobs in parallel, many of which are killed as
soon as they are deemed to be of poor quality. Improved
GPU utilization by spatiotemporal packing of many of these
jobs together results in shorter makespan, which is desirable
because exploration jobs arrive in waves and the result is
useful only after all jobs are finished.

We address these issues by presenting Salus, which en-
ables fine-grained sharing of individual GPUs with flexible
scheduling policies among co-existing, unmodified DL ap-
plications. While simply sharing a GPU may be achievable,
doing so in an efficient manner is not trivial (§2.2). Salus
achieves this by exposing two GPU sharing primitives: fast
job switching and memory sharing (§3). The former ensures
that we can quickly switch the current active DL job on a
GPU, enabling efficient time sharing and preemption. The
latter ensures high utilization by packing more small DL
jobs on the same device. The unique memory usage pat-
tern of DL applications is the key to why such primitives
can be efficiently implemented in Salus: we identify three
different memory usage types and apply different manage-
ment policies when handling them (§3.2). Combining these
two primitives, we implement a variety of GPU scheduling
solutions (§4).

We have integrated Salus with TensorFlow and evaluated
it on a collection of DL workloads consisting of popular
DL models (§5). Our results show that Salus improves the
average completion time of DL training jobs by 3.19× by
efficiently implementing the shortest-remaining-time-first
(SRTF) scheduling policy to avoid HOL blocking. In addi-
tion, Salus shows 2.38× improvement on GPU utilization
for the hyper-parameter tuning workload, and 42× over
not sharing the GPU and 7× over NVIDIA MPS for DL
inference applications with small overhead.

2 BACKGROUND AND MOTIVATION

2.1 DL Workloads Characteristics

We analyzed a collection of 15 DL models (Table 2 in Ap-
pendix) to understand the resource usage patterns of DL
jobs. This set of models are compiled from the official Ten-
sorFlow CNN benchmarks (TensorFlow, 2020) and other
selected popular models in respective fields.

In order to cover a wider range of use cases, while keeping
the native input characteristics, we varied the batch size to

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Memory Usage (GB)

vgg19
vgg16
vgg11

vae
superres

speech
seq2seq
resnet50

resnet152
resnet101

overfeat
inception4
inception3
googlenet

alexnet Average
Peak

Figure 1. Average and peak GPU memory usage per workload,
measured in TensorFlow and running on NVIDIA P100. The aver-
age and peak usage for vae is 22 MB, 35 MB, which are too small
to show in the figure. The appendix also includes the measurement
in PyTorch (Figure 14), which shares a similar pattern.

create 45 distinct workloads, as shown in Table 2. Note that
the batch size specifies the number of samples (e.g., images
for CNNs) trained in each iteration and affects the size of
model parameters. Thus the larger the batch size, the longer
it takes to compute an iteration. Throughout the paper, we
uniquely identify a workload by the model name plus the
input batch size. For example, alexnet 25 means a job
training alexnet, with a batch size of 25.

In terms of GPU resource usage, one can consider two high-
level resources: (i) GPU computation resources (primarily
in terms of computation time, often referred to as GPU
utilization in the literature) and (ii) GPU memory. We found
that both are often correlated with the complexity of the
DL model. However, GPU memory is especially important
because the entire DL model and its associated data must
reside in memory for the GPU to perform any computation;
in contrast, computations can be staggered over time given
sufficient GPU memory.

In the following, we highlight a few key GPU memory usage
patterns in DL workloads that lead to memory underutiliza-
tion issues and/or opportunities for improvements.

Heterogeneous Peak Memory Usage Across Jobs DL
workloads are known for heavy memory usage (Abadi et al.,
2016; Li et al., 2014; Chilimbi et al., 2014). Figure 1 visual-
izes the average and peak memory usages of our workloads.
As models become larger (with more and wider layers) and
the batch size increases, memory requirements of DL jobs
increase as well. For example, we observed peak memory
usages as high as 13.8 GB for resnet152 and as low as
less than 1 GB for vae. Such high variations suggest that

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

2 3 4 5 6 7
Time (s)

0.0 B

4.0 G

8.0 G

12.0 G
Te

ns
or

Fl
ow

M
em

or
y

U
sa

ge

2 4 6 8
Time (s)

0.0 B

4.0 G

8.0 G

12.0 G

Py
To

rc
h

M
em

or
y

U
sa

ge

Figure 2. Part of the GPU memory usage trace showing the spa-
tiotemporal pattern when training resnet101 75 on NVIDIA
P100, using TensorFlow and PyTorch.

even during peak allocation periods, it may be possible to
run multiple models on the same GPU instead of FIFO.

Temporal Memory Usage Variations Within a Job
Within each job, however, each iteration of a DL training
job is highly predictable with a well-defined peak memory
usage and a trough in between iterations. Figure 2 shows
an example. This is because DL jobs go through the same
sequence of operations and memory allocations in each it-
eration. The presence of predictable peaks and troughs can
help us identify scheduler invocation points.

Low Persistent Memory Usage Another important char-
acteristic of GPU memory usage of DL jobs is the use of
persistent memory to hold parameters of a model – this cor-
responds to the consistent troughs across iterations. Even
though the peak usage can be very high, most of it is tem-
porary data created and destroyed within the same iteration.
Fortunately, the size of persistent memory is often very
low in comparison to the peak, ranging from 110.9 MB
for googlenet 25 to 822.2 MB for resnet152 75. As
long as the model parameter is already in GPU memory, we
can quickly start an iteration of that model. This gives us an
additional opportunity to improve sharing and utilization.

2.2 Existing Techniques for Sharing GPUs

Given that DL workloads leave ample room for GPU shar-
ing, a straw man approach would be disabling the exclusive
access mode and statically partitioning the GPU memory
among DL jobs. This cannot completely address the under-
utilization problem due to high peak-to-average memory
usage of DL jobs.

NVIDIA’s Multi-Process Service (MPS) (NVIDIA, 2020a)
can be used to speed up the static partitioning approach
for GPU sharing by avoiding costly GPU context switches.
Nonetheless, MPS has limited support for DL frameworks
or companies’ in-house monitoring tool according to our
experiments and various bug reports.

Static partitioning and MPS also fail to provide performance
isolation. Co-located DL jobs can cause large and hard to
predict interferences. A recent work, Gandiva (Xiao et al.,
2018) approaches this by trial and error and fallback to
non-sharing mode. Xu et al. (2019) propose to use machine
learning model to predict and schedule GPU-using VMs in
the cluster to minimize interferences.

NVIDIA’s TensorRT Inference server (Migacz, 2017) and
the prior work by Samanta et al. (2019) achieve simultane-
ous DL inference in parallel on a single GPU. But they lack
support for DL training.

Finally, earlier works on fine-grained GPU sharing fall into
two categories. Some attempt to intercept GPU driver API
calls and dynamically introduce concurrency by time-slicing
kernel execution at runtime (Pai et al., 2013; Ravi et al.,
2011; Park et al., 2015). Others call for new APIs for GPU
programming (Suzuki et al., 2016; Yeh et al., 2017; Zhang
et al., 2018). These solutions are designed for jobs with
a few GPU kernels; as such, they are not scalable to DL
applications, where the number of unique kernels can easily
go up to several hundreds.

3 SALUS

Salus 2 is our attempt to build an ideal solution to GPU shar-
ing. It is designed to enable efficient, fine-grained sharing
while maintaining compatibility with existing frameworks
(§3.1). Its overall design is guided by the unique memory
usage characteristics of DL jobs. Packing multiple jobs onto
one GPU changes the combined memory allocation patterns
and special care must be taken to mitigate increased frag-
mentation, because existing DL frameworks are designed for
the job-exclusive GPU usage scenario. Salus addresses both
temporal and spatial aspects of the memory management
problem by enabling two GPU sharing primitives:

1. Fine-grained time sharing via efficient job switching
among ongoing DL jobs (§3.2);

2. Dynamic memory sharing via the GPU lane (§3.3).

Together, these primitives open up new scheduling and re-
source sharing opportunities. Instead of submitting one job
at a time, which can easily lead to HOL blocking, one can
perform preemption or run multiple DL jobs in a time- or

2Salus is available as an open-source software at https://
github.com/SymbioticLab/Salus.

https://github.com/SymbioticLab/Salus
https://github.com/SymbioticLab/Salus

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

DL Framework Salus Adaptor

GPU

Memory
Manager

Session

Scheduler

1a 2a

1b

2b

User Script

Figure 3. Salus sits between DL frameworks and the hardware in
the DL stack, being transparent to users.

space-shared manner – all of which can be utilized by a
GPU cluster scheduler (Xiao et al., 2018; Gu et al., 2019).
We demonstrate the possibilities by implementing common
scheduling policies such as preempting jobs for shortest-
remaining-time-first (SRTF) or fair sharing, and packing
many jobs in a single GPU to increase its utilization (§4).

3.1 Architectural Overview

At the highest level, Salus is implemented as a singleton
execution service, which consolidates all GPU accesses,
thus enabling sharing while avoiding costly context switch
among processes on the GPU. As a result, any unmodified
DL job can leverage Salus using a DL framework-specific
adaptor (Figure 3).

From a framework’s point of view, the adaptor abstracts
away low level details, and Salus can be viewed as another
(virtual) computation device; From a user’s perspective, the
API of the framework does not change at all. All scripts will
work the same as before.

It is perhaps better to explain the architecture via an example
of the life cycle of a DL job. When a job is created in an
user script, Salus adaptor in the DL framework creates a
corresponding session in Salus (1a). The computation graph
of the DL job is also sent to Salus during the creation.

The session then proceeds to request a lane from the memory
manager (1b). Depending on current jobs in the system,
this process can block and the session will be queued (§3.3).

During the job’s runtime, either training or inferencing, iter-
ations are generated by the user script and forwarded to the
corresponding session in Salus (2a). They are then sched-
uled according to their associated GPU lanes by the iteration
scheduler (2b), and send to GPU for execution.

The Salus execution service thus achieves GPU sharing via
iteration-granularity scheduling of DL jobs. We elaborate
on a performance-efficiency tradeoff in choosing this granu-

0 1 2 3
Transfer Time to Inference Latency Ratio

0.0

0.5

1.0

C
D

F

Figure 4. Cumulative distribution function (CDF) of theoretical
minimal transfer time to model inference latency ratio for 15 mod-
els. Transfer time is calculated using 30 GB/s for transfer speed.

larity (§3.2.2).

3.2 Efficient Job Switching

The ability to switch between jobs is paramount to imple-
ment time sharing and preemption – two techniques exten-
sively used by modern schedulers in many contexts. Sus-
pending a running job and resuming the same or another
one have always been possible on GPU as well. Modern
DL frameworks extensively use checkpointing to mitigate
data and computation loss due to the long running nature
of DL training jobs. The same technique is applied by
Gandiva (Xiao et al., 2018) to achieve second-scale sus-
pend/resume. Nevertheless, checkpointing can result in large
data transfers from and to the GPU memory, even in the
best case when only model parameters are transferred, the
communication time is still non-negligible. It even becomes
unacceptable if the system ever wants to support inference
workloads: the theoretical minimal transfer time can be even
several times longer than the inference latency itself, ac-
cording to the measurement on our collection of workloads
(Figure 4).

Observation 1 Transferring GPU memory back and forth
is not practical to achieve low latency given current GPU
communication bandwidth.

3.2.1 Characterizing DL Memory Allocations

We observe that one can push things further by taking a close
look at different types of memory allocations in a DL job.
Specifically, we define three types of memory allocations
with unique characteristics.

1. Model: These mostly hold model parameters and typi-
cally consist of a few large chunks of memory. They are
persistent because they have to be available throughout
the whole job’s lifetime. Because the model size is typi-
cally fixed during the entire training process, model data
has little or no temporal variations and is predictable.

2. Ephemeral: These are the scratch memory needed dur-
ing each iteration. These memory usually hold interme-
diate layers’ outputs as well as temporary data generated
by the algorithm itself. They are only needed during

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

1B 256B 64K 16M 4G
Memory Allocation Size

0.0

0.5

1.0
C

D
F

0 1000
Memory Allocations

1B
256B
64K
16M

4G
128G

C
um

su
m

 o
f S

iz
es

Framework Model Ephemeral

Figure 5. Memory allocation distribution for ephemeral, model and
framework-internal memory, measured using inception3 50.

computations and are released between iterations, giv-
ing rise to the temporal memory usage patterns of DL
jobs. They are often large memory allocations as well.

3. Framework-internal: These are usually used by the DL
framework for book-keeping or for data preparation
pipeline. They often persist across iterations.

Collectively, model and framework-internal memory are
persistent across iterations. As an example, Figure 5 gives
the memory allocation size distribution for a popular CNN
workload: inception3 50.

Observation 2 There is significantly less persistent mem-
ory than ephemeral ones in a DL job. It is possible to keep
more than one job’s persistent memory in GPU while still
having enough space for either one’s ephemeral memory.

The above two observations naturally lead to the conclu-
sion that fast job switching can be enabled by not removing
persistent memory from GPU at all. Thus unlike existing
works (Xiao et al., 2018), Salus is designed to enable signif-
icantly faster suspend/resume operations by keeping persis-
tent memory around, and then an iteration-granularity job
scheduler (e.g., time sharing or preemption-based) decides
which job’s iteration should be run next.

3.2.2 Scheduling Granularity

Given that iterations are typically short in DL jobs (ranging
from tens of milliseconds to a few seconds), with an even
finer granularity, e.g., at the GPU kernel level, it may be
possible to further utilize GPU resources. However, finer-
grained scheduling also adds more overhead to the execution
service. Indeed, there is a tradeoff between maximum uti-
lization and efficiency for a given scheduling granularity.

To understand this tradeoff, we prototyped a GPU kernel-
level switching mechanism as well only to find that schedul-
ing at that level incurs too much overhead for little gain. It
requires all GPU kernels to go through a central scheduler,
which, in addition to becoming a single bottleneck, breaks
common efficiency optimizations in DL frameworks such

Ps
t.

Ep
h.

M
em

or
y

Job A Job B Job C

𝑘 − 1 𝑘 𝑘 + 1
Iteration

Ep
h.

M
em

or
y

Ps
t.

Ep
h.

M
em

or
y

Job A Job B Job C

𝑘 − 1 𝑘 𝑘 + 1
Iteration

Ep
h.

M
em

or
y

(a) Memory regions

Ps
t.

Ep
h.

M
em

or
y

Job A Job B Job C

𝑘 − 1 𝑘 𝑘 + 1
Iteration

Ep
h.

M
em

or
y

(b) Auto defrag. at iteration boundaries.

Figure 6. The memory layout of the GPU lane scheme.

as kernel batching and pipelining.

3.3 Spatial Sharing via GPU Lane

Although DL jobs’ memory usages have spatiotemporal
variations, many cannot reach the total capacity of a GPU’s
memory. Naturally, we must consider ways to better utilize
the unused memory.

Built on top of the efficient job switching, we design a
special memory layout scheme, the GPU Lane, that achieves
memory sharing and improves memory utilization.

First of all, learning from classic memory management
techniques of stack and heap to seperate dynamic alloca-
tions from static ones, we divide GPU memory space into
ephemeral (Eph.) and persistent (Pst.) regions, growing
from both end of the memory space (Figure 6a). A DL job’s
ephemeral memory goes into the ephemeral region, while
other types of memory is allocated in the persistent region.

The ephemeral region is further divided into lanes, which
are continuous memory spaces that can contain ephemeral
memory allocation for iterations. Lanes are not only about
memory, though. Iteration execution is serialized within
a lane and parallelism is achieved across lanes, which is
implemented using GPU streams. Each lane can be assigned
to multiple DL jobs, which are time-shared within the lane.

The lane’s restriction on execution is necessary because
different from the other two types of memory, ephemeral al-
locations happens in small chunks and cannott be predicted
ahead. As a result, simply putting two iterations together
may cause deadlock because there is no swapping 3 for the
oversubscribed memory.

Even if enough memory is ensured for both peak memory us-
age for two iterations, memory fragmentation can still cause
superfluous out-of-memory errors if not handled correctly.
More specifically, while the framework-internal memory
allocations are small in size, they can have a large impact
on the overall memory layout and may create more memory
fragments when multiple iterations are allocating simulta-

3The existing memory overcommit technique Unified Memory
Access is too slow to use. See §5.4.

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

neously. While there are works implementing a memory
planner before actually starting the iteration (Chen et al.,
2015), they are not available to all frameworks.

Since our goal is to fully support existing workloads with
minimal impact on the user, we approach the problem by
limiting the dynamic allocation in the ephemeral region and
isolate memory allocations across lanes to ensure maximum
compatibility while achieving adequate flexibility.

3.3.1 Lane Auto Defragmentation

Having lanes does not eliminate memory fragmentation, it
moves fragmentation within lane to fragmentation at the lane
level. However, defragmentation is much easier at this level.
Traditionally, defragmentation is achieved by first moving
data out of memory and later moving it back again. In case
of lanes, the allocations are released completely at the end
of each iteration – they are ephemeral memory after all.
Therefore, defragmentation happens almost automatically
at no cost: no extra memory movement is needed.

Consider the situation illustrated in Figure 6b, when job C
stops, its lane space is quickly reclaimed (the red arrow) at
the iteration boundary by job B that was allocated below it.

3.3.2 Lane Assignment

It is vital to determine the size and number of lanes in the
GPU, as well as how lanes are assigned to jobs. Salus uses
a simple yet efficient algorithm to decide between opening
a new lane and putting jobs into existing lanes.

Throughout the process, the following “safety” condition
is always kept to make sure the persistent region and
ephemeral region do not collide into each other:∑

job i

Pi +
∑
lane l

max
job j in l

(Ej) ≤ C

where P and E are respectively the persistent (model and
framework-internal) and ephemeral memory usage of a job.
C is the capacity of the GPU. The second term is the sum of
all lanes’ size, which is defined as the maximum ephemeral
memory usage of all jobs in the lane.

By ensuring enough capacity for persistent memory of all
the admitted jobs and enough remaining for the iteration
with the largest temporary memory requirement, Salus in-
creases the utilization while making sure that at least one
job in the lane can proceed.

Implementation-wise, the system is event-driven, and reacts
when there are jobs arriving or finishing, or at iteration
boundaries when auto defragmentation happens. The lane
finding logic is shown in Algorithm 1, which outputs a
suitable lane given a job’s memory requirement.

How to reorganize lane assignments is an open question. We

Algorithm 1 Find GPU Lane for Job

1: Input: P : the job’s persistent memory requirement
E: the job’s ephemeral memory requirement
C: total memory capacity of the GPU
Pi: persistent memory usage of existing job i
Lj : lane size of existing lane j
L: set of existing lanes

2: if
∑

i Pi + P +
∑

j Lj + E ≤ C then
3: lane ← new GPU lane with capacity E
4: return lane
5: end if
6: for all j ∈ L do
7: if Lj ≥ E and is the best match then
8: return j
9: end if

10: end for
11: for r ∈ L in Lr ascending order do
12: if

∑
i Pi + P +

∑
j Lj − Lr + E ≤ C then

13: Lr ← E
14: return r
15: end if
16: end for
17: return not found

find the one implemented in our algorithm works fairly well
in practice, but there are more possibilities about finding the
optimal number of lanes given a set of jobs.

4 SCHEDULING POLICIES IN SALUS

The state-of-the-art for running multiple DL jobs on a single
GPU is simply FIFO, which can lead to HOL blocking.
Although recent works (Xiao et al., 2018; Gu et al., 2019)
have proposed time sharing, they enforce sharing over many
minutes due to high switching overhead.

Thanks to its fine-grained GPU sharing primitives, Salus
makes it possible to pack jobs together to increase efficiency,
or to enforce any priority criteria with preemption. It opens
up a huge design space to be explored in future works.

To demonstrate the possibilities, in our current work,
we have implemented some simple scheduling policies,
with Salus specific constrains (i.e., safety condition). The
PACK policy aims to improve resource utilization and thus
makespan, the SRTF policy is an implementation of shortest-
remaining-time-first (SRTF), and the FAIR policy tries to
equalize resource shares of concurrent jobs.

4.1 PACK to Maximize Efficiency

To achieve higher utilization of GPU resources, many jobs
with different GPU memory requirements can be packed
together in separate GPU lanes based on their memory us-

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

ages. However, packing too many lanes exceeding the GPU
memory capacity will either crash the jobs or incur costly
paging overhead (if memroy overcommit is enabled), both
of which would do more harm than good. Consequently, this
policy works with “safety” condition to ensure that the total
peak memory usage across all lanes is smaller than the GPU
memory capacity. No fairness is considered among lanes.

Apart from training many different jobs or many hyper-
parameter searching jobs in parallel, this can also enable
highly efficient inference serving. By simultaneously hold-
ing many models in the same GPU’s memory, Salus can
significantly decrease the GPU requirements of model serv-
ing systems like Clipper (Crankshaw et al., 2017).

4.2 SRTF to Enable Prioritization

Developing DL models are often an interactive, trial-and-
error process where practitioners go through multiple it-
erations before finding a good model. Instead of waiting
for an on-going large training to finish, Salus can enable
preemption – the large job is paused – to let the smaller
one finish faster. This way, Salus can support job priorities
based on arbitrary criteria, including size and/or duration to
implement the shortest-remaining-time-first (SRTF) policy.
The higher priority job is admitted as long as its own safety
condition is met – i.e., at least, it can run alone on the GPU
– regardless of other already-running jobs.

Note that we assume the job execution time is known and
thus it is possible to implement SRTF. While there are works
on how to estimate such job execution time (Peng et al.,
2018), the subject is beyond the scope of this paper and we
only focus on providing primitives to enable the implemen-
tation of such schedulers.

4.3 FAIR to Equalize Job Progress

Instead of increasing efficiency or decreasing the average
completion time, one may want to time share between many
DL jobs during high contention periods. Note that there may
be many different so-called fair algorithms based on time
sharing; we demonstrate the feasibility of implementing one
or more of them instead of proposing the optimal fairness
policy. Specifically, we admit new jobs into the GPU while
maintaining the safety condition, and equalize total service
over time for jobs in each lane.

5 EVALUATION

We have integrated Salus with TensorFlow and evaluated it
using a collection of training, hyper-parameter tuning, and
inference workloads (TensorFlow, 2020; Sutskever et al.,
2014; Kingma & Welling, 2013; Shi et al., 2016; Hannun
et al., 2014) to understand its effectiveness and overhead.
The highlights of our evaluation are as follows:

0 5000 10000 15000
JCT (s)

0.0

0.5

1.0

C
D

F

FIFO
SRTF
PACK
FAIR

Figure 7. CDFs of JCTs for all four scheduling policies.

Sched. Makespan Avg. Avg. 95%
Queuing JCT JCT

FIFO 303.4 min 167.6 min 170.6 min 251.1 min
SRTF 306.0 min 28.6 min 53.4 min 217.0 min
PACK 287.4 min 129.9 min 145.5 min 266.1 min
FAIR 301.6 min 58.5 min 96.6 min 281.2 min

Table 1. Makespan and aggregate statistics for different schedulers.

• Salus can be used to implement many popular schedul-
ing algorithms. For example, the preemptive SRTF
scheduler implemented in Salus can outperform FIFO
by 3.19× in terms of the average completion time of DL
training jobs (§5.1).
• Salus can run multiple DL jobs during hyper-parameter

tuning, increasing GPU utilization by 2.38× (§5.2).
• Similarly, for inference, Salus can improve the overall

GPU utilization by 42× over not sharing the GPU and
7× over NVIDIA MPS (§5.3).
• Salus has relatively small performance overhead given

its flexibility and gains (§5.4).

Environment All experiments were done on a x86 64
based Intel Xeon E5-2670 machine with 2 NVIDIA Tesla
P100 GPUs available in CloudLab (Duplyakin et al., 2019).
Each GPU has 16GB on-chip memory. TensorFlow v1.5.0
and CUDA 8.0 are used in all cases.

Baseline (s) Our primary baseline is the FIFO scheduling
commonly used in today’s GPU clusters (Xiao et al., 2018).
We also compare against NVIDIA MPS.

5.1 Long-Running Training

We start by focusing on Salus’s impact on training. To this
end, we evaluate Salus using a job trace of 100 workloads,
generated using the jobs described in Table 2. We considered
multiple batch sizes and durations of each training job in
the mix. The overall distribution followed one found in a
production cluster (Gu et al., 2019).

We compare four different schedulers:

1. FIFO refers to processing jobs in order of their arrival.

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

0 50 100 150 200 250
Time (s)

0
1
2
3
4
5

Jo
b

#

Queuing
Active

(a) A slice of 6 jobs switching between each other. Gray areas represents the waiting between a
job arrives and it actually gets to run. Black areas represent active execution.

0.0 1.0 2.0
Time (s)

0.0 B

2.0 G

4.0 G

6.0 G

8.0 G

M
em

or
y

U
sa

ge

(b) Memory usage during a
job switching.

Figure 8. Details of a snapshot during the long trace running with SRTF. In both slices, time is normalized.

This is the de facto mechanism in use today.
2. SRTF is a preemptive shortest-remaining-time-first

scheduler. We assume that the duration is known or
can be estimated (Peng et al., 2018).

3. PACK attempts to pack as many jobs as possible in to
the GPU. The goal is to minimize the makespan.

4. FAIR uses time sharing to equally share the GPU time
among many jobs.

5.1.1 Overall Comparison

Figure 7 presents the distributions of JCTs for all four poli-
cies, while Table 1 presents makespan and aggregate statis-
tics. Given the similarities of makespan values between
FIFO, SRTF, and FAIR, we can conclude that Salus intro-
duces little overhead. Furthermore, packing jobs can indeed
improve makespan. Note that because of online job arrivals,
we do not observe large improvement from PACK in this
case. However, when many jobs arrive together, PACK can
indeed have a larger impact (§5.2).

These experiments also reestablishes the fact that in the
presence of known completion times, SRTF can indeed
improve the average JCT – 3.19× w.r.t. FIFO in this case.

5.1.2 Impact of Fast Job Switching

We evaluate Salus’s ability to perform fast job switching in
two contexts. First, we show that it allows cheap preemption
implementation, which, in turn, makes possible the shortest-
remaining-time-first (SRTF) scheduling policy. Second, we
show fast job switching can achieve fair sharing among DL
jobs in seconds-granularity – instead of minutes (Xiao et al.,
2018). In both cases, we consider a single GPU lane.

SRTF Consider the following scenario: a large training
job has been running for a while, then the user wants to
quickly do some test runs for hyper-parameter tuning for
smaller models. Without Salus, they would have to wait
until the large job finishing – this is an instance of HOL
blocking. Salus enables preemption via efficient switching
to run short jobs and resumes the larger job later.

0 20 40 60 80 100
Time (s)

0

100

Im
ag

es
pe

r s
ec

on
d

Figure 9. Fair sharing among three inception3 50 training
jobs. Black dashed line shows the overall throughput.

We pick a segment in the long job trace, containing exact the
scenario, and record its detailed execution trace, showing in
Figure 8a. When job #1 arrives, the background job #0 is
immediately stopped and Salus switches to run the newly
arrived shorter job. Job #2 comes early than job #3, but
since #3 is shorter, it is scheduled first. And finally since job
#5 is shorter, #4 is preempted and let #5 run to completion.
During the process, the background job #0 is only scheduled
when there is no other shorter job existing.

Figure 8b is another example demonstrating Salus’s ability
to fast switch. It visualizes memory allocations in the scale
of seconds: at the moment of a job switching, the second
job’s iteration starts immediately after the first job stops.

Time Sharing/Fairness To better illustrate the impact of
fairness, we show another microbenchmark, demonstrating
Salus’s ability to switch jobs efficiently using 3 training
jobs and focusing on the fair sharing of GPU throughput in
Figure 9.

For ease of exposition, we picked three jobs of the same DL
model inception3 50 – this allows us to compare and
aggregate training throughput of the three models in terms
of images processed per second. In this figure, in addition
to the throughput of individual jobs, the black dashed line
shows the aggregate throughput.

The training jobs start at time 0s, 15s and 30s. At 15s, when
the second job starts, while the total throughput remains
unchanged, each job’s share is halved. It further reduces

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

al
ex

ne
t

go
og

le
ne

t

in
ce

pt
io

n3

in
ce

pt
io

n4

ov
er

fe
at

re
sn

et
10

1

re
sn

et
15

2

re
sn

et
50

se
q2

se
q

su
pe

rr
es va
e

vg
g1

1

vg
g1

6

vg
g1

9

0

20

40

60
La

te
nc

y
(m

s) Salus
TF
MPS

TF

M
PS

Sa
lu

s

0

20

40

of

 G
PU

s n
ee

de
d

Figure 10. The latencies and number of GPUs needed to host 42 DL models for inference at the same time. 3 instances of each model is
created. Each instance has a low request rate.

superres_128 resnet50_50
0

250

500

M
ak

es
pa

n
(m

in
)

Salus
TF

Figure 11. Makespan of two hyper-parameter tuning multi-jobs
each of which consists of 300 individual jobs.

to about a third when the third job arrives. Similarly, the
reverse happens when jobs finishes in the reverse order. The
system throughput roughly remains the same throughout the
experiment. Note that Salus reacts almost immediately for
job arriving and leaving events.

In contrast, FIFO scheduling or other sharing policies (e.g.,
MPS) cannot enforce fair sharing.

5.2 Hyper-Parameter Exploration

Using Salus to PACK many jobs is especially useful when
many/all jobs are ready to run. One possible use case for
this is automatic hyper-parameter tuning. Typically, hun-
dreds of training jobs are generated in parallel for parameter
exploration. Most of the generated models will be killed
shortly after they are deemed to be of poor quality. In this
case, increasing the concurrency on GPU can help improve
the parameter exploration performance by running multiple
small jobs together, whereas today only FIFO is possible.

We evaluate two sets of hyper-parameter exploration jobs:
resnet50 50 and superres 128, for image classifi-
cation and resolution enhancement, respectively. Each set
has 300 jobs, and each one completes after all 300 com-
plete. A comparison of achieved makespan using FIFO
(in TensorFlow) and Salus is shown in Figure 11. In the
resnet50 50 case, there is 1.07× makespan improve-
ment while it is 2.38× for superres 128.

Little improvement is seen for resnet50 50 because

while the GPU has enough memory, computation becomes
the bottleneck under such heavy sharing. Consequently, the
makespan does not see much improvement.

5.3 Inference

So far we have only discussed DL training, but we note
that serving a trained model, i.e., inference, can also be a
good – if not better – candidate for GPU memory sharing.
Rather than focusing on throughout when training, latency
of individual inference request becomes a more important
requirement when serving DL models (Crankshaw et al.,
2017; Migacz, 2017).

In order to keep responsive to requests, DL models have to
be online 24×7 hours. In the traditional setting, each model
must reside on a dedicated GPU. However, the traffic of
serving requests is not always constant throughout the day,
and there are times when the request rate is significantly
lower compared to peak. Consolidating DL models into
fewer GPUs while remain responsive can save the maintains
cost for service providers.

We demonstrate Salus’s ability to reduce the number of
GPUs needed while maintaining reasonable response la-
tency in Figure 10. 42 DL inference jobs are selected con-
sisting of 14 different models, 3 instances for each model.
Without MPS or Salus, 42 GPUs are needed to hold these
DL models. In contrast, Salus needs only 1 GPU, achieving
42× improvement, while the average latency overhead is
less than 5ms. For comparison, MPS needs 6 GPUs.

A future work is to detect current request rate for inference
jobs and automatically scale up or down horizontally. Nev-
ertheless, Salus provides the essential primitives that makes
the implementation possible.

5.4 Overhead

Salus has to be efficient, otherwise the benefits gained from
sharing can be easily offset by the overhead. Figure 12
shows per iteration training time in Salus, normalized by

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

al
ex

ne
t

go
og

le
ne

t
in

ce
pt

io
n3

in
ce

pt
io

n4
ov

er
fe

at
re

sn
et

10
1

re
sn

et
15

2
re

sn
et

50
se

q2
se

q
sp

ee
ch

su
pe

rr
es va
e

vg
g1

1
vg

g1
6

vg
g1

9

Workloads

0.9

1.0

1.1

N
or

m
al

iz
ed

Pe
r I

te
ra

tio
n

Tr
ai

ni
ng

 T
im

e 1.831.81

Figure 12. Per iteration time per workload in Salus, normalized by
that of TensorFlow. Only the largest batch size for each model is
reported, as other batch sizes have similar performance.

per iteration training time in baseline TensorFlow.

For most CNN models, Salus has minimal overhead – less
than 10%, except for a few. The common point of these
high-overhead DL models is that they also performs large
portion of CPU computation in addition to heavy GPU us-
age. Since Salus implements its own execution engine, the
CPU computation is also redirected and sent to Salus for
execution, which is not yet heavily optimized.

We finally proceed to compare the performance to run
two jobs on a single GPU using existing solutions. Two
alexnet 25 training jobs are started at the same time and
each runs for a minute. The jobs share a single GPU using
Salus, static partitioning (SP), static partitioning with MPS
(SP+MPS), and static partitioning with MPS and memory
overcommit (SP+MPS+OC). We collect and compare the
average JCT and report the result in Figure 13.

The result confirms that MPS is indeed better than SP due to
the avoidance of GPU context switching. Unfortunately, the
SP+MPS+OC solution has significantly bad performance
that is beyond useful at the moment. Salus manages to
achieve almost the same performance as MPS while provid-
ing much more flexibility in scheduling policy. As shown
before, in lightly-loaded inference scenarios, it can signifi-
cantly outperform MPS in terms of utilization.

SP SP+MPS SP+MPS+OC Salus
0

100

Ti
m

e
(s

)

698.45
Average JCT

Figure 13. Two concurrent alexnet 25 training jobs for 1 min.

6 CONCLUDING REMARKS

GPUs have emerged as the primary computation devices for
deep learning (DL) applications. However, modern GPUs
and their runtimes do not allow efficient multiple coexisting
processes in a GPU. As a result, unused memory of a DL
job remains unaccessible to other jobs, leading to large effi-
ciency, performance loss, and head-of-line (HOL) blocking.

Salus enables fine-grained GPU sharing among complex,
unmodified DL jobs by exposing two important primitives:
(1) fast job switching that can be used to implement time
sharing and preemption; and (2) the GPU lane abstraction
to enable dynamic memory partitioning, which can be used
for packing multiple jobs on the same GPU. Together, they
can be used to implement unforeseen new policies as well.

However, Salus is only a first attempt, and it opens many in-
teresting research challenges. First, Salus provides a mecha-
nism but the question of policy – what is the best scheduling
algorithm for DL jobs running on a shared GPU? – remains
open. Second, while not highlighted in the paper, Salus can
be extended to multiple GPUs or even other accelerators on
the same machine. Finally, we plan to extend it to GPUs
across multiple machines leveraging RDMA.

ACKNOWLEDGMENTS

We thank the ConFlux team from the University of Michigan
for providing GPU servers, which made many experiments
on Salus possible. We would also like to thank Yuchen
Wang, who helped profile PyTorch memory usage, and Yi-
wen Zhang, who helped with evaluating an earlier version of
Salus that used GPU kernel-granularity scheduling. Special
thanks to all the SymbioticLab members for their helpful
comments and feedback. This research was supported in
part by NSF grants CCF-1629397 and CNS-1909067.

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. TensorFlow: A system for
large-scale machine learning. In OSDI, 2016.

Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pas-
canu, R., Delalleau, O., Desjardins, G., Warde-Farley, D.,
Goodfellow, I., Bergeron, A., and Bengio, Y. Theano:
Deep learning on GPUs with Python. In BigLearn, NIPS
Workshop, 2011.

Bergstra, J., Yamins, D., and Cox, D. D. Hyperopt: A Python
Library for Optimizing the Hyperparameters of Machine
Learning Algorithms. SCIPY, 2013.

Bernstein, D. Containers and Cloud: From LXC to Docker
to Kubernetes. IEEE Cloud Computing, pp. 81–84, 2014.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. MXNet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274,
2015.

Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman,
K. Project Adam: Building an efficient and scalable deep
learning training system. In OSDI, 2014.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gon-
zalez, J. E., and Stoica, I. Clipper: A low-latency online
prediction serving system. In NSDI, 2017.

Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M.,
Le, Q. V., Mao, M. Z., Ranzato, M., Senior, A., Tucker,
P., Yang, K., and Ng, A. Y. Large scale distributed deep
networks. In NIPS, 2012.

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J.,
Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K.,
Akella, A., Wang, K., Ricart, G., Landweber, L., Elliott,
C., Zink, M., Cecchet, E., Kar, S., and Mishra, P. The
design and operation of CloudLab. In ATC, 2019.

Dutta, D. and Huang, X. Consistent multi-cloud AI lifecycle
management with kubeflow. In OpML, 2019.

Gu, J., Chowdhury, M., Shin, K. G., Zhu, Y., Jeon, M., Qian,
J., Liu, H., and Guo, C. Tiresias: A GPU Cluster Manager
for Distributed Deep Learning. In NSDI, pp. 485–500,
2019.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G.,
Elsen, E., Prenger, R., Satheesh, S., Sengupta, S., Coates,
A., et al. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567, 2014.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A.,
Joseph, A. D., Katz, R., Shenker, S., and Stoica, I. Mesos:
A platform for fine-grained resource sharing in the data
center. In NSDI, 2011.

Jeon, M., Venkataraman, S., Phanishayee, A., Qian, J., Xiao,
W., and Yang, F. Analysis of Large-Scale Multi-Tenant
GPU Clusters for DNN Training Workloads. In ATC, pp.
947–960, 2019.

Jia, Z., Maggioni, M., Staiger, B., and Scarpazza, D. P. Dis-
secting the NVIDIA Volta GPU Architecture via Mi-
crobenchmarking. arXiv preprint arXiv:1804.06826,
2018.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a Tensor
Processing Unit. In ISCA, 2017.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436–444, 2015.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A Novel Bandit-Based Ap-
proach to Hyperparameter Optimization. arXiv preprint
arXiv:1603.06560, 2016.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In OSDI, 2014.

Migacz, S. 8-bit inference with tensorrt. In GTC, 2017.

NVIDIA. CUDA Multi-Process Service. https://web.
archive.org/web/20200228183056/https:
//docs.nvidia.com/deploy/mps/index.
html, 2020a. Accessed: 2020-02-28.

NVIDIA. Programming Guide :: CUDA Toolkit Docu-
mentation. https://web.archive.org/web/
20200218210646/https://docs.nvidia.
com/cuda/cuda-c-programming-guide/,
2020b. Accessed: 2020-02-28.

Pai, S., Thazhuthaveetil, M. J., and Govindarajan, R. Im-
proving GPGPU concurrency with elastic kernels. In
ASPLOS, 2013.

Park, J. J. K., Park, Y., and Mahlke, S. Chimera: Collabo-
rative preemption for multitasking on a shared GPU. In
ASPLOS, 2015.

https://web.archive.org/web/20200228183056/https://docs.nvidia.com/deploy/mps/index.html
https://web.archive.org/web/20200228183056/https://docs.nvidia.com/deploy/mps/index.html
https://web.archive.org/web/20200228183056/https://docs.nvidia.com/deploy/mps/index.html
https://web.archive.org/web/20200228183056/https://docs.nvidia.com/deploy/mps/index.html
https://web.archive.org/web/20200218210646/https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://web.archive.org/web/20200218210646/https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://web.archive.org/web/20200218210646/https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems 32, 2019.

Peng, Y., Bao, Y., Chen, Y., Wu, C., and Guo, C. Optimus:
an efficient dynamic resource scheduler for deep learning
clusters. In EuroSys, 2018.

Rasley, J., He, Y., Yan, F., Ruwase, O., and Fonseca, R. Hy-
perdrive: Exploring hyperparameters with pop scheduling.
In Middleware, 2017.

Ravi, V. T., Becchi, M., Agrawal, G., and Chakradhar, S.
Supporting GPU sharing in cloud environments with a
transparent runtime consolidation framework. In HPDC,
2011.

Samanta, A., Shrinivasan, S., Kaufmann, A., and Mace, J.
No DNN Left Behind: Improving Inference in the Cloud
with Multi-Tenancy. arXiv preprint arXiv:1901.06887,
2019.

Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P.,
Bishop, R., Rueckert, D., and Wang, Z. Real-time single
image and video super-resolution using an efficient sub-
pixel convolutional neural network. In CVPR, 2016.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In NIPS, 2014.

Suzuki, Y., Yamada, H., Kato, S., and Kono, K. Towards
multi-tenant GPGPU: Event-driven programming model
for system-wide scheduling on shared GPUs. In MaRS,
2016.

TensorFlow. TensorFlow Benchmarks. https://web.
archive.org/web/20200228184228/https:
//github.com/tensorflow/benchmarks/
tree/cnn_tf_v1.5_compatible, 2020. Ac-
cessed: 2020-02-28.

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S.,
Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth,
S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed,
B., and Baldeschwieler, E. Apache Hadoop YARN: Yet
another resource negotiator. In SOCC, 2013.

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M., Kwatra,
N., Han, Z., Patel, P., Peng, X., Zhao, H., Zhang, Q., Yang,
F., and Zhou, L. Gandiva: Introspective cluster scheduling
for deep learning. In OSDI, 2018.

Xu, X., Zhang, N., Cui, M., He, M., and Surana, R. Char-
acterization and Prediction of Performance Interference

on Mediated Passthrough GPUs for Interference-aware
Scheduler. In HotCloud, 2019.

Yeh, T. T., Sabne, A., Sakdhnagool, P., Eigenmann, R., and
Rogers, T. G. Pagoda: Fine-grained GPU resource virtu-
alization for narrow tasks. In PPoPP, 2017.

Yu, D., Eversole, A., Seltzer, M., Yao, K., Kuchaiev, O.,
Zhang, Y., Seide, F., Huang, Z., Guenter, B., Wang, H.,
Droppo, J., Zweig, G., Rossbach, C., Gao, J., Stolcke,
A., Currey, J., Slaney, M., Chen, G., Agarwal, A., Ba-
soglu, C., Padmilac, M., Kamenev, A., Ivanov, V., Cypher,
S., Parthasarathi, H., Mitra, B., Peng, B., and Huang, X.
An introduction to computational networks and the com-
putational network toolkit. Technical report, Microsoft
Research, October 2014.

Zhang, K., He, B., Hu, J., Wang, Z., Hua, B., Meng, J.,
and Yang, L. G-NET: Effective GPU Sharing in NFV
Systems. In NSDI, 2018.

Zhu, M., Liu, L., Wang, C., and Xie, Y. CNNLab: a novel
parallel framework for neural networks using GPU and
FPGA-a practical study with trade-off analysis. arXiv
preprint arXiv:1606.06234, 2016.

https://web.archive.org/web/20200228184228/https://github.com/tensorflow/benchmarks/tree/cnn_tf_v1.5_compatible
https://web.archive.org/web/20200228184228/https://github.com/tensorflow/benchmarks/tree/cnn_tf_v1.5_compatible
https://web.archive.org/web/20200228184228/https://github.com/tensorflow/benchmarks/tree/cnn_tf_v1.5_compatible
https://web.archive.org/web/20200228184228/https://github.com/tensorflow/benchmarks/tree/cnn_tf_v1.5_compatible

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

A WORKLOADS

Table 2 is the full list of workloads and their batch sizes we
used in our evaluation.

Figure 14 is the same peak and average GPU memory usage
measurement done in PyTorch, except overfeat, which
we could not find a working implementation.

Model Type Batch Sizes

alexnet Classification 25, 50, 100
googlenet Classification 25, 50, 100
inception3 Classification 25, 50, 100
inception4 Classification 25, 50, 75
overfeat Classification 25, 50, 100
resnet50 Classification 25, 50, 75
resnet101 Classification 25, 50, 75
resnet152 Classification 25, 50, 75
vgg11 Classification 25, 50, 100
vgg16 Classification 25, 50, 100
vgg19 Classification 25, 50, 100
vae Auto Encoder 64, 128, 256
superres Super Resolution 32, 64, 128
speech NLP 25, 50, 75
seq2seq NLP Small, Medium, Large

Table 2. DL models, their types, and the batch sizes we used. Note
that the entire model must reside in GPU memory when it is
running. This restricts the maximum batch size we can use.

0 2 4 6 8 10 12
Memory Usage (GB)

vgg19
vgg16
vgg11

vae
superres

speech
seq2seq
resnet50

resnet152
resnet101

inception4
inception3
googlenet

alexnet

Average
Peak

Figure 14. Average and peak GPU memory usage per workload,
measured in PyTorch and running on NVIDIA P100 with 16 GB
memory. The average and peak usage for vae is 156 MB, 185 MB,
which are too small to show in the figure.

B ARTIFACT APPENDIX

B.1 Abstract

The artifact includes the server implementation of Salus,
modified tensorflow, as well as modified tensorflow bench-
marks used in the paper evaluation. This artifact requires

NVIDIA GPU and CUDA.

B.2 Artifact check-list (meta-information)
• Algorithm: yes
• Compilation: G++7 with CMake
• Binary: Docker image available
• Run-time environment: Ubuntu 16.04 with CUDA 9.1 and

CUDNN. Root access not required.
• Hardware: GPU with reasonable large memory
• Metrics: Job completion time
• Output: log files with provided parsing scripts
• How much disk space required (approximately)?: 100GB
• How much time is needed to prepare workflow (approxi-

mately)?: 1 day
• How much time is needed to complete experiments (ap-

proximately)?: 1 week
• Publicly available?: yes
• Code licenses (if publicly available)?: Apache-2.0
• Workflow framework used?: none
• Archived (provide DOI)?: Salus (https://doi.
org/10.5281/zenodo.3606893), tensorflow-salus
(https://doi.org/10.5281/zenodo.3606903),
tf benchmarks (https://doi.org/10.5281/
zenodo.3606901)

B.3 Description

B.3.1 How to access

• Server implementation: https://github.com/
SymbioticLab/Salus

• Tensorflow-salus: https://github.com/
SymbioticLab/tensorflow-salus

• Benchmark: https://github.com/Aetf/tf_
benchmarks

B.3.2 Hardware dependencies

The server code requires NVIDIA P100 GPUs.

B.3.3 Software dependencies

Ubuntu 16.04 OS with the following dependencies:

• g++@7
• cuda@9.1 with cudnn@7
• boost@1.66.0
• cppzmq@4.3.0
• zeromq@4.2.5
• nlohmann-json@3.1.2
• protobuf@3.4.1
• gperftools@2.7
• bazel@0.5.4
• Oracal JDK 8

https://doi.org/10.5281/zenodo.3606893
https://doi.org/10.5281/zenodo.3606893
https://doi.org/10.5281/zenodo.3606903
https://doi.org/10.5281/zenodo.3606901
https://doi.org/10.5281/zenodo.3606901
https://github.com/SymbioticLab/Salus
https://github.com/SymbioticLab/Salus
https://github.com/SymbioticLab/tensorflow-salus
https://github.com/SymbioticLab/tensorflow-salus
https://github.com/Aetf/tf_benchmarks
https://github.com/Aetf/tf_benchmarks

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

To run inside docker, NVIDIA docker runtime is
also needed: https://github.com/NVIDIA/
nvidia-docker

B.3.4 Data sets

Benchmarking uses random generated dataset.

B.4 Installation

To simply run the server with prebuilt docker image:

docker run --rm -it
registry.gitlab.com/salus/salus

B.4.1 Compilation

There are two seperate parts that need to be built in order:
tensorflow-salus and the salus server.

The easiest way is to follow the same instructions used to
build Docker images. Starting from https://gitlab.
com/Salus/builder, which is the base docker image
for tensorflow-salus, one can follow the commands
on a Ubuntu 16.04 system and have an environment similar
to what is used in the container.

After creating the builder environment, build
tensorflow-salus.

Bazel is needed for building tensorlfow, so first install it
from the Github release page: https://github.com/
bazelbuild/bazel/releases/tag/0.5.4. We
need version 0.5.4.

Our modified version of tensorflow uses a helper script to
configure the build system. First run

inv deps && inv init

to create the configuration file invoke.yml. Next, adjust
the configuration file as needed. Most likely the GPU com-
pute capabilities need to be changed. It is under the key
TF CUDA COMPUTE CAPABILITIES. Now the configu-
ration can be used to update the build system and actually
build the package:

inv config
inv build

After successfully building tensorflow, use the following
command to install it into the current virtual environment

inv install

Do not delete the source tree for tensorflow-salus, which is
needed for building the Salus server. The detailed command
can be found in the Dockerfile located at the root of the
Salus repo.

B.5 Experiment workflow

Python scripts under the benchmarks folder can be used
to drive experiments.

Some additional python packages are required, install them
with pip install -r requirements.txt.

The driver can be invoked from the root folder in the Salus
repo

python -m benchmarks.driver expXXX

where expXXX the file expXXX.py under the directory
benchmarks/exps/.

Use python -m benchmarks.driver --help to
see all options. Most likely various paths need to be changed.

B.6 Evaluation and expected result

The figures included in the paper are generated using
the following experiment scripts: card250, card260,
card270, card271, card272, card274, card275,
exp1, exp17, exp62.

After running the experiment, a folder named after the exper-
iment will be created in the output log folder, containing txt
log files that can be further parsed. A corresponding parse
script located in scripts can then be used to parse the
result.

B.7 Experiment customization

New experiment can be done by adding a new experiment
script. Please refer to other scripts for the API.

https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://gitlab.com/Salus/builder
https://gitlab.com/Salus/builder
https://github.com/bazelbuild/bazel/releases/tag/0.5.4
https://github.com/bazelbuild/bazel/releases/tag/0.5.4

