
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Blink: Fast and Generic Collectives for Distributed ML

A APPENDIX

A.1 Micro Benchmarks (DGX-1V)

We continue our discussion of micro benchmarks from Sec-
tion 2.2, highlighting results for forwarding on a chain and
fan in/out tests.

A.1.1 Depth Test

For the forwarding benchmark (Figure 20(a)), GPU1 is
the source node with data named d1, and it passes the
data d1 to GPU2 and then GPU2 forwards it to GPU3 etc.
For “reduce+broadcast” (Figure 20(c)), we perform “re-
duce+forward” in one direction and “forward” in the other
direction, as such a capability can be used for all-to-all
reductions.

A.1.2 Breadth Test

As illustrated in Figure 22(a), in fan-in forward, a center
node (i.e. GPU4) collects data from multiple nodes and then
forwards the collected data to its successor. Instead of just
forwarding data, in the case of fan-in reduce+forward (Fig-
ure 22(b)), the center node computes a reduction function
over the incoming data and its own data, then forwards the
result to it successor. Fan-out forward (Figure 22(c)), is
just the reverse of fan-in forward, in which the center node
receives data from one node (i.e. GPU5), then multicasts
the received data to its successors (i.e. GPU 1,2,3).

We experiment with different data size as we vary the num-
ber of GPUs that serve as fan-in source nodes or fan-out
destination nodes. For DGX-1s, the maximum fan-in and
fan-out degrees are limited to three. For brevity, we omit
the graphs and highlight the key findings. Similar to the
depth tests, with data size >50MB, fan-in and fan-out for-
ward achieves near maximum throughput. Compared with
fan-in forward, the throughput of fan-in reduce+forward de-
creases 1-2 GB/s on average due to the latency of launching
reduction function kernels on the center node (GPU4).

Figure 22 depicts result of breadth tests with different data
size as we vary the number of GPUs that serve as fan-in
source nodes or fan-out destination nodes. We’d like to note
that for the given topology of V100, the maximum fan-in
and fan-out degrees are limited to three. In Figure 22(a),
with data size >50MB, in all three cases, fan-in forward
achieves near maximum throughput. Compared with fan-in
forward, the throughput of fan-in reduce+forward (in Fig-
ure 22(b)) decreases 1-2 GB/s on average due to the latency
of launching reduction function kernels on the center node
(GPU4). We also note that running with 1000MB and a fan-
in of 3 requires allocating memory for each incoming link
and this exceeds the amount of memory available. Finally,
for fan-out forward in Figure 22(c), the throughput is again
close to the peak link bandwidth.

GPU1 
(d1)

GPU2 GPU3 GPU4

d1d1 d1d1 d1d1

(a) chain forward

GPU1 
(d1)

GPU2 
(d2)

GPU3 
(d3)

GPU4

d1d1 d1 + d2d1 + d2 d1     d2     d3d1     d2     d3

(b) chain reduce+forward

GPU1 
(d1)

GPU2 
(d2)

GPU3 
(d3)

GPU4
(d4)

d1d1 d1    d2d1    d2 d1    d2    d3d1    d2    d3

d1    d2    d3    d4d1    d2    d3    d4d1    d2    d3    d4d1    d2    d3    d4d1    d2    d3    d4d1    d2    d3    d4

(c) chain reduce-broadcast

Figure 20. Depth test over a chain of GPUs.

  0

  5

  10

  15

  20

  25

3 4 5 6 7 8

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(a) chain forward throughput

  0

  5

  10

  15

  20

  25

3 4 5 6 7 8

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Reduce+Forward(V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(b) chain reduce+forward throughput

  0

  5

  10

  15

  20

  25

3 4 5 6 7 8

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Reduce−Bcast (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(c) chain reduce-broadcast throughput

Figure 21. Depth test throughput over a chain of GPUs.

A.2 Exploiting Link Heterogeneity

For intra-node communication, servers such as the DGX-
1 have both inter-GPU point-to-point (P2P) interconnects
such as NVLink and shared interconnects such as PCIe
(8-12GB/s) (PCI Express). PCIe connects multiple GPUs
to each other within a machine, and to the CPU and IO
deices, through a PCIe switch hierarchy. For inter-node
communication, servers are equipped with multiple Ethernet
or InfiniBand ports with a throughput of 3GB/s and 7GB/s
per-port respectively. State-of-the-art collectives, such as
NCCL and Horovod, all use ring-based protocols which
fail to leverage link heterogeneity. The throughput of a
ring is limited by the link with lowest bandwidth and hence
these protocols either restrict themselves to high bandwidth,



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Blink: Fast and Generic Collectives for Distributed ML

GPU1 
(d1)

GPU2 
(d2)

GPU4 
(d4)

GPU5

d1d1

d2d2

d1,
d2,
d3,
d4

d1,
d2,
d3,
d4

GPU3 
(d3)

d3d3

(a) Fan-in forward

GPU1 
(d1)

GPU2 
(d2)

GPU4 
(d4)

GPU5

d1d1

d2d2
d1    d2  
d3    d4
d1    d2  
d3    d4

GPU3 
(d3)

d3d3

(b) Fan-in reduce+forward

GPU1

GPU2 GPU4
GPU5
(d5)

d5d5

d5d5
d5d5

GPU3

d5d5

(c) Fan-out forward
Figure 22. Breadth test of data forward, reduce+forward in fan-in and fan-out topologies.

  0

  5

  10

  15

  20

  25

1 2 3

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Fan-in Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(a) Fan-in forward throughput

  0

  5

  10

  15

  20

  25

1 2 3

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Fan-in Reduce+Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(b) Fan-in reduce+forward throughput

  0

  5

  10

  15

  20

  25

1 2 3

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Fan-out Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

(c) Fan-out forward throughput
Figure 23. Breadth test throughput for Fan-in forward, Fan-in reduce+forward, Fan-out forward.

GPU1	

NCCL2	 Blink	

	T
hr
ou

gh
pu

t	(
GB

/s
)	

PCIe	

43.6	

48.4	

GPU3	

GPU0	

(a) Fully connected

NCCL2	 Blink	

	T
hr
ou

gh
pu

t	(
GB

/s
)	

NVLink	

4.8	

26.4	
GPU1	

GPU4	

GPU0	

(b) Partially connected

Figure 24. Broadcast throughput, from GPU 0, using both NCCL
and Blink on a DGX-1V.

homogeneous links, or limit throughput to the link with
lowest bandwidth in the ring. For example, for multi-GPU
communication within a machine, NCCL prioritizes using
only NVLink over PCIe, as PCIe will be the bottleneck if
included in a NVLink ring. Figure 24 shows an example
3 GPU setup for a Broadcast from GPU 0: when fully
connected with NVLink, NCCL builds two rings (0->1-
>3->0 & 0->3->1->0) using bi-directional NVLinks, and
ignores PCIe. If we replace GPU3 with GPU4, the lack
of NVLink between GPUs 1 and 4 prevents NCCL from
constructing NVLink-only rings and it has to fall back on
PCIe based communication.

To handle heterogeneous links, Blink simultaneously
transfers data on PCIe and NVLink within a machine and
and balances the amount of data transferred across hybrid
links. We next discuss how we handle hybrid PCIe and
NVLink topologies in the context of our design presented
above. The main challenge in using both PCIe and NVLink
comes from the fact that NVIDIA driver does not directly
allow users to control access to both links and if NVLinks

are detected, the system will automatically enable P2P data
transfer among GPUs using NVLinks. In our experience
we find that using cudaDeviceDisablePeerAccess
disables NVLinks and forces data transfer through PCIe
links. However this still has the limitation that we cannot
construct a unified topology with both sets of links. We
address this problem by constructing two separate sets of
trees, one over PCIe links and another over NVLinks.

One of the challenges with this approach is to balance the
amount of data that is transferred over each link type. Our
approach here is to minimize the maximum time taken by
each of the transfers i.e. minimize max(TPCIe, TNV L).

We denote Dtotal as the total data needs to be transferred,
and DPCIe, DNV L as the data size assigned on either PCIe
or NVLink respectively. Tdpa is the latency for calling the
disable_peer_access() and we denote BWPCIe

and BWNV L as the bandwidth of PCIe and NVLink trees.
Given this notation and objective, we can see that the opti-
mal data split can be achieved by making TPCIe = TNV L.

Objective TPCIe + Tdpa = TNV L

=⇒ DPCIe =
Dtotal ×BWPCIe

BWPCIe +BWNV L
−

Tdpa ×BWPCIe ×BWNV L

BWPCIe +BWNV L

DNV L =Dtotal −DPCIe

(8)

The optimal data splits are shown in Equation 8. Note that
in Equation 8, Tdpa is empirically measured and may vary
depending on number of GPUs. We measure this during the
initial few calls into our library.

We evaluate hybrid (or combined) data transfers over both



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Blink: Fast and Generic Collectives for Distributed ML

0

20

40

60

80

100

120

140

3GPU 4GPU 5GPU 6GPU 7GPU 8GPU geoMean

Th
ro

ug
hp

ut
 (G

B/
s) NVLink

PCIe+NVLink

Figure 25. Hybrid and NVLink-only broadcast throughput compar-
ison with varied number of GPUs.

PCIe and NVLink. For brevity, we only show broadcast re-
sults for 3-8 GPUs on the AWS DGX-1V server. Figure 25,
highlights the additional 2-5 GB/s performance gain over
NVLink-only transfers when Blink combines transfers
over both NVLink and PCIe. The time to switch commu-
nication channels from NVLink to PCIe increases as the
number of GPUs grow. For 3 and 4 GPU settings, compared
with NVLink-only Broadcast, hybrid transfers can achieve
around 5GB/s boost; with 7 and 8 GPUs this boost is only
around 2GB/s. This is because the total time spent on en-
abling and disabling peer-access, i.e. switching between
PCIe and NVLink, is proportional to the number of GPU in
use.

A.3 DGX-2 Allreduce

1
8
64
512
4096
32768

1K
B
2K
B
4K
B
8K
B
16
KB
32
KB
64
KB
12
8K
B
25
6K
B
51
2K
B
1M
B
2M
B
4M
B
8M
B
16
MB
32
MB
64
MB

12
8M
B

25
6M
B

51
2M
B
1G
B

L
at

en
cy

 (u
s)

Data Size

NCCL Blink

Figure 26. Allreduce Latency in µs (Blink and NCCL2) on a
16-GPU DGX-2.

We present above results comparing latency for AllReduce
operations when using 16 GPUs on a DGX-2 machine. As
described in Section 3.4, Blink uses a number of single-hop
trees to perform AllReduce when GPUs are connected using
NVSwitch. One of the main advantages of a single-hop
tree is that this reduces latency compared to using a ring
across the GPUs. To validate this we measure the latency
of AllReduce and vary the dataset size from 1KB to 1GB
as shown in Figure 26. We find that Blink is especially
effective for smaller data sizes offering up to 3.32× lower
latency compared to NCCL’s double-binary trees and rings.




