SLIDE : TRAINING DEEP NEURAL NETWORKS WITH LARGE OUTPUTS ON
A CPU FASTER THAN A V100-GPU

A LOCALITY SENSITIVE HASHING

LSH as Samplers

h M | 'l | Buckets
(] P]
/'\oo 00 ee
] [
(] 00/01(@@
) RD\h—’_Go 10| Empty
2
hy,hy: R = {0,1,2,3) 11| 11

Figure 1. Schematic diagram of LSH. For an input, we obtain
multiple hash codes and retrieve candidates from the respective
buckets.

In formal terms, consider # to be a family of hash functions
mapping RP to some set S.

[LSH Family] A family # is called
(So, ¢So, p1, p2)-sensitive if for any two points 2,y € RP
and & chosen uniformly from 7 satisfies the following:

o if Sim(x,y) > So then Pr(h(z) = h(y)) > p1
o if Sim(x,y) < ¢Sy then Pr(h(z) = h(y)) < pa

Typically, for approximate nearest neighbor search, p; > ps
and ¢ < 1 is needed. An LSH allows us to construct data
structures that give provably efficient query time algorithms
for the approximate near-neighbor problem with the associ-
ated similarity measure.

One sufficient condition for a hash family to be an LSH
family is that the collision probability Pry (h(z) = h(y))
should be a monotonically increasing with the similarity, i.e.

Pry(h(z) = h(y)) = f(Sim(z,y)), (1)
where f is a monotonically increasing function. In fact,
most of the popular known LSH families, such as Simhash
(Gionis et al., 1999) and WTA hash (Yagnik et al., 2011;
Chen & Shrivastava, 2018), satisfy this strong property. It
can be noted that Equation 1 automatically guarantees the
two required conditions in the Definition A for any Sy and
c <1

It was shown in (Indyk & Motwani, 1998) that having an
LSH family for a given similarity measure is sufficient for ef-

ficiently solving nearest-neighbor search in sub-linear time.
Given a family of (S, ¢So, p1, p2)-sensitive hash functions,
one can construct a data structure for c-NN with O(n” log n)

query time and space O(n'**), where p = }gg 5; < 1.

The Algorithm: The LSH algorithm uses two parameters,
(K, L). We construct L independent hash tables from the
collection C. Each hash table has a meta-hash function H
that is formed by concatenating K random independent hash
functions from F. Given a query, we collect one bucket
from each hash table and return the union of L buckets.
Intuitively, the meta-hash function makes the buckets sparse
and reduces the number of false positives, because only valid
nearest-neighbor items are likely to match all K hash values
for a given query. The union of the L buckets decreases
the number of false negatives by increasing the number
of potential buckets that could hold valid nearest-neighbor
items.

The candidate generation algorithm works in two phases
[See (Spring & Shrivastava, 2017a) for details]:

1. Pre-processing Phase: We construct L hash tables
from the data by storing all elements € C. We only
store pointers to the vector in the hash tables because
storing whole data vectors is very memory inefficient.

2. Query Phase: Given a query (J; we search for its
nearest-neighbors. We report the union from all of the
buckets collected from the L hash tables. Note that
we do not scan all the elements in C. Instead, we only
probe L different buckets, one bucket for each hash
table.

After generating the set of potential candidates, the nearest-
neighbor is computed by comparing the distance between
each item in the candidate set and the query.

A.1 LSH for Estimations and Sampling

LSH for Estimations and Sampling: Although LSH pro-
vides provably fast retrieval in sub-linear time, LSH is
known to be very slow for accurate search because it re-
quires very large number of tables, i.e. large L. Also,
reducing the overheads of bucket aggregation and candidate
filtering is a problem on its own. Consequent research led to
the sampling view of LSH (Spring & Shrivastava, 2017b;a;
CHEN et al., 2018; Chen et al., 2018; Luo & Shrivastava,

Submission and Formatting Instructions for SysML 2019

Forward Pass

Hidden 2

Output

Figure 2. Forward Pass: Given an input, we first get the hash code
H1 for the input, query the hash table for the first hidden layer,
and obtain the active neurons. We get the activations for only this
set of active neurons. We do the same for the subsequent layers
and obtain a final sparse output. In practice, we use multiple hash
tables per layer.

2018) that alleviates costly searching by efficient sampling.
It turns out that merely probing a few hash buckets (as low as
1) is sufficient for adaptive sampling. Observe that an item
returned as a candidate from a (K, L)-parameterized LSH
algorithm is sampled with probability 1 — (1 — p®)L, where
p is the collision probability of LSH function (sampling
probability is monotonic in p). Thus, with LSH algorithm,
the candidate set is an adaptive sampled where the sampling
probability changes with K and L.

This sampling view of LSH was the key ingredient for the
algorithm proposed in paper (Spring & Shrivastava, 2017b)
that shows the first possibility of adaptive dropouts in near-
constant time, leading to efficient backpropagation algo-
rithm.

A.l1.1 MIPS Sampling

Recent advances in maximum inner product search (MIPS)
using asymmetric locality sensitive hashing has made it
possible to sample large inner products.

For the sake of brevity, it is safe to assume that given a
collection C of vectors and query vector @), using (K, L)-
parameterized LSH algorithm with MIPS hashing (Shrivas-
tava & Li, 2014a), we get a candidate set S. Every element
in z; € C gets sampled into S with probability p;, where p;
is a monotonically increasing function of @ - x;. Thus, we
can pay a one-time linear cost of preprocessing C into hash
tables, and any further adaptive sampling for query @) only
requires few hash lookups.

Algorithm 1 SLIDE Algorithm

1: Input: DataX, LabelY

2: QOutput: 0

3: Weights wy initialization for each layer [

4: LSH hash tables HTj, hash functions h; initialization
for each layer [
Compute h;(wj") for all neurons
Insert all the neuron ids a, into HI; according to
ha(wp')
7: for e = 1: Iterations do
8: Inputy = Batch(X, B)
9: forl=1: Layer do
0
1
2

SN

Sy = Sample(Input;, HT}) (Algorithm 2)
activations = Forward Propagation (Input;, S;)
Input;+1 = activations

13: end for

14: forl=1: Layer do
15: Backpropagation (5;)
16: end for

17: end for

18: return 6

Algorithm 2 Algorithm for LSH Sampling

1: Input: Input;, HT}, h;
Output: S;, a set of active neurons on layer [
Computeh; (Input;).
fort =1:Ldo

S = SN Query(h;(Input;), HT})

end for
return S

RSN O

B DIFFERENT HASH FUNCTIONS

Signed Random Projection (Simhash) : Refer (Gionis
et al., 1999) for explanation of the theory behind Simhash.
We use K x L number of random pre-generated vectors
with components taking only three values {+1,0, —1}. The
reason behind using only +1s and —1s is for fast imple-
mentation. It requires additions rather than multiplications,
thereby reducing the computation and speeding up the hash-
ing process. To further optimize the cost of Simhash in
practice, we can adopt the sparse random projection idea (Li
etal., 2006). A simple implementation is to treat the random
vectors as sparse vectors and store their nonzero indices in
addition to the signs. For instance, let the input vector for
Simhash be in R?. Suppose we want to maintain 1/3 spar-
sity, we may uniformly generate K * L set of d/3 indices
from [0, d — 1]. In this way, the number of multiplications
for one inner product operation during the generation of the
hash codes would simply reduce from d to d/3. Since the
random indices are produced from one-time generation, the
cost can be safely ignored.

Submission and Formatting Instructions for SysML 2019

Winner Takes All Hashing (WTA hash) : In SLIDE,
we slightly modify the WTA hash algorithm from (Yagnik
et al., 2011) for memory optimization. Originally, WTA
takes O (K Ld) space to store the random permutations ©
given the input vector is in R%. m << d is a adjustable
hyper-parameter. We only generate K—sm rather than K * L
permutations and thereby reducing the space to O(K Lm).
Every permutation is split into % parts (bins) evenly and
each of them can be used to generate one WTA hash code.
Computing the WTA hash codes also takes O(K Lm) oper-
ations.

Densified Winner Takes All Hashing (DWTA hash) : As
argued in (Chen & Shrivastava, 2018), when the input vector
is very sparse, WTA hashing no longer produces represen-
tative hash codes. Therefore, we use DWTA hashing, the
solution proposed in (Chen & Shrivastava, 2018). Similar
to WTA hash, we generate £ ﬁm number of permutations
and every permutation is split into 7% bins. DWTA loops
through all the nonzero (NNZ) indices of the sparse input.
For each of them, we update the current maximum index
of the corresponding bins according to the mapping in each
permutation.

It should be noted that the number of comparisons and
memory lookups in this step is O(NN Z x K{;m), which is
significantly more efficient than simply applying WTA hash
to sparse input. For empty bins, the densification scheme
proposed in (Chen & Shrivastava, 2018) is applied.

Densified One Permutation Minwise Hashing (DOPH)
: The implementation mostly follows the description of
DOPH in (Shrivastava & Li, 2014b). DOPH is mainly de-
signed for binary inputs. However, the weights of the inputs
for each layer are unlikely to be binary. We use a thresh-
olding heuristic for transforming the input vector to binary
representation before applying DOPH. The £ highest values
among all d dimensions of the input vector are converted
to 1s and the rest of them become 0s. Define idx;, as the
indices of the top k values for input vector x. Formally,

1, ifi € iday.

Threshold(x;) = {0 otherwise

We could use sorting algorithms to get the top k indices, but
it induces at least O(dlogd) overhead. Therefore, we keep
a priority queue with indices as keys and the corresponding
data values as values. This requires O(dlogk) operations.

C REDUCING THE SAMPLING OVERHEAD

The key idea of using LSH for adaptive sampling of neurons
with large activation is sketched in ‘Introduction to over-
all system’ section in the main paper. We have designed
three strategies to sample large inner products: 1) Vanilla
Sampling 2) Topk Sampling 3) Hard Thresholding. We first

introduce them one after the other and then discuss their
utility and efficiency. Further experiments are reported in
section D.

Vanilla Sampling: Denote [3; as the number of active
neurons we target to retrieve in layer /. After computing the
hash codes of the input, we randomly choose a table and only
retrieve the neurons in that table. We continue retrieving
neurons from another random table until (3; neurons are
selected or all the tables have been looked up. Let us assume
we retrieve from 7 tables in total. Formally, the probability
that a neuron /V; lj gets chosen is,

Pr(Ny) = (p™)"(1 - p™)E,)

where p is the collision probability of the LSH function that
SLIDE uses. For instance, if Simhash is used,

(wH)Tay)

-1 (
cos —
[w [l2-]|=]]2

p=1-
™
From the previous process, we can see that the time com-
plexity of vanilla sampling is O(5;).

TopK Sampling: In this strategy, the basic idea is to obtain
those neurons that occur more frequently among all L hash
tables. After querying with the input, we first retrieve all
the neurons from the corresponding bucket in each hash
table. While retrieving, we use a hashmap to keep track
of the frequency with which each neuron appears. The
hashmap is sorted based on the frequencies, and only the
neurons with top 3; frequencies are selected. This requires
additional O(|N}|) space for maintaining the hashmap and
O(|N?|+|N/*|log|N}*|) time for both sampling and sorting.

Hard Thresholding: The TopK Sampling could be expen-
sive due to the sorting step. To overcome this, we propose
a simple variant that collects all neurons that occur more
than a certain frequency. This bypasses the sorting step and
also provides a guarantee on the quality of sampled neurons.
Suppose we only select neurons that appear at least m times
in the retrieved buckets, the probability that a neuron N}
gets chosen is,

L
Pr(N) =30 (@)=)

1=

Figure 3 shows a sweep of curves that present the relation
between collision probability of ;(wj) and h;(x;) and the
probability that neuron N, lj is selected under various values
of m when L = 10. We can visualize the trade-off between
collecting more good neurons and omitting bad neurons by
tweaking m. For a high threshold like m = 9, only the
neurons with p > 0.8 have more than Pr > 0.5 chance of
retrieval. This ensures that bad neurons are eliminated but

Submission and Formatting Instructions for SysML 2019

Trade off for Frequency Thresholding

1.04

0.8

0.6

Pr

0.4 mel
m=3

0.2 1 m=5
m=7

0.0 m=9
01 02 03 04 05 06 07 08 009

p

Figure 3. Hard Thresholding: Theoretical selection probability Pr
vs the collision probabilities p for various values of frequency
threshold m (eqn. 3). High threshold (m = 9) gets less number
of false positive neurons but misses out on many active neurons.
A low threshold (m = 1) would select most of the active neurons
along with lot of false positives.

Table 1. Time taken by hash table insertion schemes
Insertion to HT | Full Insertion
0.371s 18s
0.762 s 18s

Reservoir Sampling
FIFO

the retrieved set might be insufficient. However, for a low
threshold like m = 1, all good neurons are collected but
bad neurons with p < 0.2 are also collected with Pr > (.8.
Therefore, depending on the tolerance for bad neurons, we
choose an intermediate m in practice.

C.1 Reducing the Cost of Updating Hash Tables

We introduce the following heuristics for addressing the
expensive costs of updating the hash tables:

1) Recomputing the hash codes after every gradient update is
computationally very expensive. Therefore, we dynamically
change the update frequency of hash tables to reduce the
overhead. Assume Nj is the initial update frequency and
t — 1 is the number of times the hash tables have already
been updated. We apply exponential decay on the update
frequency such that the ¢ hash table update happens on
iteration Zi;é NoeM where) is a tunable decay constant.
The intuition behind this scheme is that the gradient updates
in the initial stage of the training are larger than those in the
later stage, especially while close to convergence.

2) SLIDE needs a policy for adding a new neuron to a
bucket when it is already full. To solve such a problem,
we use the same solution in (Wang et al., 2018) that make
use of Vitters reservoir sampling algorithm (Vitter, 1985)
as the replacement strategy. It was shown that reservoir

MIPS Strategies

1071 4
° Vanilla Sampling
£ - TopK Sampling
=102 . Hard Thresholding
BT T
ek g e AT
¢ I T
o e e '
10734 .

2000 3000 4000 5000 6000 7000
Samples

Figure 4. Sampling Strategies: Time consumed (in seconds) for
various sampling methods after retrieving active neurons from
Hash Tables.

sampling retains the adaptive sampling property of LSH
tables, making the process sound. In addition, for further
speed up, we implement a simpler alternative policy based
on FIFO (First In First Out).

3) For Simhash, the hash codes are computed by h5¥9" (z) =
sign(wT z). During backpropagation, only the weights con-
necting the active neurons across layers get updated. Only
those weights contribute to the change of w” . Therefore,
we can also memorize the result of w? z besides the hash
codes. When = € R gets updated in only d’ out of d di-
mensions, where d < d, we only need O(d’) rather than
O(d) addition operations to compute the new hash codes
for updated x.

D DESIGN CHOICE COMPARISONS

In the main paper, we presented several design choices in
SLIDE which have different trade-offs and performance
behavior, e.g., executing MIPS efficiently to select active
neurons, adopting the optimal policies for neurons insertion
in hash tables, etc. In this section, we substantiate those
design choices with key metrics and insights. In order to
better analyze them in more practical settings, we choose
to benchmark them in real classification tasks on Delicious-
200K dataset.

D.1 Evaluating Sampling Strategies

Sampling is a crucial step in SLIDE. The quality and quan-
tity of selected neurons and the overhead of the selection
strategy significantly affect the SLIDE performance. We
profile the running time of these strategies, including Vanilla
sampling, TopK thresholding, and Hard thresholding, for
selecting a different number of neurons from the hash tables
during the first epoch of the classification task.

Submission and Formatting Instructions for SysML 2019

Figure 4 presents the results. The blue, red and green dots
represent Vanilla sampling, TopK thresholding, and Hard
thresholding respectively. It shows that the TopK thresh-
olding strategy takes magnitudes more time than Vanilla
sampling and Hard thresholding across all number of sam-
ples consistently. Also, we can see that the green dots are
just slightly higher than the blue dots meaning that the time
complexity of Hard Thresholding is slightly higher than
Vanilla Sampling. Note that the y-axis is in log scale. There-
fore when the number of samples increases, the rates of
change for the red dots are much more than those of the
others. This is not surprising because TopK thresholding
strategy is based on sorting algorithms which has O(nlogn)
running time. Therefore, in practice, we suggest choos-
ing either of Vanilla Sampling or Hard Thresholding for
efficiency. For instance, we use Vanilla Sampling in our
extreme classification experiments because it is the most
efficient one. Furthermore, the difference between iteration
wise convergence of the tasks with TopK Thresholding and
Vanilla Sampling are negligible.

D.2 Addition to Hashtables

SLIDE supports two implementations of insertion policies
for hash tables described in section 3.1 in main paper. We
profile the running time of the two strategies, Reservoir
Sampling and FIFO. After the weights and hash tables ini-
tialization, we clock the time of both strategies for insertions
of all 205,443 neurons in the last layer of the network, where
205,443 is the number of classes for Delicious dataset. Then
we also benchmark the time of whole insertion process in-
cluding generating the hash codes for each neuron before
inserting them into hash tables.

The results are shown in Table C. The column “Full Inser-
tion” represents the overall time for the process of adding all
neurons to hash tables. The column “Insertion to HT” repre-
sents the exact time of adding all the neurons to hash tables
excluding the time for computing the hash codes. Reservoir
Sampling strategy is more efficient than FIFO. From an al-
gorithmic view, Reservoir Sampling inserts based on some
probability, but FIFO guarantees successful insertions. We
observe that there are more memory accesses with FIFO.
However, compared to the full insertion time, the benefits
of Reservoir Sampling are still negligible. Therefore we
can choose either strategy based on practical utility. For
instance, we use FIFO in our experiments.

REFERENCES

Chen, B. and Shrivastava, A. Densified winner take all (wta)
hashing for sparse datasets. In Uncertainty in artificial
intelligence, 2018.

CHEN, B., SHRIVASTAVA, A., and STEORTS, R. C.
Unique entity estimation with application to the syrian
conflict. THE ANNALS, 2018.

Chen, B., Xu, Y., and Shrivastava, A. Lsh-sampling
breaks the computational chicken-and-egg loop in adap-
tive stochastic gradient estimation. 2018.

Gionis, A., Indyk, P., and Motwani, R. Similarity search
in high dimensions via hashing. In Proceedings of the
25th International Conference on Very Large Data Bases,
VLDB ’99, pp. 518-529, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-615-
7. URL http://dl.acm.org/citation.cfm?
1d=645925.671516.

Indyk, P. and Motwani, R. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 604-613. ACM, 1998.

Li, P, Hastie, T. J., and Church, K. W. Very sparse random
projections. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 287-296. ACM, 2006.

Luo, C. and Shrivastava, A. Scaling-up split-merge mcmc
with locality sensitive sampling (Iss). arXiv preprint
arXiv:1802.07444, 2018.

Shrivastava, A. and Li, P. Asymmetric Ish (alsh) for sub-
linear time maximum inner product search (mips). In

Advances in Neural Information Processing Systems, pp.
2321-2329, 2014a.

Shrivastava, A. and Li, P. Densifying one permutation
hashing via rotation for fast near neighbor search. In
International Conference on Machine Learning, pp. 557—

565, 2014b.

Spring, R. and Shrivastava, A. A new unbiased and efficient
class of Ish-based samplers and estimators for partition
function computation in log-linear models. arXiv preprint
arXiv:1703.05160, 2017a.

Spring, R. and Shrivastava, A. Scalable and sustainable
deep learning via randomized hashing. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 445-454.
ACM, 2017b.

http://dl.acm.org/citation.cfm?id=645925.671516
http://dl.acm.org/citation.cfm?id=645925.671516

Submission and Formatting Instructions for SysML 2019

Vitter, J. S. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS), 11(1):
37-57, 1985.

Wang, Y., Shrivastava, A., Wang, J., and Ryu, J. Random-
ized algorithms accelerated over cpu-gpu for ultra-high
dimensional similarity search. In ACM SIGMOD Record,
pp- 889-903. ACM, 2018.

Yagnik, J., Strelow, D., Ross, D. A., and Lin, R.-s. The
power of comparative reasoning. In 2011 International
Conference on Computer Vision, pp. 2431-2438. IEEE,
2011.

