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UNDERSTANDING THE DOWNSTREAM INSTABILITY OF WORD EMBEDDINGS
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ABSTRACT
Many industrial machine learning (ML) systems require frequent retraining to keep up-to-date with constantly
changing data. This retraining exacerbates a large challenge facing ML systems today: model training is unstable,
i.e., small changes in training data can cause significant changes in the model’s predictions. In this paper, we
work on developing a deeper understanding of this instability, with a focus on how a core building block of
modern natural language processing (NLP) pipelines—pre-trained word embeddings—affects the instability of
downstream NLP models. We first empirically reveal a tradeoff between stability and memory: increasing the
embedding memory 2× can reduce the disagreement in predictions due to small changes in training data by 5% to
39% (relative). To theoretically explain this tradeoff, we introduce a new measure of embedding instability—the
eigenspace instability measure. We relate the eigenspace instability measure to downstream instability by proving
a bound on the disagreement in downstream predictions introduced by the change in word embeddings. Practically,
we show that the eigenspace instability measure can be a cost-effective way to choose embedding parameters to
minimize instability without training downstream models, achieving up to 3.71× lower error rates than existing
embedding distance measures. Finally, we demonstrate that the observed stability-memory tradeoffs extend to
other types of embeddings as well, including knowledge graph and contextual word embeddings.

1 INTRODUCTION

Data is more dynamic than ever before: every input, inter-
action, and response is captured and archived in hopes of
extracting insights with machine learning (ML) models. To
stay up-to-date, models must be frequently retrained, with
the freshness of models becoming a requirement for user sat-
isfaction in numerous products, from ads (He et al., 2014) to
recommendation systems (Covington et al., 2016). However,
frequent retraining can lead to large and unwanted flucta-
tions in model predictions due to the instability of many
machine learning training algorithms: minimal changes
in training data can produce significantly different predic-
tions (Fard et al., 2016). From discussions with engineers
in an e-commerce firm, an online social media company,
and a Fortune 500 software company, we found that in-
stability from retraining is one of their largest, and also
most under-addressed, pain points. As a result of instability,
ML engineers struggle to identify genuine concept shifts,
spend more time tracking down regressions, and require
more resources retraining downstream model dependencies.
Diagnosing and reducing instability in a cost-effective way
is a major challenge for today’s machine learning pipelines.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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In this work, we take a first step toward addressing the
problem of ML model instability by examining in detail a
core building block of most modern natural language pro-
cessing (NLP) applications: word embeddings (Mikolov
et al., 2013a;b; Pennington et al., 2014; Bojanowski et al.,
2017). Several recent works have shown that word em-
beddings are unstable, with the nearest neighbors to words
varying significantly across embeddings trained under dif-
ferent settings (Hellrich & Hahn, 2016; Antoniak & Mimno,
2018; Wendlandt et al., 2018; Pierrejean & Tanguy, 2018;
Chugh et al., 2018; Hellrich et al., 2019). These results
force researchers using embeddings for analysis to reassess
the reliability of their conclusions. Moreover, these results
raise questions about how the embedding instability impacts
downstream NLP tasks—an area which remains largely un-
explored and which we focus on in this work. We define the
downstream instability between a pair of word embeddings
as the percentage of predictions which change between the
models trained on the two embeddings for a given task. By
this notion of instability, we find that 15% of predictions
on a sentiment analysis task can disagree due to training
the embeddings on an accumulated dataset with just 1%
more data. In embedding servers, where an embedding
is reused among multiple downstream tasks (Hermann &
Balso, 2017; Gordon, 2018; Shiebler et al., 2018; Sell &
Pienaar, 2019), the impact of this instability can be quickly
amplified. Understanding this downstream instability is
challenging, however, because it requires both theoretical
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Understanding the Downstream Instability of Word Embeddings

and empirical insights on how the embedding instability
propagates to the downstream tasks.

The goal of this paper is to develop a deeper understanding
of the downstream instability of word embeddings. This
understanding could both drive the design choices for em-
bedding systems (i.e. choosing hyperparameters) and lead
to efficient techniques to distinguish among unstable and
stable embeddings without training downstream models. To
achieve this, we perform a study on the downstream in-
stability of word embeddings across multiple embedding
algorithms and downstream tasks. Our study exposes a
novel trade-off between stability and another critical prop-
erty of embeddings—memory. We find that increasing the
memory can lead to more stable embeddings, with a 2×
increase in memory reducing the percentage prediction dis-
agreement on downstream tasks by 5% to 39% (relative).
Determining how the memory affects the instability is not
straightforward: factors like the dimension, a hyperparam-
eter controlling the expressiveness of the embedding, and
the precision, the number of bits used per entry in the em-
bedding after compression, can independently affect the
instability and interact in unexpected ways. To better under-
stand the stability-memory tradeoff empirically, we study
the effects of dimension and precision both in isolation and
together. This important stability-memory tradeoff leads
us to ask two key questions: (1) theoretically, how can we
explain this tradeoff, and (2) practically, how can we se-
lect the dimension-precision1 parameters to minimize the
downstream instability?

To theoretically explain the stability-memory trade-off, we
introduce a new measure for embedding instability—the
eigenspace instability measure—which we theoretically re-
late to downstream instability in the case of linear regression
models. The eigenspace instability measure builds on the
eigenspace overlap score (May et al., 2019), and measures
the degree of similarity between the eigenvectors of the
Gram matrices of a pair of embeddings, weighted by their
eigenvalues. We show that the expected downstream dis-
agreement between the linear regression models trained on
two embedding matrices can be expressed in terms of the
eigenspace instability measure. Furthermore, these theo-
retical insights have a practical application: we propose
using the eigenspace instability measure to efficiently se-
lect dimension-precision parameters with low downstream
instability, without having to train downstream models.

We empirically validate that the eigenspace instability mea-
sure correlates strongly with the downstream instability and
that the measure is effective as a selection criterion for the
dimension-precision parameters. First, we show that the
theoretically grounded eigenspace instability measure more

1For brevity, we refer to a pair of dimension and precision
parameters as the “dimension-precision” parameters.

strongly correlates with downstream instability than the ma-
jority of the other embedding distance measures (i.e. seman-
tic displacement (Hamilton et al., 2016), the PIP loss (Yin &
Shen, 2018), and the eigenspace overlap score (May et al.,
2019)) and attains Spearman correlations from 0.04 better
to 0.09 worse than the other top-performing measure, the
k-NN measure (e.g., Hellrich & Hahn (2016); Antoniak
& Mimno (2018); Wendlandt et al. (2018)), which lacks
theoretical guarantees. Next, we show that when using
an embedding distance measure to choose the more stable
dimension-precision parameters out of a pair of choices, the
eigenspace instability measure achieves up to 3.71× lower
error rates than the weaker baselines and from 0.93× to
1.55× the error rate of the k-NN measure. On the more
challenging task of selecting the combination of dimen-
sion and precision under a memory budget, we show that
eigenspace instability measure attains a difference in predic-
tion disagreement to the oracle up to 3.06% (absolute) better
than the weaker baselines and within 0.46% (absolute) of
the k-NN measure.

To summarize, we make the following contributions:
• We study the downstream instability of word embed-

dings, revealing a novel stability-memory tradeoff. In
particular, we study the impact of two key parameters,
dimension and precision, and propose a simple rule
of thumb relating the embedding memory and down-
stream instability (Section 3).

• To theoretically explain this tradeoff, we introduce a
new measure for embedding instability, the eigenspace
instability measure, that we prove theoretically deter-
mines the expected downstream disagreement on a
linear regression task (Section 4).

• To empirically validate our theory, we perform an
evaluation of embedding distance measures to predict
downstream instability. Practically, we show that the
eigenspace instability measure can achieve up to 3.71×
lower error rates in selecting more stable dimension-
precision parameters than existing embedding distance
measures (Section 5).

• Finally, we show that the stability-memory tradeoffs
extend to knowledge graph embeddings (Bordes et al.,
2013) and contextual word embeddings, such as BERT
embeddings (Devlin et al., 2019). For instance, we find
that increasing the memory of knowledge graph embed-
dings 2× decreases the instability on a link prediction
task by 7% to 19% (relative) (Section 6).

2 PRELIMINARIES

We begin by formally defining the notion of instability we
use in this work. We then review the word embedding
algorithms and compression technique used in our study,
and discuss existing measures to compare two embeddings.
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2.1 Instability Definition

We define the downstream instability as follows:
Definition 1. LetX ∈ Rn×d and X̃ ∈ Rn×k be two embed-
ding matrices, and let fX and fX̃ represent models trained
using X and X̃ , respectively, for a downstream task T. Then
the instability between X and X̃ with respect to task T is
defined as

DIT (X, X̃) =
1

n

n∑
i=1

L(fX(zi), fX̃(zi)),

where {zi}ni=1 is a heldout set for task T, and L is a fixed
loss function.

When the zero-one loss is used for L, this measure captures
the percentage of predictions which disagree on downstream
models trained on each embedding.

2.2 Word Embedding Algorithms

Word embedding algorithms learn distributed representa-
tions of words by taking as input a textual corpus C and
returning the word embeddingX ∈ Rn×d, with d the dimen-
sion of the embeddings and n the vocabulary size. We evalu-
ate matrix completion (MC) (Jin et al., 2016) and continuous
bag-of-words (CBOW) (Mikolov et al., 2013a;b) embedding
algorithms. MC explicitly factors the co-occurrence matrix
A ∈ Rn×n generated from C, whereas CBOW operates on
the sequential corpus C directly. We elaborate below.

Matrix completion (MC) Matrix completion uses the
word embeddings to approximate the observed word co-
occurrence A and can be formally written as:

V = arg min
X

∑
(i,j)∈Θ

(XiX
T
j −Aij)2

where Θ are the observed (non-zero) entries inA. Following
standard technique, A is the positive pointwise mutual infor-
mation (PPMI) matrix, rather than the true co-occurrence
matrix (Bullinaria & Levy, 2007).

We solve the matrix completion problem using an online
algorithm similar to that proposed in Jin et al. (2016). We
iteratively train X via stochastic gradient descent (SGD)
after computing the loss on sampled entries of the observed
co-occurrence matrix A.

Continuous bag-of-words (CBOW) The CBOW algo-
rithm predicts a word given its local context words (Mikolov
et al., 2013a;b). The embedding matrix X is trained via
SGD, where the loss maximizes the probability that an ob-
served word and context pair co-occurs in the corpus and
minimizes the probability that a negative sample co-occurs.
We use the word2vec implementation of CBOW.2

2https://github.com/tmikolov/word2vec

2.3 Compression Technique

We use a standard technique—uniform quantization—to
compress word embeddings. Recent work (May et al.,
2019) demonstrates that uniform quantization performs on
par in terms of downstream quality with more complex
compression techniques, such as k-means compression (An-
drews, 2016) and deep compositional code learning (Shu
& Nakayama, 2018). We leverage their implementation3 to
apply uniform quantization to word embeddings to study the
impact of the precision on instability. Under uniform quanti-
zation, each entry in the word embedding matrix is rounded
to a discrete value in a set of 2b equally spaced values within
an interval, such that each entry can be represented with
just b bits. For more details on the way we use uniform
quantization for our experiments, see Appendix B.2.

2.4 Embedding Distance Measures

We consider four embedding distance measures from the
literature to quantify the differences between embeddings.
For each measure, we assume we have a pair of embed-
dings X ∈ Rn×d and X̃ ∈ Rn×d trained on corpora C
and C̃, respectively, where n is the size of the vocabulary
and d is the dimension of the embedding. Due to computa-
tional efficiency and our observation that downstream tasks
use a majority of high frequency words, we only consider
the top 10k most frequent words to compute each measure
(including the eigenspace instability measure).

k-Nearest Neighbors (k-NN) Measure Variants of the k-
NN measure were used in recent works on word embedding
stability to characterize the intrinsic stability of embeddings
(e.g., Hellrich & Hahn (2016); Antoniak & Mimno (2018);
Wendlandt et al. (2018)). The k-NN measure is defined
as 1

Q

∑Q
q=0

|Nk(X;q)∩Nk(X̃;q)|
k , where Q is the number of

randomly sampled query words (we use Q=1000), and the
Nk function takes an embedding and the index of a query
word, and returns the indices of the k most similar words to
the query word by the cosine distance.

Semantic Displacement Researchers have used seman-
tic displacement to compute the distance that words have
shifted over time (Hamilton et al., 2016). Semantic displace-
ment can be defined as 1

n

∑n
i=0 cos-dist(Xi, RX̃i), where

R = arg minΩ ||X − X̃Ω||F , subject to ΩTΩ = I (i.e., the
orthogonal Procrustes solution (Schönemann, 1966)).

Pairwise Inner Product Loss The Pairwise Inner Prod-
uct (PIP) loss was proposed for dimensionality selection to
optimize for the intrinsic quality of an embedding (Yin &
Shen, 2018). The PIP loss is defined as ‖XXT − X̃X̃T ‖F .

3https://github.com/HazyResearch/smallfry
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Eigenspace Overlap Score The eigenspace overlap score
was recently proposed as a measure of compression qual-
ity (May et al., 2019). The eigenspace overlap is defined as
1
d‖U

T Ũ‖2F , where X = USV T and X̃ = Ũ S̃Ṽ T are the
singular value decompositions (SVDs) of X and X̃ .

3 A STABILITY-MEMORY TRADEOFF

We now present the empirical study that exposes the tradeoff
we observe between downstream stability and embedding
memory, and demonstrate that as the memory increases, the
instability decreases. We consider the dimension and pre-
cision of the embedding as two important axes controlling
the memory of the embedding. We first study the impact of
the embedding’s dimension and precision on downstream
instability in isolation in Sections 3.1 and 3.2, respectively,
followed by a discussion of their joint effect in Section 3.3.

Corpora We use two full Wikipedia dumps4: Wiki’17 and
Wiki’18, which we collected approximately a year apart, to
train embeddings. The corpora are pre-processed by a Face-
book script5, which we modify to keep the letter cases. We
use these two corpora as examples of the temporal changes
which can occur to the text corpora used to train word em-
beddings. Each corpora has about 4.5 billion tokens, and
when training the embeddings, we only learn the embed-
dings for the top 400k most frequent words.

Downstream NLP Tasks After training the word embed-
dings, we compress the embeddings with uniform quantiza-
tion and train models for downstream NLP tasks on top of
the embeddings, fixing the embeddings during training. We
train word embeddings with three seeds, and use the same
corresponding seeds for the downstream models. Results
are reported as averages over the three seeds, with error bars
indicating the standard deviation. We also align all pairs
of Wiki’17 and Wiki’18 embeddings (same dimension and
seed) with orthogonal Procrustes (Schönemann, 1966) prior
to compressing and training downstream models, as prelim-
inary experiments found this helped to decrease instability.
For each downstream task, we perform a hyperparameter
search for the learning rate using 400-dimensional Wiki’17
embeddings, and use the same learning rate across all di-
mensions to minimize the impact of learning rate on our
analysis. Here, we discuss the two standard downstream
NLP tasks we consider throughout our paper. Please see
Appendix B.3 for more experimental setup details.

Sentiment Analysis. We evaluate on a binary sentiment
analysis task where given a sentence, the model determines
if the sentence is positive or negative (Kim, 2014). We

4https://dumps.wikimedia.org
5https://github.com/facebookresearch/fastText/blob/master/get-

wikimedia.sh
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Figure 1. Downstream instability of sentiment analysis (SST-2)
and NER (CoNLL-2003) tasks under different dimensions (top)
and precisions (bottom) for CBOW and MC embeddings.

train a linear bag-of-words model for this task and evalu-
ate on four benchmark datasets: MR (Pang & Lee, 2005),
MPQA (Wiebe et al., 2005), Subj (Pang & Lee, 2004), and
SST-2 (Socher et al., 2013b). We will be showing results on
SST-2; for more results, see Appendix C.1.

Named Entity Recognition (NER). The named entity recog-
nition task is a multi-class classification task to predict
whether each token in the dataset is an entity, and if so,
what type. We use a BiLSTM model (Akbik et al., 2018)
for this task and evaluate on the benchmark CoNLL-2003
dataset (Tjong Kim Sang & De Meulder, 2003). Each token
is assigned an entity label of PER, ORG, LOC, and MISC,
or an ‘O’ label, indicating outside of any entities (i.e., no en-
tity). We measure instability only over the tokens for which
the true value is an entity. We use the BiLSTM without the
conditional random field (CRF) decoding layer for compu-
tational efficiency; in Appendix D.1 we show that the trends
also hold on a subset of the results with a BiLSTM-CRF.

3.1 Effect of Dimension

We evaluate the impact of the dimension of the embedding
on its downstream stability, and show that generally as the
dimension increases, the instability decreases.

Tradeoffs To perform our tradeoff study, we train Wiki’17
and Wiki’18 embeddings with dimensions in {25, 50, 100,
200, 400, 800}, and train downstream models on top of the
embeddings. We compute the prediction disagreement be-
tween models trained on Wiki’17 and Wiki’18 embeddings
of the same dimension. In Figure 1 (top), we see that as the
dimension increases, the downstream instability often de-
creases across embedding algorithms and downstream tasks,
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plateauing at larger dimensions. In Section 3.3, we see that
these trends are even more pronounced in lower memory
regimes when we also consider different precisions.

3.2 Effect of Precision

We evaluate the effect of the precision, the number of bits
used to store each entry of the embedding matrix, on the
downstream stability, and show that as the precision in-
creases, the instability decreases.

Tradeoffs We compress 100-dimensional Wiki’17 and
Wiki’18 embeddings with uniform quantization to preci-
sions b ∈ {1, 2, 4, 8, 16, 32},6 and train downstream models
on top of the compressed embeddings. We compute the pre-
diction disagreement between models trained on Wiki’17
and Wiki’18 embeddings of the same precision. In Fig-
ure 1 (bottom), we show that as the precision increases, the
instability generally decreases on sentiment analysis and
NER tasks for both MC and CBOW embedding algorithms.
Moreover, we see that for precisions greater than 4 bits, the
impact of compression on instability is minimal.

3.3 Joint Effect of Dimension and Precision

We study the effect of dimension and precision together, and
show that overall, as the memory increases, the downstream
instability decreases. We also propose a simple rule of
thumb relating the memory and instability, and evaluate the
relative impact of dimension and precision on the instability.
Finally, we discuss two key questions based on our empirical
observations, which motivate the rest of the work.

Tradeoffs We uniformly quantize the Wiki’17 and
Wiki’18 embeddings of dimensions {25, 50, 100, 200, 400,
800} to precisions {1, 2, 4, 8, 16, 32} to generate many
dimension-precision pairs spanning over a wide range of
memory budgets. Across the memory budgets, embed-
ding algorithms, and tasks, we see that as we increase
the memory, the downstream instability decreases (Fig-
ure 2). To propose a simple rule of thumb for the stability-
memory tradeoff, we fit a single linear-log model to the
dimension-precision pairs for all memory budgets less than
103 bits/word (after which the instability plateaus) across
five downstream tasks (i.e., the four sentiment analysis tasks
and one NER task) and two embedding algorithms. We find
the following average stability-memory relationship for the
downstream instability DIT for a task T with respect to the
memory, or bits/word, M : DIT ≈ CT − 1.4 ∗ log2(M),
where CT is a task-specific constant. For instance, if we
increase the memory 2×, then the instability decreases on
average by 1.4% (absolute). Across the tasks, embedding
algorithms, and memory budgets we consider, this 1.4%

6b = 32 signifies full-precision embeddings.

102 103 104

Memory (Bits / Word)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%
 D

isa
gr

ee
m

en
t

CBOW, SST-2

102 103 104

Memory (Bits / Word)

4

5

6

7

8

9

10

%
 D

isa
gr

ee
m

en
t

CBOW, CoNNL-2003
b=1
b=2
b=4
b=8
b=16
b=32

102 103 104

Memory (Bits / Word)

10

15

20

25

30

%
 D

isa
gr

ee
m

en
t

MC, SST-2

102 103 104

Memory (Bits / Word)

4

6

8

10

12

%
 D

isa
gr

ee
m

en
t

MC, CoNNL-2003

Figure 2. Downstream instability of sentiment analysis (SST-2)
and NER (CoNLL-2003) tasks for various memory budgets with
different dimension-precision combinations. The red line indicates
the average linear-log model relating instability and memory.

(absolute) difference corresponds to an approximately 5%
to 39% relative reduction in downstream instability, depend-
ing on the original instability value (3.6% to 25.9%). To
understand the relative impact on instability of increasing
the dimension vs. the precision, we fit independent linear-
log models to each parameter. We find that precision has
a larger impact on instability than dimension, with a 2×
increase in precision decreasing instability by 1.5% (abso-
lute) vs. a 2× increase in dimension decreasing instability
by 1.2% (absolute). Please see Appendix B.4 for more
details on how we fit these trends and Appendix D for re-
sults demonstrating the robustness of the stability-memory
tradeoff (e.g., to more complex downstream models, other
sources of downstream randomness).

This stability-memory tradeoff raises two key questions:
(1) how can we theoretically explain this tradeoff between
the embedding memory and the downstream stability, and
(2) how can we jointly select the embedding’s dimension-
precision parameters to minimize the downstream instabil-
ity? Practically, choosing these parameters is important,
because as we can see in Figure 2, downstream instability
can vary as much as 8% across the different combinations
of dimension and precision within a given memory budget.
The goal of the remainder of the paper will be to shed light
on these questions.

4 ANALYZING EMBEDDING INSTABILITY

To address both questions raised above, we present a new
measure of embedding instability, the eigenspace instability
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measure, which we show is both theoretically and empir-
ically related to the downstream instability of the embed-
dings. The goal of this measure is to efficiently estimate,
given two embeddings, how different the predictions of mod-
els trained with these embeddings will be. We first define
the eigenspace instability measure and present its theoretical
connection with downstream instability in Section 4.1; we
then propose using this measure to efficiently select param-
eters to minimize downstream instability in Section 4.2.

4.1 Eigenspace Instability Measure

We now define the eigenspace instability measure between
two embeddings, and show that this measure is directly re-
lated to the expected disagreement between linear regression
models trained using these embeddings.

Definition 2. Let X = USV T ∈ Rn×d and X̃ =
Ũ S̃Ṽ T ∈ Rn×k be the singular value decompositions
(SVDs) of two embedding matrices X and X̃ , and let
Σ ∈ Rn×n be a positive semidefinite matrix. Then the
eigenspace instability measure between X and X̃ , with re-
spect to Σ, is defined as

EIΣ(X, X̃) :=
1

tr(Σ)
tr

((
UUT+Ũ ŨT−2Ũ ŨTUUT

)
Σ

)
.

Intuitively, this measure captures how different the sub-
spaces spanned by the left singular vectors of X and X̃ are
to one another; the measure will be equal to zero when the
left singular vectors of X and X̃ span identical subspaces
of Rn, and will be equal to one when these singular vectors
span orthogonal subspaces of Rn whose union covers the
whole space. We note that the left singular vectors are par-
ticularly important in the case of linear regression models,
because the predictions of the learned model on the train-
ing examples depend only on the label vector and the left
singular vectors of the data matrix.7

We now present our result showing that the expected mean
squared difference between the linear regression models
trained on X vs. X̃ is equal to the the eigenspace instability
measure, where Σ corresponds to the covariance matrix of
the regression label vector. For the proof, see Appendix A.

Proposition 1. Let X ∈ Rn×d, X̃ ∈ Rn×k be two full-
rank embedding matrices, where xi and x̃i correspond to
the ith rows of X and X̃ respectively. Let y ∈ Rn be a ran-
dom regression label vector with zero mean and covariance
Σ ∈ Rn×n. Then the (normalized) expected mean squared
difference between the linear models fy and f̃y8 trained on

7The linear model trained on data matrix X = USV T ∈
Rn×d with label vector y ∈ Rn makes predictions Xw =
X(XTX)−1XT y = UUT y ∈ Rn on the n training points.

8fy(x) = wTx, for w = (XTX)−1XT y, and f̃y(x̃) = w̃T x̃,
for w̃ = (X̃T X̃)−1X̃T y.

label vector y using embeddings X and X̃ satisfies

Ey
[∑n

i=1(fy(xi)− f̃y(x̃i))
2
]

Ey [‖y‖2]
= EIΣ(X, X̃). (1)

The above result exactly characterizes the expected down-
stream instability of linear regression models trained on X
and X̃ , in terms of the eigenspace instability measure, given
the covariance matrix Σ of the label vector; but how should
we select Σ? One desirable property for Σ could be that it
produce label vectors with higher variance in directions be-
lieved to be important, for example because they correspond
to eigenvectors with large eigenvalues of an embedding’s
Gram matrix. In Section 5, where we evaluate the instability
of pairs of embeddings of various dimensions and preci-
sions, we consider Σ = (EET )α + (ẼẼT )α; in those ex-
periments, E and Ẽ are the highest-dimensional (d = 800),
full-precision embeddings for Wiki’17 and Wiki’18, respec-
tively, and α is a scalar controlling the relative importance
of the directions of high eigenvalue. This choice of Σ re-
sults in label vectors with large variance in the directions
of high eigenvalues of these embedding matrices. In Sec-
tion 5.1 we show that when α is chosen appropriately, there
is strong empirical correlation between the eigenspace in-
stability measure (with this Σ) and downstream instability.

4.2 Jointly Selecting Dimension and Precision

We now demonstrate a practical utility of the eigenspace
instability measure: we propose using the measure to effi-
ciently select embedding dimension-precision parameters
to minimize downstream instability without training the
downstream models. In particular, we propose an algorithm
that takes two or more pairs of embeddings with different
dimension-precision parameters as input, and outputs the
pair with the lowest eigenspace instability measure between
embeddings. In Section 5.2, we evaluate the performance
of this proposed selection algorithm in two settings: first, a
simple setting where the goal is to select the pair with the
lowest downstream instability out of two randomly selected
pairs, and second, a more challenging setting where the goal
is to select the pair with the lowest downstream instability
out of two or more pairs with the same memory budget. In
both settings, we demonstrate that the eigenspace instability
measure outperforms the majority of embedding distance
measures and is competitive with the other top-performing
embedding distance measure, the k-NN measure.

5 EXPERIMENTS

We now empirically validate the eigenspace instability mea-
sure’s relation with downstream instability and demonstrate
that the eigenspace instability measure is an effective selec-
tion criterion for dimension-precision parameters. In Sec-



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Understanding the Downstream Instability of Word Embeddings

tion 5.1, we show that the theoretically grounded eigenspace
instability measure strongly correlates with downstream in-
stability, attaining Spearman correlations greater than the
weaker baselines (semantic displacement, PIP loss, and
eigenspace overlap score) and between 0.04 better and 0.09
worse than the strongest baseline (the k-NN measure). In
Section 5.2, when selecting dimension-precision parameters
without training the downstream models, we show that the
eigenspace instability measure attains up to 3.71× lower
error rates than weaker baselines and from 0.93× to 1.55×
the error rate of the k-NN measure.

Experimental Setup To evaluate how predictive the var-
ious embedding distance measures are of downstream in-
stability, we take the embedding pairs and corresponding
downstream models we trained in Section 3 and measure
the embedding distance measures between these pairs of
embeddings. Specifically, we compute the k-NN measure,
semantic displacement, PIP loss, eigenspace overlap score,
and eigenspace instability measure between the embedding
pairs (Section 2.4). Recall that the k-NN measure and the
eigenspace instability measure each have an important hy-
perparameter: the k in the k-NN measure, which deter-
mines how many neighbors we compare, and the α in the
eigenspace instability measure, which controls how impor-
tant the eigenvectors of high eigenvalue are. For both hyper-
parameters, we choose the values with the highest average
correlation across four sentiment analysis tasks (SST-2, MR,
Subj, and MPQA) and one NER task (CoNLL-2003) and
two embedding algorithms (CBOW and MC) when using
validation datasets for the downstream tasks (k = 5 and α
= 3). See Appendix C.3 for more details on setting these
values. The eigenspace instability measure also requires
additional embeddings E and Ẽ: we use 800-dimensional,
full-precision Wiki’17 and Wiki’18 embeddings as these are
the highest dimensional, full-precision embeddings in our
study.

5.1 Predictive Performance of the Eigenspace
Instability Measure

We evaluate how predictive the eigenspace instability mea-
sure is of downstream instability, showing that the theoret-
ically grounded eigenspace instability measure correlates
strongly with downstream instability and is competitive with
other embedding distance measures. To do this, we measure
the Spearman correlations between the downstream pre-
diction disagreement and the embedding distance measure
for each of the five tasks and two embedding algorithms.
The Spearman correlation quantifies how similar the rank-
ing of the pairs of embeddings based on the embedding
distance measure is to the ranking of the pairs of embed-
dings based on their downstream prediction disagreement,
with a maximum value of 1.0. In Table 1, we see that the
eigenspace instability measure and the k-NN measure are

the top-performing embedding distance measures by Spear-
man correlation, with the eigenspace instability measure
attaining Spearman correlations between 0.04 better and
0.09 worse than the k-NN measure on all tasks. Moreover,
the strong correlation of at least 0.68 for the eigenspace
instability measure across embedding algorithms and down-
stream tasks validates our theoretical claim that this measure
relates to downstream disagreement. In Appendix C.4, we
include additional plots showing the downstream prediction
disagreement versus the embedding distance measures.

5.2 Embedding Distance Measures for
Dimension-Precision Selection

We demonstrate that the eigenspace instability measure is
an effective selection criterion for dimension-precision pa-
rameters, outperforming the majority of existing embedding
distance measures and competitive with the k-NN measure,
for which there are no theoretical guarantees. Specifically,
we evaluate the embedding distance measures as selection
criteria in two settings of increasing difficulty: in the first
setting the goal is, given two pairs of embeddings (each
corresponding to an arbitrary dimension-precision combina-
tion), to select the pair with the lowest downstream instabil-
ity. In the second, more challenging setting, the goal is to
select, among all dimension-precision combinations corre-
sponding to the same total memory, the one with the lowest
downstream instability. This setting is challenging, as for
many memory budgets, there are more than two choices of
embedding pairs, and some choices may have very similar
expected downstream instability. We now discuss each of
these settings, and the corresponding results, in more detail.

For the first, simpler setting, we first form all groupings
of two embedding pairs with different dimension-precision
combinations. For instance, a grouping may have one em-
bedding pair with dimension 800, precision 32, and another
embedding pair with dimension 200, precision 2, where a
pair consists of a Wiki’17 and a Wiki’18 embedding from
the same algorithm. For each embedding distance measure,
we report the fraction of groupings where the embedding
distance measure correctly chooses the embedding pair with
lower downstream instability on a given task. We repeat
over three seeds, comparing embedding pairs of the same
seed, and report the average. In Table 2, we show that
the eigenspace instability measure and k-NN measure are
the most accurate embedding distance measures, with up
to 3.71× and 3.73× lower selection error rates than the
other embedding distance measures, respectively. Moreover,
across downstream tasks, the eigenspace instability measure
attains 0.93× to 1.55× the error rate of the k-NN measure.

For the second, more challenging setting, we enumerate all
embedding pairs with different dimension-precision com-
binations which correspond to the same total memory. For
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Table 1. Spearman correlation scores between embedding distance measures and downstream prediction disagreement across varying
dimension-precision pairs for the embedding. Downstream models are trained for sentiment (SST-2, MR, Subj, MPQA) and NER
(CoNNL-2003) tasks. Strongest correlation values are bolded.

Downstream Task SST-2 MR Subj MPQA CoNNL-2003

Embedding Algorithm CBOW MC CBOW MC CBOW MC CBOW MC CBOW MC

Eigenspace Instability 0.68 0.84 0.86 0.72 0.72 0.78 0.75 0.85 0.80 0.83
k-NN 0.74 0.89 0.85 0.74 0.73 0.76 0.77 0.94 0.76 0.92
Semantic Displacement 0.70 0.28 0.63 0.59 0.45 0.46 0.68 0.29 0.53 0.32
PIP Loss -0.40 0.39 -0.11 0.66 -0.14 0.56 -0.38 0.42 0.01 0.44
1-Eigenspace Overlap 0.63 0.26 0.66 0.56 0.50 0.45 0.68 0.27 0.58 0.31

Table 2. Selection error when using embedding distance measures to predict the most stable embedding dimension-precision parameters
on downstream tasks. Downstream models are trained for sentiment (SST-2, MR, Subj, MPQA) and NER (CoNNL-2003) tasks. Lowest
errors are bolded.

Downstream Task SST-2 MR Subj MPQA CoNNL-2003

Embedding Algorithm CBOW MC CBOW MC CBOW MC CBOW MC CBOW MC

Eigenspace Instability 0.23 0.17 0.14 0.24 0.24 0.20 0.22 0.17 0.20 0.17
k-NN 0.21 0.13 0.15 0.22 0.23 0.21 0.21 0.11 0.21 0.11
Semantic Displacement 0.24 0.42 0.26 0.29 0.34 0.34 0.24 0.40 0.29 0.41
PIP Loss 0.64 0.35 0.52 0.25 0.57 0.28 0.64 0.33 0.50 0.32
1-Eigenspace Overlap 0.28 0.43 0.27 0.29 0.32 0.34 0.25 0.41 0.29 0.41

each embedding distance measure, we report the average
absolute percentage difference between the downstream in-
stability of the pair selected by the measure to the oracle
pair, across different memory budgets. We also introduce
two naive baselines that do not require an embedding dis-
tance measure: high precision, which selects the pair with
the highest precision possible at each memory budget, and
low precision, which selects the pair with the lowest preci-
sion possible at each memory budget. As before, we repeat
over three seeds, comparing embedding pairs of the same
seed, and report the average. We see that the eigenspace
instability measure and k-NN measure again outperform the
other baselines on the majority of downstream tasks, with
the eigenspace instability measure attaining an distance up
to 3.06% (absolute) closer to the oracle than the other base-
lines, and average distance to the oracle 0.02% (absolute)
better to 0.46% (absolute) worse than the k-NN measure
across downstream tasks (Table 3). For both settings, we
include additional results measuring the worst-case perfor-
mance of the embedding distance measure in Appendix C.5,
where we find that the eigenspace instability measure and
k-NN measure continue to be the top-performing measures.

6 EXTENSIONS

We demonstrate that the stability-memory tradeoffs we
observe with pre-trained word embeddings can extend to

knowledge graph embeddings and contextual word embed-
dings: as the memory of the embedding increases, the in-
stability decreases. We first show how these trends hold on
knowledge graph embeddings in Section 6.1 and then on
contextual word embeddings in Section 6.2.

6.1 Knowledge Graph Embeddings

Knowledge graph embeddings (KGEs) are a popular type
of embedding that is used for multi-relational data, such
as social networks, knowledge bases, and recommender
systems. Here, we show that as the dimension and preci-
sion of the KGE increases, the stability on two standard
KGE tasks improves, aligning with the trends we observed
on pre-trained word embedding algorithms. Unlike word
embedding algorithms, the input to KGE algorithms is a di-
rected graph, where the relations are the edges in the graph
and the entities are the nodes in the graph. The graph can be
represented as a set of triplets (h, r, t), where the entity head
h is related by the relation r to the entity tail t. The output
is two set of embeddings: (1) entity embeddings (eh) and
(2) relation embeddings (rr). We study the stability of these
embeddings on two standard benchmark tasks: link predic-
tion and triplet classification. We summarize the datasets
and training and evaluation protocols, and then discuss the
results.
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Table 3. Average difference (absolute percentage) to the oracle downstream instability when using embedding distance measures as the
selection criteria for dimension and precision parameters under different memory budgets. Top-performing values are bolded.

Downstream Task SST-2 MR Subj MPQA CoNNL-2003

Embedding Algorithm CBOW MC CBOW MC CBOW MC CBOW MC CBOW MC

Eigenspace Instability 0.65 1.42 0.69 1.03 0.39 0.63 0.34 0.44 0.28 0.43
k-NN 0.57 1.07 0.71 0.57 0.38 0.57 0.32 0.33 0.32 0.23
Semantic Displacement 0.37 3.73 0.72 2.02 0.48 0.94 0.56 1.33 0.27 1.17
PIP Loss 3.63 3.32 3.33 1.96 1.16 0.74 3.24 1.05 0.83 0.99
1-Eigenspace Overlap 0.88 3.60 0.84 2.02 0.34 0.93 0.51 1.25 0.20 1.15
High Precision 0.85 3.94 1.55 2.07 0.61 1.01 0.40 1.49 0.60 1.28
Low Precision 3.63 1.23 3.33 4.09 1.16 1.39 3.24 0.66 0.83 0.74

Datasets We use two datasets to train KGE embeddings:
FB15K-95 and FB15K. FB15K was introduced in Bordes
et al. (2013) and is composed of a subset of triplets from
the Freebase knowledge base. We construct FB15K-95 by
randomly sampling 95% of the the triplets from the training
dataset of FB15K. The validation and test datasets remain
the same for both datasets. We use these datasets to study
the stability of KGEs under small changes in training data.

Training Protocol We consider a standard KGE
algorithm—TransE (Bordes et al., 2013). The TransE ob-
jective function minimizes the distances d(eh + rr, et) for
observed triplets and maximizes the distances for negatively
sampled triplets, where either h or t has been corrupted. We
use the L1 distance for the distance function d, and learn
the embeddings iteratively via stochastic gradient descent.

To measure the impact of the dimension and precision on
the stability of TransE embeddings, we train TransE embed-
dings of dimensions {10, 20, 50, 100, 200, 400} and then
uniformly quantize the entity and relation embeddings for
each TransE embedding to bits {1, 2, 4, 8, 16, 32} per entry
in embedding.9 We perform a hyperparameter sweep on the
learning using dimension 50, and select the best learning
rate on the validation set for link prediction. We use this
learning rate for all dimensions to minimize the impact of
learning rate on our analysis. We take other training hy-
perparameters from the TransE paper (Bordes et al., 2013)
for the FB15K dataset, and use three seeds to train each
dimension using the OpenKE repository (Han et al., 2018).

Evaluation Protocol For each dimension-precision, we
evaluate all pairs of embeddings trained on FB15K-95 and
FB15K on the link prediction and triplet classification tasks.
For each test triplet, the link prediction task evaluates the
mean predicted rank of an observed triplet among all cor-
rupted triplets. We measure instability on this task with
unstable-rank@10: the fraction of changes in rank greater

9The same dimension is used for both the entity and the relation
embeddings.
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Figure 3. Stability of link prediction (left) and triplet classification
(right) when evaluating embeddings trained on 95% of FB15K
training triplets and all of FB15K.

than 10 between two embeddings across all test triplets.

The triplet classification task was introduced in Socher et al.
(2013a) and is a binary classification task to determine
whether or not a triplet occurs in the knowledge graph. For
each relation, a threshold TR is determined based on the
validation set, such that if d(eh + rr, et) ≤ TR then the
triplet is predicted as positive. For each dimension-precision
pair, we set the thresholds on FB15K-95 embedding and use
the same thresholds for the FB15K embedding. We include
results with threshold set independently for each embedding
in Appendix C.6. As for classification with downstream
NLP tasks, we define stability on the triplet classification
task as the percentage prediction disagreement.

Results We find that the stability-memory tradeoffs con-
tinue to hold for TransE embeddings on the link prediction
and triplet classification tasks: overall as the memory in-
creases, the instability decreases, and specifically, as the
dimension and precision increases, the instability decreases.
In Figure 3 (left), we show for link prediction that as the
memory per vector increases, the unstable-rank@10 mea-
sure decreases. Each line represents a different precision,
where each point on the line represents a different dimension.
Thus, we can also see that as the dimension increases, the
unstable-rank@10 decreases, and as precision increases, this
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measure also decreases. When fitting a linear-log model to
the dimension-precision combinations for all memory bud-
gets, we find that increasing the memory 2× decreases the
instability by 7% to 19% (relative). In Figure 3 (right), we
similarly show for triplet classification that as the memory
per vector increases, the prediction disagreement between
the embeddings trained on the two datasets decreases. Fi-
nally, as we saw with word embeddings, we observe that
the effect of the dimension or precision on stability is more
significant at low memory regimes.

6.2 Contextual Word Embeddings

Unlike pre-trained word embeddings, contextual word em-
beddings (Peters et al., 2018; Vaswani et al., 2017) extract
word representations dynamically with awareness of the
input context. We find that the stability-memory trade-off
observed on pre-trained embeddings can still hold for con-
textual word embeddings, though with noisier trends: higher
dimensionality and higher precision can demonstrate better
downstream stability. We pre-train shallow, 3-layer versions
of BERT (Devlin et al., 2019) on sub-sampled Wiki’17 and
Wiki’18 dumps (∼200 million tokens) as feature extrac-
tors with different transformer layer output dimensionalities,
ranging from a quarter as large to 4× as large as the hid-
den size in BERTBASE (i.e., 768).10 To evaluate the effect
of precision, we use uniform quantization to compress the
output of the last transformer layer in the BERT models.
Finally, we measure the prediction disagreement between
linear classifiers trained on top of the Wiki’17 and Wiki’18
BERT models, with the BERT model parameters fixed.

Across four sentiment analysis tasks, we can observe re-
duced instability with higher dimensional BERT embed-
dings (Figure 12a in Appendix C.7); however, the reduction
in instability from increasing the dimension is noisier than
with pre-trained word embeddings. We hypothesize this
is due to the instability of the training of the BERT em-
bedding itself, which is a much more complex model than
pre-trained word embeddings. We also observe that increas-
ing the precision can decrease the downstream instability,
such that using 1 or 2 bits for precision often demonstrates
observable degradation in stability, but precisions higher
than 4-bit have negligible influence on stability (Figure 12b
in Appendix C.7). For more details on the training and
evaluation, see Appendix C.7.

7 RELATED WORK

There have been many recent works studying word em-
bedding instability (Hellrich & Hahn, 2016; Antoniak &
Mimno, 2018; Wendlandt et al., 2018; Pierrejean & Tanguy,

10The recent 12-layer BERTBASE model is pre-trained with 3
billion tokens from BooksCorpus (Zhu et al., 2015) and Wikipedia,
and requires 16 TPU chips to train for 4 days.

2018; Chugh et al., 2018; Hellrich et al., 2019); these works
have focused on the intrinsic instability of word embeddings,
meaning the stability measured between the embedding ma-
trices without training a downstream model. In the work
of Wendlandt et al. (2018) they do consider a downstream
task (part-of-speech tagging), but focus on how the intrin-
sic instability impacts the error of words on this task. In
contrast, we focus on the downstream instability (i.e., pre-
diction disagreement), evaluating how different parameters
of embeddings impact downstream instability with large-
scale Wikipedia embeddings over multiple downstream NLP
tasks. Furthermore, we provide theoretical analysis which is
specific to the downstream instability setting to help explain
our empirical observations.

More broadly, researchers have also studied the general
problem of ML model instability in the context of online
training and incremental learning. Fard et al. (2016) study
the problem of reducing the prediction churn between con-
secutively trained classifiers by introducing a Monte Carlo
stabilization operator as a form of regularization. Cotter
et al. (2016) further define stability as a design goal for clas-
sifiers in real-world applications, along with goals such as
precision, recall, and fairness, and propose an algorithm to
optimize for these multiple design goals. Other researchers
have also studied the problem of catastrophic forgetting
when models are incrementally trained (Yang et al., 2019),
which shares a similar goal of wanting to learn new infor-
mation, while minimizing changes with respect to previous
models. As these works focus on changes to the downstream
model training to reduce instability, we believe these works
are complementary to our work, which focuses on better un-
derstanding the instability introduced by word embeddings.

8 CONCLUSION

We performed the first in-depth study of the downstream
instability of word embeddings. In our study, we exposed a
novel stability-memory tradeoff, showing that increasing the
embedding dimension or precision decreases downstream
instability. To better understand these empirical results, we
introduced a new measure for embedding instability—the
eigenspace instability measure—which we theoretically re-
late to downstream prediction disagreement. We showed
that this theoretically grounded embedding measure cor-
relates strongly with downstream instability, and can be
used to select dimension-precision parameters, performing
competitively with other embedding measures on minimiz-
ing downstream instability without training the downstream
tasks. Finally, we demonstrated that the stability-memory
tradeoff extends to other types of embeddings, including
contextual word embeddings and knowledge graph embed-
dings. We hope our study motivates future work on the
instability of ML models in even more complex pipelines.
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A EIGENSPACE INSTABILITY: THEORY

We present the proof of Proposition 1, which shows that the expected prediction disagreement between the linear regression
models trained on embedding matrices X and X̃ is equal to the eigenspace instability measure between X and X̃ .

Proposition 1. Let X ∈ Rn×d, X̃ ∈ Rn×k be two full-rank embedding matrices, where xi and x̃i correspond to the ith

rows of X and X̃ respectively. Let y ∈ Rn be a random regression label vector with zero mean and covariance Σ ∈ Rn×n.
Then the (normalized) expected disagreement between the linear models fy and f̃y11 trained on label vector y using
embedding matrices X and X̃ respectively satisfies

Ey
[∑n

i=1(fy(xi)− f̃y(x̃i))
2
]

Ey [‖y‖2]
= EIΣ(X, X̃). (2)

Proof. Let X = USV T ∈ Rn×d and X̃ = Ũ S̃Ṽ T ∈ Rn×d be the SVDs of X and X̃ respectively, and let xi and x̃i
in Rd be the ith rows of X and X̃ . Recall that parameter vector w ∈ Rd which minimizes ‖Xw − y‖22 is given by
w∗ = (XTX)−1XT y (where here we use the assumption that X is full-rank to know that XTX is invertible). Thus,
the linear regression model fy(x) = xTw∗ trained on data matrix X with label vector y ∈ Rn makes predictions
Xw∗ = X(XTX)−1XT y = USV T (V S−2V T )V SUT y = UUT y ∈ Rn on the n training points. So if we train linear
model with data matrices X and X̃ , using the same label vector y, these model will make predictions UUT y and Ũ ŨT y on
the n training points, respectively. Thus, the expected disagreement between the predictions made using X vs. X̃ , over the
randomness in y, can be expressed as follows:

Ey

[
n∑
i=1

(fy(xi)− f̃y(x̃i))
2

]
= Ey

[
‖UUT y − Ũ ŨT y‖2

]
= Ey

[(
UUT y − Ũ ŨT y

)T (
UUT y − Ũ ŨT y

)]
= Ey

[
yTUUTUUT y + yT Ũ ŨT Ũ ŨT y − 2yT Ũ ŨTUUT y

]
= Ey

[
yT
(
UUT + Ũ ŨT − 2Ũ ŨTUUT

)
y
]

= Ey
[
tr

(
yT
(
UUT + Ũ ŨT − 2Ũ ŨTUUT

)
y

)]
= tr

((
UUT + Ũ ŨT − 2Ũ ŨTUUT

)
Ey
[
yyT

])
= tr

((
UUT + Ũ ŨT − 2Ũ ŨTUUT

)
Σ

)
, where Σ = Ey

[
yyT

]
Furthermore, we can easily compute the expected norm of the label vector y.

Ey
[
‖y‖2

]
= Ey

[
tr(yT y)

]
= Ey

[
tr(yyT )

]
= tr(Ey

[
yyT

]
)

= tr(Σ).

Thus, we have successfully shown that

Ey
[∑n

i=1(fy(xi)− f̃y(x̃i))
2
]

Ey [‖y‖2]
=

tr

((
UUT + Ũ ŨT − 2Ũ ŨTUUT

)
Σ

)
tr(Σ)

=: EIΣ(X, X̃),

as desired.
11fy(x) = wTx, for w = (XTX)−1XT y, and f̃y(x̃) = w̃T x̃, for w̃ = (X̃T X̃)−1X̃T y.
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A.1 Efficiently Computing the Eigenspace Instability Measure

We now discuss an efficient way of computing the eigenspace instability measure, assuming Σ = (EET )α + (ẼẼT )α =
V R2αV T + Ṽ R̃2αṼ T as discussed in Section 4.1. Here, E and Ẽ correspond to fixed embedding matrices,12 where
E = V RWT and Ẽ = Ṽ R̃W̃T are the SVDs of E and Ẽ respectively.

Recall the definition of the eigenspace instability measure:

EIΣ(X, X̃) :=
1

tr(Σ)
tr

((
UUT +Ũ ŨT−2Ũ ŨTUUT

)
Σ

)
.

We now show that both traces in this expression can be computed efficiently.

tr

((
UUT + Ũ ŨT − 2Ũ ŨTUUT

)
Σ

)
= tr

((
UUT + Ũ ŨT − 2Ũ ŨTUUT

)(
V R2αV T + Ṽ R̃2αṼ T

))
= tr

(
RαV TUUTV Rα

)
+ tr

(
RαV T Ũ ŨTV Rα

)
− 2 tr

(
RαV T Ũ ŨTUUTV Rα

)
+

tr
(
R̃αṼ TUUT Ṽ R̃α

)
+ tr

(
R̃αṼ T Ũ ŨT Ṽ R̃α

)
− 2 tr

(
R̃αṼ T Ũ ŨTUUT Ṽ R̃α

)
= ‖UTV Rα‖2F + ‖ŨTV Rα‖2F − 2 tr

(
Rα(V T Ũ)(ŨTU)(UTV )Rα

)
+

‖UT Ṽ R̃α‖2F + ‖ŨT Ṽ R̃α‖2F − 2 tr
(
R̃α(Ṽ T Ũ)(ŨTU)(UT Ṽ )R̃α

)
. (3)

tr (Σ) = tr
(
V R2αV T + Ṽ R̃2αṼ T

)
= tr

(
V TV R2α

)
+ tr

(
Ṽ T Ṽ R̃2α

)
= tr

(
R2α

)
+ tr

(
R̃2α

)
. (4)

We now note that the traces in Equation (4), and all the matrix multiplications in Equation (3) can be computed efficiently
and with low-memory (no need to ever store an n by n Gram matrix, for example), assuming the embedding matrices are
“tall and thin” (large vocabulary, relatively low-dimensional). More specifically, the eigenspace instability measure can
be computed in time O(nd2) and memory O(d2), where we take X, X̃,E, Ẽ to all be in Rn×d (or in Rn×d′ for d′ ≤ d).
Thus, even for large vocabulary n, the eigenspace instability measure can be computed relatively efficiently (assuming the
dimension d isn’t too large).

B EXPERIMENTAL SETUP DETAILS

We discuss the experimental protocols used for each of our experiments. In Appendix B.1, we discuss the training procedures
for the word embeddings, and in Appendix B.2, we discuss how we compress and post-process the embeddings. In
Appendix B.3, we describe the models, datasets, and training procedures used for the downstream tasks in our study, and in
Appendix B.4, we discuss how we analyze the instability trends we observe on these tasks. Finally, in Appendix B.5 and
Appendix B.6 we describe setup details for the extension experiments on knowledge graph and contextual word embeddings,
respectively.

B.1 Word Embedding Training

We use Google’s C implementation of word2vec CBOW13 and our own C++ implementation of MC to train word embeddings.
For CBOW, we use the default learning rate, and for MC, since we are using our own implementation, we use a learning rate
which we found to achieve low loss on Wiki’17. We include the full details on the hyperparameters used for both embedding
algorithms in Table 4.

B.2 Word Embedding Compression and Post-Processing

We now discuss some important implementation details for uniform quantization related to stability. To minimize confound-
ing factors with stability, we use deterministic rounding for each word. The bounds of the interval for uniform quantization

12In our experiments,E and Ẽ are the highest-dimensional (d = 800), full-precision embeddings for Wiki’17 and Wiki’18, respectively.
13https://github.com/tmikolov/word2vec



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Understanding the Downstream Instability of Word Embeddings

Table 4. Hyperparameters for embedding algorithms.

Algorithm Hyperparameter Value

Shared Training epochs 50
Window size 15
Minimum count 5
Threads 56

CBOW Learning rate 0.05
Negative samples 5

MC Learning rate 0.2
LR decay epochs 20
Batch size 128
Stopping tolerance 0.0001

are determined by computing an optimal clipping threshold which is based on the distribution of the real numbers to be
quantized. As we assume that embeddings X and X̃ have similar distributions in terms of their vector values, we use the
same clipping threshold across embeddings X and X̃ to avoid unnecessary sources of instability, and we compute the
clipping threshold using embedding X . Finally, we apply orthogonal Procrustes to align embedding X̃ to embedding X
before compressing the embeddings and training downstream models. Preliminary results indicated that this alignment
decreased instability, particularly at high compression rates, and we use this technique throughout our experiments.

B.3 Downstream Tasks

We discuss the models, datasets, and training procedure we use for the sentiment analysis and NER tasks.

B.3.1 Sentiment Analysis

We use a simple, bag-of-words model for sentiment analysis. The goal of the task is to classify a sentence as positive or
negative. For each sentence, the bag-of-words model averages the word embeddings of the words in the sentence and then
passes the sentence embedding through a linear classifier. This simple model allows us to study the impact of the embedding
on the downstream task in a controlled setting, where the downstream model itself is expected to be fairly stable.

We use four datasets for the sentiment analysis task: SST-2, MR, Subj, and MPQA. These are the four largest binary
classification datasets used in Kim (2014).14 We use their given train/validation/test splits for SST-2. For MR, Subj, and
MPQA, which do not have these splits, we take 10% of the data for the validation set, 10% for the test set, and use the
remaining 80% for the training set.

We tune the learning rate for each dataset and embedding algorithm. We use the 400-dimensional Wiki’17 embeddings to
tune the learning rate in the grid of {1e-6, 1e-5, 0.0001, 0.001, 0.01, 0.1, 1}. We choose the learning rate which achieves
the highest validation accuracy on average across three seeds for each dataset and report the selected values in Table 5.
To avoid choosing unstable learning rates, we also throw out learning rate values where the validation errors increase by
15% or greater between any consecutive epochs, though this only affects the MC MPQA learning rate. We include the
hyperparameters shared among all datasets in Table 6.

Table 5. Selected learning rates for the sentiment analysis datasets per embedding algorithm.

Algorithm SST-2 MR Subj MPQA

CBOW 0.0001 0.001 0.0001 0.001
MC 0.001 0.1 0.1 0.001

14https://github.com/harvardnlp/sent-conv-torch/tree/master/data
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Table 6. Training hyperparameters shared across embedding algorithms for the sentiment analysis task.

Hyperparameter Value

Optimizer Adam
Batch size 32
Training epochs 100

B.3.2 Named Entity Recognition

We use the single-layer, BiLSTM model from Akbik et al. (2018) for named entity recognition.15 We turn off the conditional
random field (CRF) for computational efficiency and include a smaller subset of results with the CRF turned on in
Appendix D.1.

We use the standard English CoNLL-2003 dataset with the default setup for train/development/test splits (Tjong Kim Sang
& De Meulder, 2003). Following Gardner et al. (2018), we ignore article divisions (denoted with “-DOCSTART-”) and do
not consider them as sentences.16

We tune the learning rate per embedding algorithm, and otherwise follow the training hyperparameter settings of Akbik et al.
(2018). Using the 400-dimensional Wiki’17 embeddings, we sweep the learning rate in the grid of {0.001, 0.01, 0.1, 1, 10},
and choose the one which achieves the highest validation micro F1-score on average across three seeds for each embedding
algorithm. We train with vanilla SGD without momentum and use learning decay with early stopping if the learning rate
becomes too small. We provide the selected learning rates in Table 7 and the hyperparameters shared across embeddings in
Table 8.

Table 7. Selected learning rates for the NER task per embedding algorithm.

CBOW MC

0.1 1.0

Table 8. Training hyperparameters shared across embedding algorithms for the NER task.

Hyperparameter Value

Optimizer SGD
Batch size 32
Max. training epochs 150
LSTM hidden size 256
LSTM num. layers 1
Patience 3
Anneal factor 0.5
Word dropout 0.05
Locked dropout 0.5

B.4 Fitting Linear-Log Models to Trends

We describe in detail how we fit linear-log model to the memory, dimension, and precision trends in Section 3.3. To propose
the simple rule of thumb relating stability and memory, we consider 10 tasks to form a data matrix for the linear-log model:
5 downstream tasks (the four sentiment tasks in our study and the NER task) for two embedding algorithms (CBOW and
MC embeddings). Let P denote the number of Wiki’17/Wiki’18 pairs of embedding matrices from our experiments which
correspond to a combination of dimension d, precision b, and random seed s (we consider 3 random seeds) such that

15https://github.com/zalandoresearch/flair
16https://github.com/allenai/allennlp
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the number of bits per row is less than our cutoff of 103 (bd < 103).17 For each task t (out of T = 10 total tasks), we
construct a data matrix X(t) ∈ RP×(T+1), and a label vector y(t) ∈ RP , as follows: Each row in X(t) corresponds to one
of the above P pairs of Wiki’17/Wiki’18 embedding matrices. For each of these embedding matrix pairs, we compute
the memory m′ in bits occupied per row of the embedding matrices, as well as the downstream prediction disagreement
percentage y′ ∈ [0, 100] between the models trained on those embeddings. We then set the corresponding row in X(t)

to be [log2(m′), et] ∈ RT+1, where et ∈ RT is a binary vector with a one at index t and zeros everywhere else, and the
corresponding entry of y(t) to the prediction disagreement y′; note that appending et to log2(m′) allows us to learn a
different bias term (i.e., y-intercept) per task. We then vertically concatenate all the X(t) matrices and label vectors y(t),
to form a single data matrix X ∈ RTP×(T+1) and label vector y ∈ RTP . To fit our log-linear model, we use X and y to
solve the least squares problem using the closed form solution, β̂ = (XTX)−1XT y. Given β̂ ∈ RT+1, for each task t we
can extract the fitted log-linear trend: DIt ≈ β̂t − β̂0 ∗ log2(m), where β̂0 ≈ 1.4 is the first element of β̂, and β̂t is the
(t+ 1)th element of β̂. This implies that doubling the memory of the embeddings on average leads to a 1.4% reduction in
downstream prediction disagreement.

To fit the individual dimension and precision log-linear trends, we follow a protocol very similar to the above. For the
dimension (respectively, precision) trend, the primary difference with the above protocol is that instead of having an
independent y-intercept term per task, we have an independent y-intercept term for each combination of task and precision
(resp., dimension). Furthermore, in the rows of the data matrices, instead of log2(·) of the memory m, we consider log2(·)
of the dimension d (resp., precision b).

We also use the linear-log model for stability-memory to compute the minimum and maximum relative percentage decreases
in downstream instability when increasing the memory of word embeddings. In particular, our goal is to understand
how much the 1.4% decrease in prediction disagreement is in relative terms. To do this, we consider the combination of
downstream task and embedding algorithm which is most stable at high memory (task: Subj; embedding algorithm: CBOW),
and the combination which is least stable at low memory (task: MR; embedding algorithm: MC). At these extreme points,
the instability is approximately 2.2% and 26%, respectively. A 1.4% absolute decrease in instability from 3.6% to 2.2%
corresponds to a relative decrease of approximately 39%

(
1.4
3.6 ≈ 0.39

)
. Similarly, a 1.4% absolute decrease in instability

from 25.9% to 24.5% corresponds to a relative decrease of approximately 5%
(

1.4
25.9 ≈ 0.05

)
. Thus, we conclude that this

1.4% absolute decrease in instability corresponds to a relative decrease in instability between 5% and 39%, across the tasks
and embedding algorithms we consider.

We repeat the procedures described in this section to fit a linear-log model to the stability-memory trend for knowledge
graph embeddings in Section 6.1.

B.5 Knowledge Graph Embeddings

We use the OpenKE repository to generate knowledge graph embeddings (Han et al., 2018).18 We follow the training
hyperparameters described in Bordes et al. (2013) for TransE embeddings for the FB15K dataset where available, and use
default parameters from the OpenKE repository, otherwise. We modify the repository to follow the early stopping procedure
and normalization of entity embeddings to follow the protocol of Bordes et al. (2013). We additionally sweep the learning
rate in {1e-5, 0.0001, 0.001, 0.01, 0.1} using dimension 50 on the FB15K-95 dataset, and choose the learning rate which
attains the lowest mean rank (i.e., highest quality) on the validation set for the link prediction task. We include the full
hyperparameters in Table 9. We also note that unlike with word embeddings, we do not align embeddings with orthogonal
Procrustes before compressing the embeddings with uniform quantization. We found alignment to result in a quality drop on
knowledge graph embeddings, likely due to the fact that there are two sets of embeddings jointly learned (relation and entity
embeddings) which require special alignment techniques.

B.6 Contextual Word Embeddings

To study the downstream task stability of contextual word embeddings, we pretrain BERT Devlin et al. (2019) models
and then use them as fixed feature extractors to train downstream task models. We use BERT model without fine-tuning
their parameters for downstream tasks because our goal is to isolate and study the stability resulting from the difference in

17In our case P = 63, because we have 3 random seeds, and 21 pairs of dimension d ∈ {25, 50, 100, 200, 400, 800} and precision
b ∈ {1, 2, 4, 8, 16, 32} such that db < 103.

18https://github.com/thunlp/OpenKE/tree/OpenKE-PyTorch
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Table 9. Hyperparameters for training TransE knowledge graph embeddings. Bolded values indicate we performed a grid search. Other
values are from Bordes et al. (2013) and Han et al. (2018).

Hyperparameter Value

Optimizer SGD
Max. training epochs 1000
Num. batches 100
Threads 8
Early stopping patience 10
Head/tail replacement strategy Uniform
Entity negative rate 1
Relation negative rate 0
Margin γ 1
Distance d L1

Learning rate 0.001

pretraining corpora; this is in analogy to our study in Section 3 on the stability of conventional fixed pre-trained embeddings.

Pretraining In the pretraining phase, we use Wikipedia dumps (the major component of the corpus used by Devlin et al.
(2019)) to train the BERT models. We use Wiki’2017 and Wiki’2018 dumps respectively for pretraining to study the stability
introduced by these two corpora. We pretrain BERT models with 3 transformer layers on 10% subsampled articles from
the Wikipedia dumps, which consists of approximately 200 million tokens. We use these shallower BERT model on the
subsampled pretraining corpus to allow for computationally feasible training of BERT models with different transformer
output dimensionality. As our corpus size are different from the one used by the original BERT model (Devlin et al., 2019),
we first grid search the pretraining learning rate with the subsampled Wiki’17 corpus using the same transformer output
dimensionality as the BERTBASE. We then use the grid-searched optimal learning rate to pretrain the BERT model with
different transformer dimensionality for both Wiki’17 and Wiki’18 corpus.19

Downstream Evaluation To evaluate the downstream stability of pre-trained BERT models, we take BERT model pairs
with the same model configuration but trained on Wiki’17 and Wiki’18 respectively. We measure the percentage of
disagreement in downstream task prediction of the BERT pairs as proxy for downstream stability. Specifically, we evaluate
the stability on the sentiment analysis task using the SST, Subj, MR and MPQA datasets. In these tasks, we use linear bag-
of-words models on top of the last transformer layer output; this output acts as the contextual word vector representation. To
train the sentiment analysis task models, we first grid-search the learning rate using BERT with 768-dimensional transformer
output for each dataset and choose the value with the highest validation accuracy.20 We then use the grid-searched learning
rate to train the sentiment analysis models using different pre-trained BERT models. To ensure statistically meaningful
results, we use three random seeds to pretrain BERT models and train the downstream sentiment analysis models. We
otherwise use the same hyperparameters reported in Table 6.

C EXTENDED EMPIRICAL RESULTS

We now present additional experimental results to further validate the claims in this paper and provide deeper analysis of our
results. We organize this section as follows:

• In Appendix C.1, we present additional results showing that the stability-memory trends (and individual dimension and
precision trends) hold on more sentiment analysis tasks.

• In Appendix C.2, we evaluate another important property–quality—exploring the tradeoffs of quality with memory and
stability for the tasks in our study.

19We follow the experiment design from pre-trained word embeddings to use the same learning rate for pretraining BERT models with
transformer configurations.

20We use the dimensionality used for original BERTBASE (Devlin et al., 2019).
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• In Appendix C.3, we discuss how we choose the single hyperparameter required for both the k-NN measure and the
eigenspace instability measure.

• In Appendix C.4, we use visualizations to further analyze the relationship between the downstream instability and
the embedding distance measures and validate that eigenspace instability measure can help us explain the observed
stability-memory trends.

• In Appendix C.5, we evaluate the worst-case performance of the embedding distance measures as selection criteria,
showing that the eigenspace instability measure and k-NN measure remain the top-performing measures overall.

• In Appendix C.6, we experiment with a modified setup for the triplet classification task, showing that the trends
continue to hold, but the instability plateaus faster under this modification.

• In Appendix C.7, we include the figures for the contextual word embedding results presented in Section 6.2.

C.1 Stability-Memory Tradeoff

We validate that the stability-memory tradeoff holds on three more sentiment tasks (Subj, MR, and MPQA) for dimension
and precision, first in isolation and then together. As always, we train embeddings and downstream models over three
seeds, and the error bars indicate the standard deviation over these seeds. In Figure 4, we can see more evidence that as
the dimension increases, the downstream instability often decreases, with the trends more consistent for lower precision
embeddings. In Figure 5, we further validate that as the precision increases, the downstream instability decreases. Finally, in
Figure 6, we again see that when jointly varying dimension and precision, the instability decreases as the memory increases.
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(a) 32-bit Precision
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Figure 4. The effect of embedding dimension on the downstream instability of sentiment analysis tasks for CBOW and MC embedding
algorithms. We show the results at two different precisions: (top) 32-bit precision (uncompressed), and (bottom) 1-bit precision (32×
compressed).

C.2 Quality Tradeoffs

We also evaluate the quality-memory tradeoffs and quality-stability tradeoffs, finding that like stability, the quality also
increases with the embedding memory. In Figures 7 (a) and 8 (a), we show the quality-memory tradeoff across sentiment
analysis and NER tasks and embedding algorithms for different dimension-precision combinations. We see that the
dimension tends to impact the quality significantly more than the precision (i.e., the change in dimension for a fixed precision
affects the quality more than the change in precision for a fixed dimension affects the quality). Recall that in contrast, for
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Figure 5. The effect of embedding precision on the downstream instability of sentiment analysis tasks for CBOW and MC embedding
algorithms with 100-dimensional embeddings.
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Figure 6. The effect of embedding dimension and precision on the downstream instability of sentiment analysis tasks for CBOW and MC
embedding algorithms.

instability, we saw that the precision actually had a slightly greater effect than the dimension in Section 3.3. In Figures 7 (b)
and 8 (b) we also show the quality-stability tradeoffs. For many of the sentiment analysis tasks, there is not significant
evidence of a strong relationship between the two; however, for the NER task, we can clearly see that as the instability
increases, the quality decreases. For several of the tasks (e.g., CBOW, MR; CBOW, MPQA), we can see that for different
precisions (i.e., lines), the instability changes significantly, but the quality is relatively constant. This aligns with the previous
observation that the precision tends to impact the instability more than it does the quality. In a similar way, for different
dimensions (i.e., points), we see that the quality can change significantly while the instability may stay relatively constant,
especially for higher precisions (e.g., CBOW, SST-2, CBOW, MPQA).

C.3 Selecting Hyperparameters for Embedding Distance Measures

The eigenspace instability measure and the k-NN measure each have a single hyperparameter to tune. For the eigenspace
instability measure, α determines how important the directions of the eigenvalues of high variance are. For the k-NN
measure, k determines how many neighbors are compared for each query word. To tune these hyperparameters, we compute
the Spearman correlation between the embedding distance measure and the downstream prediction disagreement on the
validation datasets for the five tasks and two embedding algorithms in our study. In Table 10a we report the average Spearman
correlation for different values of α for the eigenspace instability measure where we see α = 3 is the top-performing value.
In Table 10b we report the average Spearman correlation for different values of k for the k-NN measure, where we see k = 5
is the top-performing value. Based on these results, we use α = 3 and k = 5 for our experiments throughout the paper.
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Figure 7. Quality tradeoffs for the sentiment analysis tasks with CBOW (top) and MC (bottom) embeddings for varying dimension-
precision combinations.

C.4 Predictive Performance of the Eigenspace Instability Measure

We now provide several additional results validating the strong relationship between the eigenspace instability measure and
downstream instability. First, we show downstream instability v. embedding distance measure plots for each embedding
distance measure, and then we show that the eigenspace instability measure demonstrates the same isolated trends with
dimension and precision that we observed in Sections 3.1 and 3.2.

In addition to the Spearman correlation results we provide in Table 1, we visualize the downstream instability v. embedding
distance measure results for the CoNLL-2003 NER task in Figure 9 with CBOW and MC embeddings, taking the average
over three seeds. We see that k-NN measure and the eigenspace instability measure achieve strong correlations since the
lines are generally monotonically increasing for both CBOW and MC embedding algorithms.

Empirically, we also validate that the eigenspace instability measure can explain the dimension and precision trends we
observed in Sections 3.1 and 3.2. To explain the dimension trend, we compute the eigenspace instability measure between
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Figure 8. Quality tradeoffs for the NER task with CBOW and MC embeddings for varying dimension-precision combinations.

Table 10. Average Spearman correlation ρ values for different values of α for the eigenspace instability measure (a) and k for the k-NN
measure (b). Top value bolded.

(a) α for the eigenspace instability measure

α ρ

0 -0.350
1 -0.067
2 0.498
3 0.751
4 0.748
5 0.741
6 0.738
7 0.739
8 0.739

(b) k for the k-NN measure

k ρ

1 0.766
2 0.777
5 0.785
10 0.782
50 0.774
100 0.763
500 0.703
1000 0.675

full-precision Wiki’17 and Wiki’18 embeddings of the same dimension for dimensions {25, 50, 100, 200, 400, 800}. To
explain the precision trend, we compute the eigenspace instability measure between 100-dimensional Wiki’17 and Wiki’18
embeddings of the same precision for precisions {1, 2, 4, 8, 16, 32}. We use α = 3 as described in Appendix C.3. In
Figure 10, we see that as the dimension and precision increase, the eigenspace instability measure decreases.

C.5 Embedding Distance Measures for Dimension-Precision Selection

We evaluate the the worst-case performance of the embedding distance measures when used as a selection criterion for
dimension-precision parameters. First, on the easier task of choosing the more stable dimension-precision pair out of
two choices, we define the worst-case performance as the maximum increase in instability that may occur by using the
embedding distance measure to choose the dimension-precision parameters (rather than the ground truth choice). On
the more challenging task of choosing the most stable dimension-precision pair under a memory budget, we define the
worst-case performance as the worst-case absolute percentage error to the oracle parameters under a given memory budget.
We see in Tables 11 and 12 that the eigenspace instability measure and k-NN measure are the top-performing measures for
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Figure 9. Downstream instability versus embedding distance measures for the NER task on the CoNLL-2003 dataset. ρ is the Spearman
correlation between the embedding distance measure and the downstream instability.

25 50 100 200 400 800
Dimension

0.01

0.02

Ei
ge

ns
pa

ce
 In

st
ab

ilit
y

CBOW
MC

1 2 4 8 16 32
Precision

0.025

0.050

0.075

Ei
ge

ns
pa

ce
 In

st
ab

ilit
y

CBOW
MC

Figure 10. The eigenspace instability measure captures the stability-memory tradeoffs for dimension and precision for CBOW and MC
embeddings.

the first task and in the top-three selection criterion for the majority of downstream models for the second task.

C.6 Knowledge Graph Embeddings

In Section 6.1, we showed that as the memory of the TransE embedding increases, the instability on link prediction and
triplet classification task decreases; we now experiment with a modified setup for the triplet classification experiments.
In Figure 11, we use thresholds tuned per dataset (in Figure 3 (right) we use the same threshold on both the FB15K-95
and FB15K dataset) and see that the stability-memory tradeoffs are less pronounced across the memory budgets. For low
precisions, we continue to see that as the dimension increases, the instability decreases. For higher precisions, the instability
decreases as we increase the dimension, but quickly plateaus for dimensions greater than 50.

C.7 Contextual Word Embeddings

We include the plots for the contextual word embedding experiments with BERT embeddings in Figures 12a and 12b for
dimension and precision, respectively. As discussed in Section 6.2, although noisier than the trends with pre-trained word
embeddings, we see that generally as the dimension and precision increase, the downstream instability decreases.
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Table 11. Worst-case absolute percentage error when using each embedding distance measure to predict the most stable embedding
parameters on downstream tasks over of all pairs of parameters. Downstream models are trained for sentiment (SST-2, MR, Subj, MPQA)
and NER (CoNNL-2003) tasks. Lowest errors are bolded.

Downstream Task SST-2 MR Subj MPQA CoNNL-2003

Embedding Algorithm CBOW MC CBOW MC CBOW MC CBOW MC CBOW MC

Eigenspace Instability 10.43 13.18 5.06 7.12 3.50 3.40 4.24 5.00 3.30 4.11
k-NN 10.43 11.75 7.87 9.28 2.80 3.40 4.62 3.68 2.17 3.16
Semantic Displacement 11.70 16.80 11.06 14.71 5.40 7.10 5.66 7.63 5.13 7.03
PIP Loss 16.14 15.76 13.40 12.84 6.40 4.40 9.99 6.13 6.78 5.77
1-Eigenspace Overlap 12.69 16.80 10.59 14.71 5.50 7.10 5.94 7.63 5.86 7.03

Table 12. Worst-case absolute percentage error to the oracle downstream instability when using embedding distance measures as the
selection criteria for dimension and precision parameters.

Downstream Task SST-2 MR Subj MPQA CoNNL-2003

Embedding Algorithm CBOW MC CBOW MC CBOW MC CBOW MC CBOW MC

Eigenspace Instability 3.08 11.37 3.94 6.37 1.80 2.40 1.32 2.54 0.84 1.73
k-NN 3.02 11.37 3.94 2.62 1.80 2.60 1.60 2.54 1.29 1.01
Semantic Displacement 2.47 13.95 3.75 9.56 1.80 3.10 2.36 3.96 1.73 3.92
PIP Loss 7.96 13.95 7.97 9.56 3.30 3.10 6.88 3.96 2.02 3.92
1-Eigenspace Overlap 10.43 13.95 3.84 9.56 1.80 3.10 2.26 3.96 1.29 3.92
High Precision 10.43 13.95 6.75 9.56 1.80 3.10 2.36 3.96 2.03 3.92
Low Precision 7.96 5.33 7.97 10.22 3.30 4.60 6.88 2.36 2.02 2.33
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Figure 11. Stability of triplet classification when evaluating embeddings trained on 95% of FB15K training triplets and all of FB15K, and
tuning the threshold for the task per dataset.

D ROBUSTNESS OF TRENDS

We explore the robustness of our study by providing preliminary investigation on the effect of more complex downstream
models, other sources of randomness introduced by the downstream model (e.g., model initialization and sampling order),
the downstream model learning rate, and fine-tuning embeddings on downstream instability.

D.1 Complex Downstream Models

In the main text, our primary downstream models are a simple linear bag-of-words model for sentiment analysis and a single
layer BiLSTM for NER. We now demonstrate that complex downstream models such as CNNs or BiLSTM-CRFs can still
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Figure 12. Downstream instability of the BERT embeddings on sentiment analysis tasks as a function of (a) transformer layer output
dimensionality, and (b) uniform quantization precision.

demonstrate the stability-memory tradeoffs, such that as the memory increases, the instability decreases. In Figure 13, we
show that when using a CNN for the SST-2 sentiment analysis task, embeddings with very low memory budgets result
in high instability. The instability quickly plateaus for memory budgets greater than 102 for the CBOW embeddings, but
continues to decrease until a memory budget of 103 for the MC embeddings. The CNN architecture has one convolutional
layer, with kernels of widths 3, 4, and 5, and 100 output channels. The convolutional layer is followed by a ReLU layer, a
max-pooling layer, and finally a linear classification layer. We sweep the learning rate in a grid of {1e-5, 0.0001, 0.001,
0.01, 0.1} and choose the best learning rate by validation accuracy. Shared hyperparameters are shown in Table 13 and
selected learning rates are shown in Table 14.

Table 13. Training hyperparameters for the CNN architecture for sentiment analysis.

Hyperparameter Value

Optimizer Adam
Batch size 32
Training epochs 100
Dropout 0.5

Table 14. Selected learning rates for the CNN architecture for sentiment analysis task on the SST-2 dataset per embedding algorithm.

CBOW MC

0.0001 0.001

We now demonstrate that the BiLSTM-CRF also demonstrates the stability-memory tradeoffs, where as the dimension and
precision increase, the instability decreases (Figure 14). We use the same hyperparameters as in Table 8 and repeat our setup
for the BiLSTM with the CRF turned on for the CoNLL-2003 NER task. Due to the CRF being computationally expensive,
we train a representative subset of points (dimensions in {25, 100, 800} and precisions in {1, 4, 32}). For each embedding
algorithm, we grid search the learning rate for the BiLSTM-CRF with 400-dimensional embeddings in {0.001, 0.01, 0.1,
1.0, 10.0} and find that a learning rate of 0.1 is best for both embedding algorithms.
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Figure 13. Downstream instability of the SST-2 sentiment analysis task with a CNN model for different CBOW and MC embedding
dimension-precision combinations.
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Figure 14. Downstream instability of the NER task with a BiLSTM-CRF model for different CBOW and MC embedding dimension-
precision combinations.

D.2 Sources of Randomness Downstream

We study the impact of two sources of randomness in the downstream model training—the model initialization seed and
the sampling seed—on the downstream instability. First, we fix the embeddings and vary the model initialization seed
and sampling seed independently. We vary the sampling order by shuffling the order of the batches in the training dataset.
We compare the instability from these sources of randomness in the downstream model training to the instability from
the embeddings. For each source of randomness downstream, we fix the embedding (using a single seed of the Wiki’17,
full-precision, 400-dimensional embedding), and measure the instability between models trained with different random seeds.
We repeat over three pairs of models and report the average. We see in Table 15 that across four sentiment analysis tasks
using the linear bag-of-words models, the sampling order seed introduces comparable instability to the change in embedding
training data with full-precision, 400-dimensional embeddings, while the model initialization seed often contributes less
instability. We note that using smaller memory budgets for the embeddings introduces much greater instability from the
change in embedding training data, however, as shown in Figures 2 and 6.

In our experiments, we had also fixed the model initialization seeds and sampling order seeds to match that of the embedding,
such that the seeds were the same between any two models we compared. We now remove this constraint, and vary the
model initialization and sampling order seed of the model corresponding to the Wiki’18 embedding, such that no two models
compared have the same seeds and otherwise repeat the experimental described in Section 3 and Appendix B.3. In Figure 15,
we see that the stability-memory tradeoffs continue to hold and the trends are very similar to when we fixed the seeds
(Figure 2). We note that many of the instability values themselves, particularly for CBOW, are slightly higher in Figure 15
than they are in Figure 2, likely due to the additional instability from the change in downstream model and sampling seeds.
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Table 15. Using fixed 400-dimensional Wiki’17 embeddings and a linear bag-of-words model for sentiment analysis, we vary the model
initialization seed and sampling order seed to measure their effect on downstream instability, compared to changing the embedding training
data. Values represent the average percentage disagreement between models, and the largest instability is bolded for each embedding
algorithm and task combination.

Downstream Task SST-2 MR Subj MPQA

Embedding Algorithm CBOW MC CBOW MC CBOW MC CBOW MC

Model Initialization Seed 3.48 7.08 2.44 9.28 1.10 4.53 1.45 4.30
Sampling Order Seed 8.99 5.96 5.87 10.09 0.57 6.13 5.59 1.92
Embedding Training Data 6.59 8.66 4.00 11.22 1.50 3.40 3.30 4.78
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Figure 15. Downstream instability of the SST-2 sentiment analysis task for different CBOW and MC embedding dimension-precision
combinations when we relax the constraint of having the model and sampling order seed be the same between models.

D.3 Effect of Downstream Learning Rate

We now study the impact of the downstream model learning rate on the instability, showing that the learning rate of the
downstream model is another factor that impacts the downstream instability. In Figure 16, we show the instability of
CBOW and MC embeddings on the SST-2 and MR sentiment analysis tasks when different learning rates are used for the
downstream linear model. We mark the optimal learning rate by validation accuracy with a red star. We see that very small
learning rates and very large learning rates tend to be the most unstable for both 100 and 400-dimensional embeddings.
Moreover, the optimal learning rates do not significantly increase the instability compared to the other learning rates in our
sweep. Since we see that the learning rate further contributes to the instability, we fix the learning rate in our main study to
have a controlled setting to study the impact of dimension and precision on instability.

D.4 Effect of Fine-tuning Embeddings Downstream

We study the impact of fine-tuning the embeddings downstream and find that the stability-memory tradeoff becomes noisier,
but continues to hold under fine-tuning, and fine-tuning can dramatically help to decrease the downstream instability. In
Figure 17, we show that as the memory increases, the instability generally decreases for both CBOW and MC embeddings,
even when we allow the embeddings to be updated (i.e., fine-tuned) when training the downstream models. We note that we
do not compress the embeddings during training in these experiments, therefore the memory denotes the memory required
to store the embedding prior to training. To perform the fine-tuning experiments, we follow the procedure described in
Appendix B.3, and perform an additional learning rate sweep per embedding algorithm with fine-tuning in the grid {1e-5,
0.0001, 0.001, 0.01, 0.1, 1, 10}. We found the optimal learning rate for both algorithms on the SST-2 sentiment analysis
task with fine-tuning to be 0.0001. We also see that overall the instability decreases with fine-tuning compared to fixing the
embeddings (as we did in Figure 2). We note that the learning rate for the downstream model with MC and fine-tuning is
smaller than with fixed embeddings, which may also contribute to the reduced instability; however, from Figure 16, the
reduction in instability with fine-tuning still appears greater than that which can be achieved from a small change in learning
rate alone.
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Figure 16. Downstream instability of CBOW and MC embeddings on the SST-2 and MR sentiment analysis tasks with various learning
rates.
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Figure 17. Downstream instability of CBOW and MC embeddings on the SST-2 sentiment analysis tasks when embeddings are fine-tuned.
The memory indicates the embedding memory prior to training the downstream model, and embeddings are full-precision during
downstream model training.


