
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices

A COMPARISON BETWEEN IRREGULARLY
WIRED NEURAL NETWORKS
AND CONVENTIONAL REGULAR
TOPOLOGY NEURAL NETWORKS

Multiply-and-accumulate (Billions)

To
p-

1 
Im

ag
eN

et
 A

cc
ur

ac
y 

(%
)

85

65

70

75

80

200 10 30 40

DPN-131

Inception V1
MobileNet

ShuffleNet

Inception V2

Inception V3
Xception ResNet-152

SENet

AmoebaNet-A

ReNeXt-101PolyNet
Inception ResNet V2

Inception V4

NASNet-A
NASNet-B

RandWire

AmoebaNet-A

AmoebaNet-B

RandWire

irregularly wired neural networks
regular topology neural networks

irregularly wired neural networks
show better performance for

same amount of compute than
regular topology neural networks 

top left means is better

(a) ImageNet accuracy vs number of multiply-and-accumulate.

Number of Parameters (Millions)

To
p-

1 
Im

ag
eN

et
 A

cc
ur

ac
y 

(%
)

85

65

70

75

80

800 40 100 140

DPN-131

irregularly wired neural networks

Inception V1
MobileNet
ShuffleNet

Inception V2

Inception V3
Xception

ResNet-152

SENet

AmoebaNet-C

ReNeXt-101

PolyNetInception ResNet V2
Inception V4

NASNet-A

NASNet-A

RandWire

AmoebaNet-A

RandWire

regular topology neural networks

irregularly wired neural networks
show better performance for

same number of parameters than
regular topology neural networks 

top left means is better

6020 120

NASNet-A

(b) ImageNet accuracy vs number of parameters.

Figure 14. ImageNet accuracy vs number of multiply-and-
accumulate or parameters, where irregularly wired neural networks
show higher performance for same amount of compute or number
of parameters than regular topology neural networks.

B PROOF FOR OPTIMAL PEAK MEMORY
FOOTPRINT FROM THE DYNAMIC
PROGRAMMING-BASED SCHEDULING

Here we prove the optimality of the above dynamic
programming-based scheduling algorithm.
THEOREM 1. In order to find a schedule s⇤ with an optimal
peak memory consumption µ⇤, it is sufficient to keep just
one schedule-peak memory pair (si, zi) in STi for each
zero-indegree set zi, and to append subsequent nodes on top
of si to get si+1 in each search step.

Proof. If i=0, the optimal s0 is an empty sequence and µ0

must be 0. On the other hand, if i� 1, assume that (subop-

timal) vi constitutes s⇤, substituting u⇤
i 2zi and achieves µ⇤.

In such case, let vi be replaced with (optimal) u⇤
i , which will

result in µpeak  min(µi +
Q

vi.shape,µi +
Q

u⇤
i .shape),

and µi+1 is calculated by deducting
Q

pi.shape, 8pi 2
(ui.preds\zero-outdegree(si+1,G)). By recursively apply-
ing uk for rest of the search steps k, the algorithm should
find an alternative sequence s⇤0 with µ⇤0

µ⇤ due to the min
operator above, contradicting the original assumption on the
optimality of s⇤. Therefore, our algorithm finds a schedule
with an optimal peak memory consumption. ⌅

C COMPLEXITY ANALYSIS OF
THE DYNAMIC PROGRAMMING-BASED
SCHEDULING AND PROOF

We compare the complexity of exhaustively exploring ST

and our dynamic programming-based scheduling. While
the algorithm both lists candidate schedules and calculates
their peak memory footprint, we consider the peak memory
footprint calculation as one operation while deriving the
complexity. In order to visualize the analysis, we invent G
in Figure 15 to demonstrate the upper bound complexity of
each algorithm. It has a single entry node and a single exit
node A and Z , respectively, and all other nodes constitute
independent branches between the entry and the exit node.

A

D W

Z

CB X Y

GGraph

…

Figure 15. Topology of G to demonstrate the upper bound
complexity of each algorithm.

First, we demonstrate the complexity of the recursive
topological sorting that exhaustively explores ST . Since
there is a single entry node and a single exit node, there
will be |V � 2| remaining nodes and these nodes can be
scheduled independently of one another, thereby the number
of candidate schedules become h|V � 2|!i and the overall
complexity becomesO(|V |!), where |V | denotes the number
of nodes. On the other hand, for the dynamic programming
we calculate the number of candidates by utilizing the
number of schedules that gets memoized. Our memoization
takes advantage of the zero-indegree sets z for each search
step. Following first demonstrate the number of z in each
search step which also means the number of nodes scheduled.



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices

Search step 0: 1

Search step 1: 1 , single entry node.

Search step 2:
✓
|V |�2

1

◆

Search step 3:
✓
|V |�2

2

◆

...

Search step |V |�2:
✓
|V |�2

|V |�1

◆

Search step |V |�1:
✓
|V |�2

|V |�2

◆

Search step |V |: 1 , single exit node.

On top of this, each step would make an iteration over the
set of candidate nodes to discover the next search step’s z.
Therefore, search step 1 would explore |V |�2 nodes and the
search steps 2 to |V |�1 would iterate over |V |�1�i nodes.
Summarizing this would yield:

1+1⇥(|V |�2)+

✓
|V |�2

1

◆
⇥(|V |�3)+

...+

✓
|V |�2

|V |�2

◆
⇥0+1

=1+

✓
|V |�2

0

◆
⇥(|V |�2)+

✓
|V |�2

1

◆
⇥(|V |�3)+

...+

✓
|V |�2

|V |�2

◆
⇥0+1

=2+

|V |�2X

i=0

✓
|V |�2

i

◆
⇥(|V |�2�i)

=2+(|V |�2)⇥2|V |�3

(|V |�2)⇥2|V |�2 , for |V |�4

 |V |⇥2|V |

As a result, we can see that our dynamic programming-based
scheduling algorithm is bounded by O(|V |⇥2|V |). By us-
ing Stirling’s approximation on the complexity of the re-
cursive topological sorting, we can prove that the dynamic
programming-based scheduling algorithm should be signifi-
cantly faster than the recursive topological ordering.


