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A COMPARISON BETWEEN IRREGULARLY
WIRED NEURAL NETWORKS
AND CONVENTIONAL REGULAR
TOPOLOGY NEURAL NETWORKS
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(a) ImageNet accuracy vs number of multiply-and-accumulate.
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(b) ImageNet accuracy vs number of parameters.

Figure 14. ImageNet accuracy vs number of multiply-and-
accumulate or parameters, where irregularly wired neural networks
show higher performance for same amount of compute or number
of parameters than regular topology neural networks.

B PROOF FOR OPTIMAL PEAK MEMORY
FOOTPRINT FROM THE DYNAMIC
PROGRAMMING-BASED SCHEDULING

Here we prove the optimality of the above dynamic
programming-based scheduling algorithm.
THEOREM 1. In order to find a schedule s⇤ with an optimal
peak memory consumption µ⇤, it is sufficient to keep just
one schedule-peak memory pair (si, zi) in STi for each
zero-indegree set zi, and to append subsequent nodes on top
of si to get si+1 in each search step.

Proof. If i=0, the optimal s0 is an empty sequence and µ0

must be 0. On the other hand, if i� 1, assume that (subop-

timal) vi constitutes s⇤, substituting u⇤
i 2zi and achieves µ⇤.

In such case, let vi be replaced with (optimal) u⇤
i , which will

result in µpeak  min(µi +
Q

vi.shape,µi +
Q

u⇤
i .shape),

and µi+1 is calculated by deducting
Q

pi.shape, 8pi 2
(ui.preds\zero-outdegree(si+1,G)). By recursively apply-
ing uk for rest of the search steps k, the algorithm should
find an alternative sequence s⇤0 with µ⇤0

µ⇤ due to the min
operator above, contradicting the original assumption on the
optimality of s⇤. Therefore, our algorithm finds a schedule
with an optimal peak memory consumption. ⌅

C COMPLEXITY ANALYSIS OF
THE DYNAMIC PROGRAMMING-BASED
SCHEDULING AND PROOF

We compare the complexity of exhaustively exploring ST

and our dynamic programming-based scheduling. While
the algorithm both lists candidate schedules and calculates
their peak memory footprint, we consider the peak memory
footprint calculation as one operation while deriving the
complexity. In order to visualize the analysis, we invent G
in Figure 15 to demonstrate the upper bound complexity of
each algorithm. It has a single entry node and a single exit
node A and Z , respectively, and all other nodes constitute
independent branches between the entry and the exit node.

A

D W

Z

CB X Y

GGraph

…

Figure 15. Topology of G to demonstrate the upper bound
complexity of each algorithm.

First, we demonstrate the complexity of the recursive
topological sorting that exhaustively explores ST . Since
there is a single entry node and a single exit node, there
will be |V � 2| remaining nodes and these nodes can be
scheduled independently of one another, thereby the number
of candidate schedules become h|V � 2|!i and the overall
complexity becomesO(|V |!), where |V | denotes the number
of nodes. On the other hand, for the dynamic programming
we calculate the number of candidates by utilizing the
number of schedules that gets memoized. Our memoization
takes advantage of the zero-indegree sets z for each search
step. Following first demonstrate the number of z in each
search step which also means the number of nodes scheduled.
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Search step 0: 1

Search step 1: 1 , single entry node.

Search step 2:
✓
|V |�2

1

◆

Search step 3:
✓
|V |�2

2

◆

...

Search step |V |�2:
✓
|V |�2

|V |�1

◆

Search step |V |�1:
✓
|V |�2

|V |�2

◆

Search step |V |: 1 , single exit node.

On top of this, each step would make an iteration over the
set of candidate nodes to discover the next search step’s z.
Therefore, search step 1 would explore |V |�2 nodes and the
search steps 2 to |V |�1 would iterate over |V |�1�i nodes.
Summarizing this would yield:

1+1⇥(|V |�2)+

✓
|V |�2

1

◆
⇥(|V |�3)+

...+

✓
|V |�2

|V |�2

◆
⇥0+1

=1+

✓
|V |�2

0

◆
⇥(|V |�2)+

✓
|V |�2

1

◆
⇥(|V |�3)+

...+

✓
|V |�2

|V |�2

◆
⇥0+1

=2+

|V |�2X

i=0

✓
|V |�2

i

◆
⇥(|V |�2�i)

=2+(|V |�2)⇥2|V |�3

(|V |�2)⇥2|V |�2 , for |V |�4

 |V |⇥2|V |

As a result, we can see that our dynamic programming-based
scheduling algorithm is bounded by O(|V |⇥2|V |). By us-
ing Stirling’s approximation on the complexity of the re-
cursive topological sorting, we can prove that the dynamic
programming-based scheduling algorithm should be signifi-
cantly faster than the recursive topological ordering.


