
Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems

50, 56, 61

61, 87

4, 61

5, 56

11, 87

98
mini-batch

1

mini-batch
2

working: 4, 5, 11, 50, 53, 56, 61, 87, 98

Node
1
:

1, 3, 5, …, 97, 99

Node
2
:

2, 4, 6, …, 98, 100

5, 11, 53, 61, 87 4, 50, 56, 98 MEM:

pull local
MEM-PS/SSD-PS

pull remote
MEM-PS

GPU
1
: 4, 5, 11, 50 GPU

2
: 53, 56, 61, 87, 98

partition parameters

11, 87

98
GPU

1

mini-batch
1

11 87, 98

pull local HBM-PS pull remote HBM-PS

forward/backward
propagation

87

4, 53
mini-batch

3

mini-batch
4

:
Worker

1

 SSD:

HBM:

Figure 6. An example for Algorithm 1.

A HIERARCHICAL PARAMETER SERVER
WORKFLOW EXAMPLE

Example. Figure 6 depicts an example for the training work-
flow (Algorithm 1). Consider now we are at node1. An input
batch is streamed from HDFS and is divided into 4 mini-
batches. The working parameters of the current batch are:
4, 5, 11, 50, 53, 56, 61, 87, 98. Parameters are sharded and
stored on the SSDs of each node. We have 2 nodes and shard
the parameters in a round-robin method in this example—
node1 stores the parameters with odd keys while node2
stores the ones with even keys. Here we have 100 total pa-
rameters in this example—there are 1011 parameters in real-
world large-scale deep learning models. 5, 11, 53, 61, 87 are
stored on the local node—node1. We pull these parame-
ters from the local MEM-PS (for the cached parameters)
and the local SSD-PS. For the parameters that stored on
other nodes—4, 50, 56, 98, we pull these parameters from
the MEM-PS on node2 through the network. The MEM-
PS on node2 interacts with its memory cache and its local
SSD-PS to load the requested parameters. Now all the work-
ing parameters are retrieved and are stored in the memory
of node1. Here we have 2 GPUs on node1. The working
parameters are partitioned and transferred to GPU HBMs.
In this example, GPU1 obtains the parameters whose keys
are less than or equal to 50—4, 5, 11, 50, and GPU2 takes
53, 56, 61, 87, 98. The partition strategy can be any hashing
function that maps a parameter key to a GPU id. Consider
the worker1 of GPU1 is responsible to process mini-batch1.
worker1 is required to load 11, 87 and 98. Among them,

11 is stored in the HBM of the local GPU—GPU1. 87 and
98 are pulled from GPU2. Since the GPUs are connected
with high-speed interconnections—NVLink, the inter-GPU
data transfer has low-latency and high-bandwidth. After the
parameters are ready in the working memory of worker1,
we can perform the neural network forward and backward
propagation operations to update the parameters. All the
updated parameters are synchronized among all GPUs on all
nodes after each mini-batch is finished. When all the mini-
batches are finished, the MEM-PS on each node pulls back
the updated parameters and materializes them onto SSDs.

B 4-STAGE PIPELINE EXAMPLE

Network CPU SSD GPU Network CPU SSD GPU

Network CPU SSD GPU Network CPU SSD

Network CPU SSD GPU Network CPU

Network CPU SSD GPU Network

Pull/push
MEM-PS

Partition
parameters

Load/dump
parameters

Training

Timeline

Figure 7. The 4-stage pipeline.

Figure 7 is an illustration of the 4-stage pipeline. For ex-
ample, when the GPUs are busy training the model, our
4-stage pipeline enables the proposed system to prepare
the referenced parameters of the next training batch at the
same time: the HBM-PS pulls remote parameters from other
nodes and the SSD-PS loads local parameters for the next
batch simultaneously. After the training of the current batch
is finished, all the required parameters of the next batch are
ready to use in the GPU HBM—GPUs are able to train the
next batch immediately.

C HBM-PS IMPLEMENTATION

C.1 Multi-GPU Distributed Hash Table

Partition policy. A partition policy that maps a parame-
ter key to a GPU id is required to partition the parameters.
A simple modulo hash function yields a balanced parti-
tioning in general cases, because the features of the input
training data are usually distributed randomly. The modulo
hash function can be computed efficiently with constant
memory space. As a trade-off of the memory footprint,
the disadvantage of the simple hash partition policy is that
we need to pull parameters from other GPUs if the param-
eters referenced in a mini-batch are not stored in the lo-
cal parameter partition. One possible improvement is to
group parameters with high co-occurrence together (Eisen-
man et al., 2018), for example, pre-train a learned hash

Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems

GPU

HBM

PCIe bus

CPUMEM

Network Card GPU

HBM

PCIe bus

CPU MEM

Network Card

Sender Receiver

RoCE

Baseline

RDMA

Figure 8. Inter-node RDMA communication.

function (Kraska et al., 2018) to maximize the parameter
co-occurrence. It is another research axis–vertical partition-
ing (Navathe et al., 1984; Zhao et al., 2015) that is beyond
the scope of this paper. Generally, no perfect balanced parti-
tion solution exists for random inputs. Although the number
of pulled parameters is reduced, we still have to pull param-
eters from almost all other GPUs even with an optimized
partition policy. Besides, transferring a large batch of data
can better utilize the NVLink bandwidth—the disadvantage
of the simple hash function partition policy is reduced.

C.2 GPU RDMA Communication

GPU Communication mechanism. The inter-node GPU
communication mechanism is depicted in Figure 8. Two
nodes are shown in the figure—the left node is the sender
and the right one is the receiver. For each node, the CPU,
GPU and network card are connected with a PCIe bus.

We first examine the baseline method before we introduce
our RDMA solution. In the figure, the data flow of the base-
line method is represented as the dashed line starting from
the sender HBM to the receiver HBM. The CPU calls the
GPU driver to copy the data from GPU HBM into the CPU
memory. Then, the CPU reads the data in the memory and
transmits the data through the network. The transmitted
data are stored in the memory of the receiver node. Finally,
the receiver CPU transfers the in-memory data to the GPU
HBM. In this baseline method, the CPU memory is uti-
lized as a buffer to store the communication data—it incurs
unnecessary data copies and CPU consumptions.

Our RDMA hardware design eliminates the involvement
of the CPU and memory. Its data flow is represented as
a solid line in the figure. Remote Direct Memory Access
(RDMA) (Potluri et al., 2013) enables zero-copy network
communication—it allows the network card to transfer data
from a device memory directly to another device memory
without copying data between the device memory and the
data buffers in the operating system. The RDMA data trans-
fer demands no CPU consumption or context switches. The
network protocol–RDMA over Converged Ethernet (RoCE)–

is employed to allow RDMA over the Ethernet network. The
sender GPU driver1 directly streams the data in HBM to the
network, while the receiver network card directly stores the
collected data into the GPU HBM.

GPU
1

GPU
1

GPU
1

GPU
1

Node
1

Node
2

Node
3

Node
4

… ... … ... … ... … ...

1 1

2 2

GPU
8

GPU
8

GPU
8

GPU
8

1 1

2 2

3 3 3 3

Figure 9. All-reduce communication.

C.3 Inter-Node GPU Communication

All-reduce communication. The parameter synchroniza-
tion requires an all-reduce communication—each GPU
needs to receive all parameter updates from other GPUs
and then performs a reduction to accumulate these updates.
Figure 9 presents an example communication workflow. 4
nodes are shown in this example. Each node contains 8
GPUs. Initially, the GPUs on Node1 exchange their parame-
ter updates with their corresponding GPUs on Node2 (step
1)—i.e., the ith GPU on Node1 communicates with the ith

GPU on Node2. Meanwhile, the GPUs with the same id on
Node3 and Node4 share their data with each other. Then,
the GPUs on Node1 perform the communication with the
ones on Node3 (step 2). Likewise, the GPUs on Node2
and Node4 perform the same pattern communication in par-
allel. After these two steps, each GPU on each node has
collected all the parameter updates of its corresponding

1https://docs.nvidia.com/cuda/
gpudirect-rdma/index.html

Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems

GPUs on other nodes. An intra-node GPU tree all-reduce
communication2 is executed to share the data across all 8
GPUs on the same node (step 3). Most of the communi-
cations are paralleled—log2 #nodes non-parallel inter-node
and log2 #GPUs intra-node all-reduce communications are
required to synchronize the parameters across all nodes.

C.4 Dense Parameters

As we discussed in the CTR prediction neural network ex-
ample (Figure 1), besides the large-scale sparse parameters,
there are a small number of dense parameters for the fully-
connected layers. For any sparse input, all the dense parame-
ters are referenced and updated. Therefore, we can pin these
dense parameters in the HBM of all GPUs at the beginning
of the training for better training performance. In extreme
cases—we have insufficient HBM memory to replicate the
dense parameters, we can shard the dense parameters as the
sparse parameters and distribute them across all GPU HBMs.
The dense parameters are also synchronized as the sparse
ones in the HBM-PS after each mini-batch is processed.

D MEM-PS IMPLEMENTATION

Cache policy. We target to cache the most recently and the
most frequently used parameters in the memory to reduce
SSD I/Os. In this paper, we leverage a cache eviction policy
that combines two cache methods—Least Recently Used
(LRU) (O’Neil et al., 1993) and Least Frequently Used
(LFU) (Sokolinsky, 2004). Whenever we visit a parameter,
we add it into an LRU cache. For the evicted parameters
from the LRU cache, we insert them into an LFU cache. The
evicted parameters from the LFU cache are collected—we
have to flush them into SSDs before releasing their memory.
To guarantee the data integrity of our pipeline, we pin the
working parameters of the current batch and the pre-fetched
parameters of next iterations in the LRU cache—they cannot
be evicted from the memory until their batch is completed.

E SSD-PS IMPLEMENTATION

Load parameters. The SSD-PS gathers requested param-
eter keys from the MEM-PS and looks up the parameter-
to-file mapping to locate the parameter files to read. We
have to read an entire parameter file when it contains re-
quested parameters—a larger file causes more unnecessary
parameter readings. This is a trade-off between the SSD
I/O bandwidth and the unnecessary parameter reading—a
small-size file cannot fully utilize the SSD I/O bandwidth.
We tune the file size to obtain the optimal performance. Fig-
ure 10(a) depicts an example of parameter files on SSDs. In

2https://docs.nvidia.com/deeplearning/
sdk/nccl-developer-guide/docs/usage/
operations.html#allreduce

the example, each parameter file can store 3 parameters.

Dump parameters. Parameters evicted from the HBM-PS
cache are required to be dumped onto SSDs. It is impracti-
cal to locate these parameters and perform in-place updates
inside the original file—it poorly utilizes the SSD I/O band-
width because it requires us to randomly write the disk.
Instead, our SSD-PS chunks these updated parameters into
files and writes them as new files on SSDs—data are sequen-
tially written onto the disk. After the files are written, we
update the parameter-to-file mapping of these parameters.
The older versions of the parameters stored in the previous
files become stale—these older values will not be used since
the mapping is updated. In Figure 10(b), we present an ex-
ample for dumping parameters—1, 2, 4, 6, 8, 9 are updated
and dumped to SSD-PS. We chunked them into two files
and write these two files onto the SSD—file4 and file5. The
underlined values–the values of the updated parameters in
the old files–are stale.

File compaction. The SSD usage hikes as we keep cre-
ating new files on SSDs. A file compaction operation is
performed regularly to reduce the disk usage—many old
files containing a large proportion of stale values can be
merged into new files. We adopt the leveled compaction
algorithm of LevelDB 3 to create a lightweight file merging
strategy. A worker thread runs in the background to check
the disk usage. When the usage reaches a pre-set thresh-
old, the SSD-PS scans the old parameter files, collects the
non-stale parameters, merges them into new files, and erases
the old files. The parameter-to-file mapping of the merged
parameters is also updated in the file compaction operation.
Figure 10(c) illustrates the file compaction effects. Before
the compaction (Figure 10(b)), the stale values in file1, file2
and file3 occupy more than a half of the file capacity. We
scan these files, merge the non-stale values into a new file
(file6), and erase these files (file1 and file2). The compaction
operation may merge a large number of files on SSDs. In
order to reduce the excessive merging, we set a threshold
to limit the number of merged files—we only merge files
that contain more than 50% stale parameters. By employing
this threshold, we can limit the total SSD space usage—the
size of all parameter files will not exceed 2 times (1/50%)
of the original non-stale parameter size. Note that we do
not need to read the entire file to obtain the proportion of
stale parameters—a counter that counts the number of stale
parameters is maintained as an auxiliary attribute for each
file. When we update the parameter-to-file mapping, we
accumulate the counter of the old file it previously maps to.

F ADDITIONAL RELATED WORK

In-memory cache management. Many caching policies
have been developed for storage systems, such as the LRU-

3https://github.com/google/leveldb

Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems

1, 2, 3 4, 5, 6 7, 8, 9

1 2 3 4 5 6 7 8 9

1 1 1 2 2 2 3 3 3

1, 2, 3 4, 5, 6 7, 8, 9 1, 2, 4

1 2 3 4 5 6 7 8 9

4 4 1 4 2 5 3 5 5

3, 5, 7

1 2 3 4 5 6 7 8 9

7 7 5 5 2 2 3 6 5

!"e
1

!"e
2

!"e
3

!"e
4

!"e
5 !"e

4
!"e

5
!"e

6

parameter id

SSD 67es
6, 8, 9

!"e
1

!"e
2

!"e
3

1, 2, 4 6, 8, 9

(a) (b) (c)

67e id

Figure 10. SSD-PS examples: (a) parameter-to-file mapping and parameter files; (b) 1, 2, 4, 8, 9 are updated; (c) a compaction operation.

K (O’Neil et al., 1993), DBMIN (Chou & DeWitt, 1986),
LRFU(Lee et al., 2001), and Semantic Caching (Dar et al.,
1996). These algorithms evict cache according to a com-
bined weight of recently used time-stamp and frequency.
In the web context, there is extensive work developed for
variable-size objects. Some of the most well-known algo-
rithms in this space are Lowest-Latency-First(Wooster &
Abrams, 1997), LRU-Threshold (Abrams et al., 1996), and
Greedy-Dual-Size(Cao & Irani, 1997). Unlike our caching
problem, the parameter we tackle with has a fixed size and a
clear access pattern in our CTR prediction model training—
some parameters are frequently referenced. It is effective
to keep those “hot parameters” in the cache by applying an
LFU eviction policy. While our additional LRU linked list
maintains the parameters referenced in the current pass to
accelerate the hash table probing.

Key-value store for SSDs. There is a significant amount
of work on key-value stores for SSD devices. The major

designs (Andersen et al., 2009; Lim et al., 2011) follow
the paradigm that maintains an in-memory hash table and
constructs an append-only LSM-tree-like data structure on
the SSD for updates. FlashStore (Debnath et al., 2010)
optimize the hash function for the in-memory index to com-
pact key memory footprints. SkimpyStash (Debnath et al.,
2011) moves the key-value pointers in the hash table onto
the SSD. BufferHash (Anand et al., 2010) builds multiple
hash tables with Bloom filters for hash table selection. Wis-
cKey (Lu et al., 2017) separates keys and values to minimize
read/write amplifications. Our SSD-PS design follows the
mainstream paradigm, while it is specialized for our training
problem. We do not need to confront the challenges to store
general keys and values. The keys are the index of parame-
ters that distributes uniformly. It is unnecessary to employ
any sophisticated hashing functions. Also, the values have
a known fixed length, the serialized bucket on SSD exactly
fits in an SSD block—I/O amplification is minimized.

