What is the State of Neural Network Pruning?

A CORPUS AND DATA CLEANING

We selected the 81 papers used in our analysis in the fol-
lowing way. First, we conducted an ad hoc literature
search, finding widely cited papers introducing pruning
methods and identifying other pruning papers that cited
them using Google Scholar. We then went through the con-
ference proceedings from the past year’s NeurIPS, ICML,
CVPR, ECCYV, and ICLR and added all relevant papers
(though it is possible we had false dismissals if the title
and abstract did not seem relevant to pruning). Finally,
during the course of cataloging which papers compared to
which others, we added to our corpus any pruning paper
that at least one existing paper in our corpus purported to
compare to. We included both published papers and un-
published ones of reasonable quality (typically on arXiv).
Since we make strong claims about the lack of compar-
isons, we included in our corpus five papers whose meth-
ods technically do not meet our definition of pruning but
are similar in spirit and compared to by various pruning
papers. In short, we included essentially every paper intro-
ducing a method of pruning neural networks that we could
find, taking care to capture the full directed graph of papers
and comparisons between them.

Because different papers report slightly different metrics,
particularly with respect to model size, we converted re-
ported results to a standard set of metrics whenever possi-
ble. For example, we converted reported Top-1 error rates
to Top-1 accuracies, and fractions of parameters pruned to
compression ratios. Note that it is not possible to con-
vert between size metrics and speedup metrics, since the
amount of computation associated with a given parameter
can depend on the layer in which it resides (since convo-
lutional filters are reused at many spatial positions). For
simplicity and uniformity, we only consider self-reported
results except where stated otherwise.

We also did not attempt to capture all reported metrics, but
instead focused only on model size reduction and theoret-
ical speedup, since 1) these are by far the most commonly
reported and, 2) there is already a dearth of directly compa-
rable numbers even for these common metrics. This is not
entirely fair to methods designed to optimize other metrics,
such as power consumption (Louizos et al., 2017; Yang
et al., 2017; Han et al., 2015b; Kim et al., 2015), memory
bandwidth usage (Peng et al., 2018; Kim et al., 2015), or
fine-tuning time (Dubey et al., 2018; Yamamoto & Maeno,
2018; Huang & Wang, 2018; He et al., 2018), and we con-
sider this a limitation of our analysis.

A further limitation is that, as a result of relying on read-
ing of hundreds of pages of dense technical content, we are
confident that we have made some number of isolated er-
rors. We therefore welcome correction by email and refer
the reader to the arXiv version of this paper for the most

up-to-date revision.

B CHECKLIST FOR EVALUATING A
PRUNING METHOD

For any pruning technique proposed, check if:

e It is contextualized with respect to magnitude prun-
ing, recently-published pruning techniques, and prun-
ing techniques proposed prior to the 2010s.

* The pruning algorithm, constituent subroutines (e.g.,
score, pruning, and fine-tuning functions), and hyper-
parameters are presented in enough detail for a reader
to reimplement and match the results in the paper.

e All claims about the technique are appropriately
restricted to only the experiments presented (e.g.,
CIFAR-10, Resnets, image clsasification tasks, etc.).

* There is a link to downloadable source code.
For all experiments, check if you include:

* A detailed description of the architecture with hyper-
parameters in enough detail to for a reader to reimple-
ment it and train it to the same performance reported
in the paper.

« If the architecture is not novel: a citation for the ar-
chitecture/hyperparameters and a description of any
differences in architecture, hyperparameters, or per-
formance in this paper.

* A detailed description of the dataset hyperparameters
(e.g., batch size and augmentation regime) in enough
detail for a reader to reimplement it.

* A description of the library and hardware used.
For all results, check if:

 Data is presented across a range of compression ratios,
including extreme compression ratios at which the ac-
curacy of the pruned network declines substantially.

» Data specifies the raw accuracy of the network at each
point.

* Data includes multiple runs with separate initializa-
tions and random seeds.

 Data includes clearly defined error bars and a measure
of central tendency (e.g., mean) and variation (e.g.,
standard deviation).



What is the State of Neural Network Pruning?

* Data includes FLOP-counts if the paper makes argu-
ments about efficiency and performance due to prun-
ing.

For all pruning results presented, check if there is a com-
parison to:

* A random pruning baseline.

— A global random pruning baseline.

— A random pruning baseline with the same layer-
wise pruning proportions as the proposed tech-
nique.

* A magnitude pruning baseline.

— A global or uniform layerwise proprtion magni-
tude pruning baseline.

— A magnitude pruning baseline with the same lay-
erwise pruning proportions as the proposed tech-
nique.

 Other relevant state-of-the-art techniques, including:

— A description of how the comparisons were pro-
duced (data taken from paper, reimplementation,
or reuse of code from the paper) and any differ-
ences or uncertainties between this setting and
the setting used in the main experiments.

C EXPERIMENTAL SETUP

For reproducibility purposes, ShrinkBench fixes ran-
dom seeds for all the dependencies (PyTorch, NumPy,
Python).

C.1 Pruning Methods

For the reported experiments, we did not prune the clas-
sifier layer preceding the softmax. ShrinkBench supports
pruning said layer as an option to all proposed pruning
strategies. For both Global and Layerwise Gradient Mag-
nitude Pruning a single minibatch is used to compute the
gradients for the pruning. Three independent runs used
random seeds were performed for every CIFAR10 experi-
ments. We found some variance across methods that relied
in randomness such as random pruning or gradient based
methods that use a sampled minibatch to compute the gra-
dients with respect to the weights.

C.2 Finetuning Setup

Pruning was performed from the pretrained weights and
fixed from there forwards. Reported values are always for
the validation set. Early stopping is implemented during

finetuning. Thus if the validation accuracy repeatedly de-
creases after some point we stop the finetuning process to
prevent overfitting.

All reported CIFAR10 experiments used the following fine-
tuning setup

* Batch size: 64

* Epochs: 30

* Optimizer: Adam

+ Initial Learning Rate: 3 x 10~
* Learning rate schedule: Fixed

All reported ImageNet experiments used the following
finetuning setup

* Batch size: 256

* Epochs: 20

* Optimizer: SGD with Nesterov Momentum (0.9)
* Initial Learning Rate: 1 x 1073

* Learning rate schedule: Fixed

D ADDITIONAL RESULTS

Here we include the entire set of results obtained with
ShrinkBench. For CIFAR10 results are included for VGG-
CIFAR, ResNet20, ResNet56 and ResNet110. Standard de-
viation across three different random runs is reported. For
ImageNet results are reported for ResNet18.

VGG-CIFAR on CIFAR10

0.95
0.90
3 0.85
o
3
é,;’ 080 —— Global
Layer
—e— Global Gradient
0.75 Layer Gradient
—— Random
0.70 !
1 2 4 8 16 32

Compression Ratio

Figure 9: Accuracy for several levels of compression for
VGG-CIFAR on CIFAR10



What is the State of Neural Network Pruning?

0.95

Accuracy

Figure 10: Accuracy vs theoretical speedup for VGG-
CIFAR on CIFAR10

0.95

Accuracy

Figure 11: Accuracy for several levels of compression
for ResNet20 on CIFAR10

0.95

Accuracy

BRRRRE

BRRRRE

BRRRRE

Figure 12:

ResNet20 on CIFAR10

VGG-CIFAR on CIFAR10

0.95

Accuracy

Global 0.80
Layer
Global Gradient
Layer Gr 0.75
Random
0.70
2 4 8 16 32

Theoretical Speedup

ResNet20 on CIFAR10

0.95
0.90
3 0.85
o
3
Global 2 0.80
Layer
Global Gradient
Layer Gradient 0.75
Random
H 0.70
2 4 8 16 32

Compression Ratio

ResNet20 on CIFAR10

0.95

Accuracy

Global 0.80
Layer
Global Gradien
Layer Gradient 0.75
Random
I 0.70
2 4 8 16 32

Theoretical Speedup

ResNet56 on CIFAR10

—e— Global

—— lLayer

—e— Global Gradient

—e— Layer Gradient

—e— Random

1 2 4 8 16 32

Compression Ratio

Figure 13: Accuracy for several levels of compression
for ResNet56 on CIFAR10

ResNet56 on CIFAR10

Global
Layer
Global Gradient
Layer Gradient
Random

BRRRRE

2 4 8 16 32
Theoretical Speedup

Figure 14: Accuracy vs theoretical speedup for
ResNet56 on CIFAR10

ResNet110 on CIFAR10

—e— Global

—— Layer

—e— Global Gradient

—e— Layer Gradient

—— Random

1 2 4 8 16 32

Compression Ratio

Accuracy vs theoretical speedup for Figure 15: Accuracy for several levels of compression

for ResNet110 on CIFAR10



What is the State of Neural Network Pruning?

ResNetl110 on CIFAR10

0.95
0.90
3 0.85
©
3
2 080 —— Global
—e— Layer
—e— Global Gradient
0.75 Layer Gradient
—— Random
0.70
1 2 4 8 16 32

Theoretical Speedup

Figure 16: Accuracy vs theoretical speedup for
ResNet110 on CIFAR10

ResNetl8 on ImageNet
0.7

o
o

Global
Layer
Global Gradient
Layer Gradient

Top 1 Accuracy
o
w

0.4

0.3

BRERE

2 4 8 16
Compression Ratio

Figure 17: Accuracy for several levels of compression
for ResNet110 on CIFAR10

ResNet18 on ImageNet
0.7

o
o

Top 1 Accuracy
o
w

—e— Global
0.4 —— Llayer
—— Global Gradient
—e— Layer Gradient
0.3

1 2 4 8 16 32
Theoretical Speedup

Figure 18: Accuracy vs theoretical speedup for
ResNet110 on CIFAR10



