## **A** APPENDIX

## 717 A.1 Architectures optimized with wiNAS

<sup>718</sup> Our framework wiNAS, takes a given macro-architecture <sup>719</sup> and optimizes each  $3 \times 3$  convolutional layer by choosing

<sup>720</sup> from direct convolution or different Winograd configurations. For the search, all  $1 \times 1$  convolutions were fixed to use *im2row*.

For wiNAS<sub>WA</sub> in FP32, the resulting architecture only substituted the last convolution layer with *im2row* instead of *F*2. The rest of the layers remained unchanged from the WA<sub>F4</sub> configuration (which was described in Section 5.1). The same micro-architecture was used in CIFAR-10 and CIFAR-100.

730 For wiNAS<sub>WA</sub> with 8-bit quantization and CIFAR-10,

<sup>731</sup> wiNAS replaced the 5<sup>th</sup> and second last convolutional lay-<sup>732</sup> ers with *im2row* instead of *E4* and *E2* respectively. For

<sup>732</sup> ers with *im2row*, instead of F4 and F2 respectively. For <sup>733</sup> CIEAR-100 more optimization was compared to WA<sub>F</sub>.

CIFAR-100, more optimization was compared to WA<sub>F4</sub>.
 The resulting micro-architecture optimization is shown in

735 Figure 9 (left).

When introducing quantization in the search space,
wiNAS<sub>WA-Q</sub>, the resulting architectures are shown in Figure
9 for both CIFAR-10 (middle) and CIFAR-100 (right).



*Figure 9.* Resulting architectures after optimizing a ResNet-18 macro-architecture using wiNAS. For wiNAS<sub>WA</sub> and CIFAR-100, the
 architecture resulted is shown on the left. With wiNAS<sub>WA-Q</sub>, that introduces quantization in the search space, the optimization resulted in
 different architectures for CIFAR-10 (middle) and CIFAR-100 (right), evidencing the difference in complexity of the later.