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ABSTRACT
The performance of the code a compiler generates depends on the order in which it applies the optimization
passes. Choosing a good order–often referred to as the phase-ordering problem, is an NP-hard problem. As a
result, existing solutions rely on a variety of heuristics. In this paper, we evaluate a new technique to address the
phase-ordering problem: deep reinforcement learning. To this end, we implement AutoPhase3: a framework that
takes a program and uses deep reinforcement learning to find a sequence of compilation passes that minimizes its
execution time. Without loss of generality, we construct this framework in the context of the LLVM compiler
toolchain and target high-level synthesis programs. We use random forests to quantify the correlation between
the effectiveness of a given pass and the program’s features. This helps us reduce the search space by avoiding
phase orderings that are unlikely to improve the performance of a given program. We compare the performance of
AutoPhase to state-of-the-art algorithms that address the phase-ordering problem. In our evaluation, we show that
AutoPhase improves circuit performance by 28% when compared to using the -O3 compiler flag, and achieves
competitive results compared to the state-of-the-art solutions, while requiring fewer samples. Furthermore, unlike
existing state-of-the-art solutions, our deep reinforcement learning solution shows promising result in generalizing
to real benchmarks and 12,874 different randomly generated programs, after training on a hundred randomly
generated programs.

1 INTRODUCTION

High-Level Synthesis (HLS) automates the process of cre-
ating digital hardware circuits from algorithms written in
high-level languages. Modern HLS tools (Xilinx, 2019; In-
tel, 2019; Canis et al., 2013) use the same front-end as the
traditional software compilers. They rely on traditional soft-
ware compiler techniques to optimize the input program’s
intermediate representation (IR) and produce circuits in the
form of RTL code. Thus, the quality of compiler front-end
optimizations directly impacts the performance of HLS-
generated circuit.

Program optimization is a notoriously difficult task. A pro-
gram must be just in ”the right form” for a compiler to
recognize the optimization opportunities. This is a task a
programmer might be able to perform easily, but is often
difficult for a compiler. Despite a decade of research on
developing sophisticated optimization algorithms, there is
still a performance gap between the HLS generated code

*Equal contribution. 1University of California, Berkeley
2Massachusetts Institute of Technology. Correspondence to:
Ameer Haj-Ali <ameerh@berkeley.edu>, Qijing Huang <qi-
jing.huang@berkeley.edu>. 3 https://github.com/ucb-
bar/autophase.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

and the hand-optimized one produced by experts.

In this paper, we build off the LLVM compiler (Lattner &
Adve, 2004). However, our techniques, can be broadly ap-
plicable to any compiler that uses a series of optimization
passes. In this case, the optimization of an HLS program
consists of applying a sequence of analysis and optimiza-
tion phases, where each phase in this sequence consumes
the output of the previous phase, and generates a modified
version of the program for the next phase. Unfortunately,
these phases are not commutative which makes the order in
which these phases are applied critical to the performance
of the output.

Consider the program in Figure 1, which normalizes a vec-
tor. Without any optimizations, the norm function will take
Θ(n2) to normalize a vector. However, a smart compiler will
implement the loop invariant code motion (LICM) (Much-
nick, 1997) optimization, which allows it to move the call to
mag above the loop, resulting in the code on the left column
in Figure 2. This optimization brings the runtime down to
Θ(n)—a big speedup improvement. Another optimization
the compiler could perform is (function) inlining (Muchnick,
1997). With inlining, a call to a function is simply replaced
with the body of the function, reducing the overhead of the
function call. Applying inlining to the code will result in
the code in the right column of Figure 2.

https://github.com/ucb-bar/autophase
https://github.com/ucb-bar/autophase
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__attribute__((const))
double mag(int n, const double *A) {

double sum = 0;
for(int i=0; i<n; i++){

sum += A[i] * A[i];
}
return sqrt(sum);

}
void norm(int n, double *restrict out,

const double *restrict in) {
for(int i=0; i<n; i++) {

out[i] = in[i] / mag(n, in);
}

}

Figure 1: A simple program to normalize a vector.

Now, consider applying these optimization passes in the
opposite order: first inlining then LICM. After inlining,
we get the code on the left of Figure 3. Once again we
get a modest speedup, having eliminated n function calls,
though our runtime is still Θ(n2). If the compiler afterwards
attempted to apply LICM, we would find the code on the
right of Figure 3. LICM was able to successfully move the
allocation of sum outside the loop. However, it was unable
to move the instruction setting sum=0 outside the loop, as
doing so would mean that all iterations excluding the first
one would end up with a garbage value for sum. Thus, the
internal loop will not be moved out.

As this simple example illustrates, the order in which the
optimization phases are applied can be the difference be-
tween the program running in Θ(n2) versus Θ(n). It is thus
crucial to determine the optimal phase ordering to maximize
the circuit speeds. Unfortunately, not only is this a difficult
task, but the optimal phase ordering may vary from program
to program. Furthermore, it turns out that finding the opti-
mal sequence of optimization phases is an NP-hard problem,
and exhaustively evaluating all possible sequences is infea-
sible in practice. In this work, for example, the search space
extends to more than 2247 phase orderings.

The goal of this paper is to provide a mechanism for automat-
ically determining good phase orderings for HLS programs
to optimize for the circuit speed. To this end, we aim to
leverage recent advancements in deep reinforcement learn-
ing (RL) (Sutton & Barto, 1998; Haj-Ali et al., 2019b) to
address the phase ordering problem. With RL, a software
agent continuously interacts with the environment by taking
actions. Each action can change the state of the environ-
ment and generate a ”reward”. The goal of RL is to learn
a policy—that is, a mapping between the observed states
of the environment and a set of actions—to maximize the
cumulative reward. An RL algorithm that uses a deep neu-
ral network to approximate the policy is referred to as a
deep RL algorithm. In our case, the observation from the

environment could be the program and/or the optimization
passes applied so far. The action is the optimization pass to
apply next, and the reward is the improvement in the circuit
performance after applying this pass. The particular framing
of the problem as an RL problem has a significant impact
on the solution’s effectiveness. Significant challenges ex-
ist in understanding how to formulate the phase ordering
optimization problem in an RL framework.

In this paper, we consider three approaches to represent the
environment’s state. The first approach is to directly use
salient features from the program. The second approach is
to derive the features from the sequence of optimizations
we applied while ignoring the program’s features. The third
approach combines the first two approaches. We evaluate
these approaches by implementing a framework that takes
a group of programs as input and quickly finds a phase
ordering that competes with state-of-the-art solutions. Our
main contributions are:

• Extend a previous work (Huang et al., 2019) and lever-
age deep RL to address the phase-ordering problem.

• An importance analysis on the features using random
forests to significantly reduce the state and action
spaces.

• AutoPhase: a framework that integrates the current
HLS compiler infrastructure with the deep RL algo-
rithms.

• We show that AutoPhase gets a 28% improvement over
-O3 for nine real benchmarks. Unlike all state-of-the-
art approaches, deep RL demonstrates the potential
to generalize to thousands of different programs after
training on a hundred programs.

2 BACKGROUND

2.1 Compiler Phase-ordering

Compilers execute optimization passes to transform pro-
grams into more efficient forms to run on various hardware
targets. Groups of optimizations are often packaged into
“optimization levels” , such as -O0 and -O3, for ease. While
these optimization levels offer a simple set of choices for de-
velopers, they are handpicked by the compiler-designers and
often most benefit certain groups of benchmark programs.
The compiler community has attempted to address the issue
by selecting a particular set of compiler optimizations on a
per-program or per-target basis for software (Triantafyllis
et al., 2003; Almagor et al., 2004; Pan & Eigenmann, 2006;
Ansel et al., 2014).

Since the search space of phase-ordering is too large for
an exhaustive search, many heuristics have been proposed
to explore the space by using machine learning. Huang et
al. tried to address this challenge for HLS applications
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void norm(int n, double *restrict out,
const double *restrict in) {

double precompute = mag(n, in);
for(int i=0; i<n; i++) {

out[i] = in[i] / precompute;
}

}

void norm(int n, double *restrict out,
const double *restrict in) {

double precompute, sum = 0;
for(int i=0; i<n; i++){

sum += A[i] * A[i];
}
precompute = sqrt(sum);
for(int i=0; i<n; i++) {

out[i] = in[i] / precompute;
}

}

Figure 2: Progressively applying LICM (left) then inlining (right) to the code in Figure 1.

void norm(int n, double *restrict out,
const double *restrict in) {

for(int i=0; i<n; i++) {
double sum = 0;
for(int j=0; j<n; j++){

sum += A[j] * A[j];
}
out[i] = in[i] / sqrt(sum);

}
}

void norm(int n, double *restrict out,
const double *restrict in) {

double sum;
for(int i=0; i<n; i++) {

sum = 0;
for(int j=0; j<n; j++){

sum += A[j] * A[j];
}
out[i] = in[i] / sqrt(sum);

}
}

Figure 3: Progressively applying inlining (left) then LICM (right) to the code in Figure 1.

by using modified greedy algorithms (Huang et al., 2013;
2015). It achieved 16% improvement vs -O3 on the CHstone
benchmarks (Hara et al., 2008), which we used in this paper.
In (Agakov et al., 2006) both independent and Markov mod-
els were applied to automatically target an optimized search
space for iterative methods to improve the search results.
In (Stephenson et al., 2003), genetic algorithms were used
to tune heuristic priority functions for three compiler opti-
mization passes. Milepost GCC (Fursin et al., 2011) used
machine learning to determine the set of passes to apply to
a given program, based on a static analysis of its features. It
achieved an 11% execution time improvement over -O3, for
the ARC reconfigurable processor on the MiBench program
suite1. In (Kulkarni & Cavazos, 2012) the challenge was for-
mulated as a Markov process and supervised learning was
used to predict the next optimization, based on the current
program state. OpenTuner (Ansel et al., 2014) autotunes
a program using an AUC-Bandit-meta-technique-directed
ensemble selection of algorithms. Its current mechanism
for selecting the compiler optimization passes does not con-
sider the order or support repeated optimizations. Wang
et al. (Wang & OBoyle, 2018), provided a survey for us-
ing machine learning in compiler optimization where they
also described that using program features might be helpful.
NeuroVectorizer (Haj-Ali et al., 2020; 2019a) used deep RL
for automatically tuning compiler pragmas such as vector-
ization and interleaving factors. NeuroVectorizer achieves
97% of the oracle performance (brute-force search) on a
wide range of benchmarks.

2.2 Reinforcement Learning Algorithms

Reinforcement learning (RL) is a machine learning approach
in which an agent continually interacts with the environ-
ment (Kaelbling et al., 1996). In particular, the agent ob-
serves the state of the environment, and based on this ob-
servation takes an action. The goal of the RL agent is then
to compute a policy–a mapping between the environment
states and actions–that maximizes a long term reward.

RL can be viewed as a stochastic optimization solution
for solving Markov Decision Processes (MDPs) (Bellman,
1957), when the MDP is not known. An MDP is defined by
a tuple with four elements: S,A, P (s, a), r(s, a) where S
is the set of states of the environment, A describes the set of
actions or transitions between states, s′∼P (s, a) describes
the probability distribution of next states given the current
state and action and r(s, a) : S × A→ R is the reward of
taking action a in state s. Given an MDP, the goal of the
agent is to gain the largest possible aggregate reward. The
objective of an RL algorithm associated with an MDP is to
find a decision policy π∗(a|s) : s → A that achieves this
goal for that MDP:

π∗ = arg max
π

Eτ∼π(τ)

[∑
t

r(st, at)

]
=

arg max
π

T∑
t=1

E(st,at)∼π(st,at) [r(st, at)] . (1)

Deep RL leverages a neural network to learn the policy (and
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sometimes the reward function). Policy Gradient (PG) (Sut-
ton et al., 2000), for example, updates the policy directly by
differentiating the aggregate reward E in Equation 1:

∇θJ =

1

N

N∑
i=1

[
(
∑
t

∇θlogπθ(ai,t|si,t))(
∑
t

r(si,t, ai,t))

]
(2)

and updating the network parameters (weights) in the direc-
tion of the gradient:

θ ← θ + α∇θJ, (3)

Note that PG is an on-policy method in that it uses decisions
made directly by the current policy to compute the new
policy.

Over the past couple of years, a plethora of new deep RL
techniques have been proposed (Mnih et al., 2016; Ross
et al., 2011). In this paper, we mainly focus on Proximal
Policy Optimization (PPO) (Schulman et al., 2017), Asyn-
chronous Advantage Actor-critic (A3C) (Mnih et al., 2016).

PPO is a variant of PG that enables multiple epochs of mini-
batch updates to improve the sample complexity. Vanilla
PG performs one gradient update per data sample while
PPO uses a novel surrogate objective function to enable
multiple epochs of minibatch updates. It alternates between
sampling data through interaction with the environment and
optimizing the surrogate objective function using stochastic
gradient ascent. It performs updates that maximizes the
reward function while ensuring the deviation from the previ-
ous policy is small by using a surrogate objective function.
The loss function of PPO is defined as:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1−ε, 1+ε)Ât)]
(4)

where rt(θ) is defined as a probability ratio πθ(at|st)
πθold (at|st) so

r(θold) = 1. This term penalizes policy update that move
rt(θ) from r(θold). Ât denotes the estimated advantage that
approximates how good at is compared to the average. The
second term in the min function acts as a disincentive for
moving rt outside of [1− ε, 1 + ε] where ε is a hyperparam-
eter.

A3C uses an actor (usually a neural network) that interacts
with the critic, which is another network that evaluates the
action by computing the value function. The actor tells
the actor how good its action was and how it should ad-
just. The update performed by the algorithm can be seen as
∇θlogπθ(ai,t|si,t)Ât.

2.3 Evolutionary Algorithms

Evolutionary algorithms are another technique that can be
used to search for the best compiler pass ordering. It con-

tains a family of population-based meta-heuristic optimiza-
tion algorithms inspired by natural selection. The main idea
of these algorithms is to sample a population of solutions
and use the good ones to direct the distribution of future gen-
erations. Two commonly used Evolutionary Algorithms are
Genetic Algorithms (GA) (Goldberg, 2006) and Evolution
Strategies (ES) (Conti et al., 2018).

GA generally requires a genetic representation of the search
space where the solutions are coded as integer vectors. The
algorithm starts with a pool of candidates, then iteratively
evolves the pool to include solutions with higher fitness by
the three following strategies: selection, crossover, and mu-
tation. Selection keeps a subset of solutions with the highest
fitness values. These selected solutions act as parents for
the next generation. Crossover merges pairs from the parent
solutions to produce new offsprings. Mutation perturbs the
offspring solutions with a low probability. The process re-
peats until a solution that reaches the goal fitness is found
or after a certain number of generations.

ES works similarly to GA. However, the solutions are coded
as real numbers in ES. In addition, ES is self-adapting.
The hyperparameters, such as the step size or the mutation
probability, are different for different solutions. They are
encoded in each solution, so good settings get to the next
generation with good solutions. Recent work (Salimans
et al., 2017) has used ES to update policy weights for RL and
showed it is a good alternative for gradient-based methods.

3 AUTOPHASE FRAMEWORK FOR
AUTOMATIC PHASE ORDERING

We leverage an existing open-source HLS framework called
LegUp (Canis et al., 2013) that compiles a C program into a
hardware RTL design. In (Huang et al., 2013), an approach
is devised to quickly determine the number of hardware ex-
ecution cycles without requiring time-consuming logic sim-
ulation. We develop our RL simulator environment based
on the existing harness provided by LegUp and validate our
final results by going through the time-consuming logic sim-
ulation. AutoPhase takes a program (or multiple programs)
and intelligently explores the space of possible passes to
figure out an optimal pass sequence to apply. Table 1 lists all
the passes used in AutoPhase. The workflow of AutoPhase
is illustrated in Figure 4.

3.1 HLS Compiler

AutoPhase takes a set of programs as input and compiles
them to a hardware-independent intermediate representa-
tion (IR) using the Clang front-end of the LLVM compiler.
Optimization and analysis passes act as transformations on
the IR, taking a program as input and emitting a new IR as
output. The HLS tool LegUp is invoked after the compiler
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Figure 4: The block diagram of AutoPhase. The input pro-
grams are compiled to an LLVM IR using Clang/LLVM.
The feature extractor and clock-cycle profiler are used to
generate the input features (state) and the runtime improve-
ment (reward), respectively from the IR. The input features
and runtime improvement are fed to the deep RL agent as in
input data to train on. The RL agent predicts the next best
optimization passes to apply. After convergence, the HLS
compiler is used to compile the LLVM IR to hardware RTL.

optimization as a back-end pass, which transforms LLVM
IR into hardware modules.

3.2 Clock-cycle Profiler

Once the hardware RTL is generated, one could run a hard-
ware simulation to gather the cycle count results of the
synthesized circuit. This process is quite time-consuming,
hindering RL and all other optimization approaches. There-
fore, we approximate cycle count using the profiler in
LegUp (Huang et al., 2013), which leverages the software
traces and runs 20× faster than hardware simulation. In
LegUp, the frequency of the generated circuits is set as a
compiler constraint that directs the HLS scheduling algo-
rithm. In other words, HLS tool will always try to generate
hardware that can run at a certain frequency. In our exper-
iment setting, without loss of generality, we set the target
frequency of all generated hardware to 200MHz. We ex-
perimented with lower frequencies too; the improvements
were similar but the cycle counts the different algorithms
achieved were better as more logic could be fitted in a single
cycle.

3.3 IR Feature Extractor

Wang et al. (Wang & OBoyle, 2018) proposed to convert a
program into an observation by extracting all the features
from the program. Similarly, in addition to the LegUp
backend tools, we developed analysis passes to extract 56
static features from the program, such as the number of
basic blocks, branches, and instructions of various types.
We use these features as partially observable states for the
RL learning and hope the neural network can capture the

correlation of certain combinations of these features and
certain optimizations. Table 2 lists all the features used.

3.4 Random Program Generator

As a data-driven approach, RL generalizes better if we train
the agent on more programs. However, there are a lim-
ited number of open-source HLS examples online. There-
fore, we expand our training set by automatically generating
synthetic HLS benchmarks. We first generate standard C
programs using CSmith (Yang et al., 2011), a random C pro-
gram generator, which is originally designed to generate test
cases for finding compiler bugs. Then, we develop scripts to
filter out programs that take more than five minutes to run
on CPU or fail the HLS compilation.

3.5 Overall Flow of AutoPhase

We integrate the compilation utilities into a simulation
environment in Python with APIs similar to an OpenAI
gym (Brockman et al., 2016). The overall flow works as
follows:

1. The input program is compiled into LLVM IR using
the Clang/LLVM.

2. The IR Feature Extractor is run to extract salient pro-
gram features.

3. LegUp compiles the LLVM IR into hardware RTL.

4. The Clock-cycle Profiler estimates a clock-cycle count
for the generated circuit.

5. The RL agent takes the program features or the his-
togram of previously applied passes and the improve-
ment in clock-cycle count as input data to train on.

6. The RL agent predicts the next best optimization passes
to apply.

7. New LLVM IR is generated after the new optimization
sequence is applied.

8. The machine learning algorithm iterates through steps
(2)–(7) until convergence.

Note that AutoPhase uses the LLVM compiler and the
passes used are listed in Table 2. However, adding sup-
port for any compiler or optimization passes in AutoPhase
is very easy and straightforward. The action and state defi-
nitions must be specified again.

4 CORRELATION OF PASSES AND
PROGRAM FEATURES

Similar to the case with many deep learning approaches,
explainability is one of the major challenges we face when
applying deep RL to the phase-ordering challenge. To ana-
lyze and understand the correlation of passes and program
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Table 1: LLVM Transform Passes.

0 1 2 3 4 5 6 7 8 9 10
-correlated-propagation -scalarrepl -lowerinvoke -strip -strip-nondebug -sccp -globalopt -gvn -jump-threading -globaldce -loop-unswitch

11 12 13 14 15 16 17 18 19 20 21
-scalarrepl-ssa -loop-reduce -break-crit-edges -loop-deletion -reassociate -lcssa -codegenprepare -memcpyopt -functionattrs -loop-idiom -lowerswitch

22 23 24 25 26 27 28 29 30 31 32 33
-constmerge -loop-rotate -partial-inliner -inline -early-cse -indvars -adce -loop-simplify -instcombine -simplifycfg -dse -loop-unroll

34 35 36 37 38 39 40 41 42 43 44 45
-lower-expect -tailcallelim -licm -sink -mem2reg -prune-eh -functionattrs -ipsccp -deadargelim -sroa -loweratomic -terminate

Table 2: Program Features.

0 Number of BB where total args for phi nodes>5 28 Number of And insts
1 Number of BB where total args for phi nodes is [1,5] 29 Number of BB’s with instructions between [15,500]
2 Number of BB’s with 1 predecessor 30 Number of BB’s with less than 15 instructions
3 Number of BB’s with 1 predecessor and 1 successor 31 Number of BitCast insts
4 Number of BB’s with 1 predecessor and 2 successors 32 Number of Br insts
5 Number of BB’s with 1 successor 33 Number of Call insts
6 Number of BB’s with 2 predecessors 34 Number of GetElementPtr insts
7 Number of BB’s with 2 predecessors and 1 successor 35 Number of ICmp insts
8 Number of BB’s with 2 predecessors and successors 36 Number of LShr insts
9 Number of BB’s with 2 successors 37 Number of Load insts

10 Number of BB’s with>2 predecessors 38 Number of Mul insts
11 Number of BB’s with Phi node # in range (0,3] 39 Number of Or insts
12 Number of BB’s with more than 3 Phi nodes 40 Number of PHI insts
13 Number of BB’s with no Phi nodes 41 Number of Ret insts
14 Number of Phi-nodes at beginning of BB 42 Number of SExt insts
15 Number of branches 43 Number of Select insts
16 Number of calls that return an int 44 Number of Shl insts
17 Number of critical edges 45 Number of Store insts
18 Number of edges 46 Number of Sub insts
19 Number of occurrences of 32-bit integer constants 47 Number of Trunc insts
20 Number of occurrences of 64-bit integer constants 48 Number of Xor insts
21 Number of occurrences of constant 0 49 Number of ZExt insts
22 Number of occurrences of constant 1 50 Number of basic blocks
23 Number of unconditional branches 51 Number of instructions (of all types)
24 Number of Binary operations with a constant operand 52 Number of memory instructions
25 Number of AShr insts 53 Number of non-external functions
26 Number of Add insts 54 Total arguments to Phi nodes
27 Number of Alloca insts 55 Number of Unary operations

features, we use random forests (Breiman, 2001) to learn
the importance of different features. Random forest is an
ensemble of multiple decision trees. The prediction made by
each tree could be explained by tracing the decisions made
at each node and calculating the importance of different
features on making the decisions at each node. This helps
us to identify the effective features and passes to use and
show whether our algorithms learn informative patterns on
data.

For each pass, we build two random forests to predict
whether applying it would improve the circuit performance.
The first forest takes the program features as inputs while the
second takes a histogram of previously applied passes. To
gather the training data for the forests, we run PPO with high
exploration parameter on 100 randomly generated programs
to generate feature–action–reward tuples. The algorithm
assigns higher importance to the input features that affect
the final prediction more.

4.1 Importance of Program Features

The heat map in Figure 5 shows the importance of different
features on whether a pass should be applied. The higher
the value is, the more important the feature is (the sum of
the values in each row is one). The random forest is trained
with 150,000 samples generated from the random programs.
The index mapping of features and passes can be found in
Tables 1 and 2. For example, the yellow pixel corresponding
to feature index 17 and pass index 23 reflects that number-
of-critical-edges affects the decision on whether to apply
-loop-rotate greatly. A critical edge in control flow graph is
an edge that is neither the only edge leaving its source block,
nor the only edge entering its destination block. The critical
edges can be commonly seen in a loop as a back edge so
the number of critical edges might roughly represent the
number of loops in a program. The transform pass -loop-
rotate detects a loop and transforms a while loop to a do-
while loop to eliminate one branch instruction in the loop
body. Applying the pass results in better circuit performance
as it reduces the total number of FSM states in a loop.

Other expected behaviors are also observed in this figure.
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Figure 5: Heat map illustrating the importance of feature
and pass indices.

For instance, the correlation between number of branches
and the transform passes -loop-simplify, -tailcallelism
(which transforms calls of the current function i.e., self re-
cursion, followed by a return instruction with a branch to the
entry of the function, creating a loop), -lowerswitch (which
rewrites switch instructions with a sequence of branches).
Other interesting behaviors are also captured. For example,
in the correlation between binary operations with a constant
operand and -functionattrs, which marks different operands
of a function as read-only (constant). Some correlations
are harder to explain, for example, number of BitCast in-
structions and -instcombine, which combines instructions
into fewer simpler instructions. This is actually a result of
-instcombine reducing the loads and stores that call bitcast
instructions for casting pointer types. Another example is
number of memory instructions and -sink, where -sink basi-
cally moves memory instructions into successor blocks and
delays the execution of memory until needed. Intuitively,
whether to apply -sink should be dependent on whether
there is any memory instruction in the program. Our last
example to show is number of occurrences of constant 0
and -deadargelim, where -deadargelim helped eliminate
dead/unused constant zero arguments.

Overall, we observe that all the passes are correlated to some
features and are able to affect the final circuit performance.
We also observe that multiple features are not effective at
directing decisions and training with them could increase
the variance that would result in lower prediction accuracy
of our results. For example, the total number of instructions
did not give a direct indication of whether applying a pass
would be helpful or not. This is because sometimes more in-
structions could improve the performance (for example, due
to loop unrolling) and eliminating unnecessary code could
also improve the performance. In addition, the importance
of features varies among different benchmarks depending
on the tasks they perform.

Figure 6: Heat map illustrating the importance of indices of
previously applied passes and the new pass to apply.

4.2 Importance of Previously Applied Passes

Figure 6 illustrates the impact of previously applied passes
on the new pass to apply. The higher the value is, the more
important having the old pass is. From this figure, we learn
that for the programs we trained on passes -scalarrepl, -gvn,
-scalarrepl-ssa, -loop-reduce, -loop-deletion, -reassociate,
-loop-rotate, -partial-inliner, -early-cse, -adce, -instcombine,
-simplifycfg, -dse, -loop-unroll, -mem2reg, and -sroa, are
more impactful on the performance compared to the rest of
the passes regardless of their order in the trajectory. Point
(23,23) has the highest importance in which implies that pass
-loop-rotate is very helpful and should be included if not
applied before. By examining thousands of the programs,
we find that -loop-rotate indeed reduces the cycle count
significantly. Interestingly, applying this pass twice is not
harmful if the passes were given consecutively. However,
giving this pass twice with some other passes between them
is sometimes very harmful. Another interesting behavior
our heat map captured is the fact that applying pass 33
(-loop-unroll) after (not necessarily consecutive) pass 23
(-loop-rotate) was much more useful compared to applying
these two passes in the opposite order.

5 PROBLEM FORMULATION

5.1 The RL Environment Definition

Assume the optimal number of passes to apply is N and
there are K transform passes to select from in total, our
search space S for the phase-ordering problem is [0,KN ).
Given M program features and the history of already ap-
plied passes, the goal of deep RL is to learn the next best
optimization pass a to apply that minimizes the long term
cycle count of the generated hardware circuit. Note that the
optimization state s is partially observable in this case as the
M program features cannot fully capture all the properties
of a program.
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Action Space – we define our action space A as {a ∈ Z :
a ∈ [0,K)} where K is the total number of transform
passes.

Observation Space – two types of input features were con-
sidered in our evaluation: 1© program features of ∈ ZM
listed in Table 2 and 2© action history which is a histogram
of previously applied passes oa ∈ ZK . After each RL step
where the pass i is applied, we call the feature extractor in
our environment to return new of , and update the action
histogram element oai to oai + 1.

Reward – the cycle count of the generated circuit is re-
ported by the clock-cycle profiler at each RL iteration. Our
reward is defined as R = cprev − ccur, where cprev and
ccur represent the previous and the current cycle count of
the generated circuit respectively. It is possible to define a
different reward for different objectives. For example, the
reward could be defined as the negative of the area and thus
the RL agent will optimize for the area. It is also possi-
ble to co-optimize multiple objectives (e.g., area, execution
time, power, etc.) by defining a combination of different
objectives.

5.2 Applying Multiple Passes per Action

An alternative to the action formulation above is to evaluate
a complete sequence of passes with length N instead of
a single action a at each RL iteration. Upon the start of
training a new episode, the RL agent resets all pass indices
p ∈ ZN to the index value K

2 . For pass pi at index i, the
next action to take is either to change to a new pass or
not. By allowing positive and negative index update for
each p, we reduced the total steps required to traverse all
possible pass indices. The sub-action space ai for each
pass is thus defined as [−1, 0, 1]. The total action space
A is defined as [−1, 0, 1]N . At each step, the RL agent
predicts the updates [a1, a2, ..., aN ] to N passes, and the
current optimization sequence [p1, p2, ..., pN ] is updated to
[p1 + a1, p2 + a2, ..., pN + aN ].

5.3 Normalization Techniques

In order for the trained RL agent to work on new programs,
we need to properly normalize the program features and
rewards so they represent a meaningful state among dif-
ferent programs. In this work, we experiment with two
techniques: 1© taking the logarithm of program features
or rewards and, 2© normalizing to a parameter from the
original input program that roughly depicts the problem
size. For technique 1©, note that taking the logarithm of the
program features not only reduces their magnitude, it also
correlates them in a different manner in the neural network.
Since, w1 log(of1) + w2 log(of2) = log(ow1

f1
ow2

f2
), the neu-

ral network is learning to correlate the products of features
instead of a linear combination of them. For technique 2©,

we normalize the program features to the total number of
instructions in the input program (of norm = of

of51
), which

is feature #51 in Table 2.

6 EVALUATION

To run our deep RL algorithms we use RLlib (Liang et al.,
2017), an open-source library for reinforcement learning
that offers both high scalability and a unified API for a va-
riety of applications. RLlib is built on top of Ray (Moritz
et al., 2018), a high-performance distributed execution
framework targeted at large-scale machine learning and rein-
forcement learning applications. We ran the framework on
a four-core Intel i7-4765T CPUwith a Tesla K20c GPUfor
training and inference.

We set our frequency constraint in HLS to 200MHz and use
the number of clock cycles reported by the HLS profiler
as the circuit performance metric. In (Huang et al., 2013),
results showed a one-to-one correspondence between the
clock cycle count and the actual hardware execution time
under certain frequency constraint. Therefore, better clock
cycle count will lead to better hardware performance.

6.1 Performance

To evaluate the effectiveness of various algorithms for tack-
ling the phase-ordering problem, we run them on nine
real HLS benchmarks and compare the results based on
the final HLS circuit performance and the sample effi-
ciency against state-of-the-art approaches for overcoming
the phase ordering, which include random search, Greedy
Algorithms (Huang et al., 2013), OpenTuner (Ansel et al.,
2014), and Genetic Algorithms (Fortin et al., 2012). These
benchmarks are adapted from CHStone (Hara et al., 2008)
and LegUp examples. They are: adpcm, aes, blowfish,
dhrystone, gsm, matmul, mpeg2, qsort, and sha. For this
evaluation, the input features/rewards were not normalized,
the pass length was set to 45, and each algorithm was run on
a per-program basis. Table 3 lists the action and observation
spaces used in all the deep RL algorithms.

The bar chart in Figure 7 shows the percentage improvement
of the circuit performance compared to -O3 results on the
nine real benchmarks from CHStone. The dots on the blue
line in Figure 7 show the total number of samples for each
program, which is the number of times the algorithm calls
the simulator to gather the cycle count. -O0 and -O3 are
the default compiler optimization levels. RL-PPO1 is a
PPO explorer where we set all the rewards to 0 to test if
the rewards are meaningful. RL-PPO2 is the PPO agent
that learns the next pass based on a histogram of applied
passes. RL-A3C is the A3C agent that learns based on
the program features. Greedy performs the greedy algo-
rithm, which always inserts the pass that achieves the highest
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Table 3: The observation and action spaces used in the different deep RL algorithms.

RL-PPO1 RL-PPO2 RL-PPO3 RL-A3C RL-ES
Deep RL Algorithm PPO PPO PPO A3C ES
Observation Space Program Features Action History Action History + Program Features Program Features Program Features

Action Space Single-Action Single-Action Multiple-Action Single-Action Single-Action
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Figure 7: Circuit Speedup and Sample Size Comparison.

speedup at the best position (out of all possible positions it
can be inserted to) in the current sequence. RL-PPO3 uses
a PPO agent and the program features but with the action
space described in Section 5.2. explained in Section 5.2.
OpenTuner runs an ensemble of six algorithms, which
includes two families of algorithms: particle swarm opti-
mization (Kennedy, 2010) and GA, each with three different
crossover settings. RL-ES is similar to A3C agent that
learns based on the program features, but updates the policy
network using the evolution strategy instead of backpropa-
gation. Genetic-DEAP (Fortin et al., 2012) is a genetic
algorithm implementation. random randomly generates
a sequence of 45 passes at once instead of sampling them
one-by-one.

From Greedy, we see that always adding the pass in the
current sequence that achieves the highest reward leads to
sub-optimal circuit performance. RL-PPO2 achieves higher
performance than RL-PPO1, which shows that the deep RL
captures useful information during training. Using the his-
togram of applied passes results in better sample efficiency,
but using the program features with more samples results
in a slightly higher speedup. RL-PPO2, for example, at the
minor cost of 4% lower speedup, achieves 50×more sample
efficiency than OpenTuner. Using ES to update the policy
is supposed to be more sample efficient for problems with
sparse rewards like ours, however, our experiments did not
benefit from that. Furthermore, RL-PPO3 with multiple
action updates achieves a higher speedup than the other
deep RL algorithms with a single action. One reason for
that is the ability of RL-PPO3 to explore more passes per
compilation as it applies multiple passes simultaneously in
between every compilation. On the other hand, the other
deep RL algorithms apply a single pass at a time.

6.2 Generalization

With deep RL, the search should benefit from prior knowl-
edge learned from other different programs. This knowledge
should be transferable from one program to another. For ex-
ample, as discussed in section 4 applying pass -loop-rotate
is always beneficial, and -loop-unroll should be applied af-
ter -loop-rotate. Note that the black-box search algorithms,
such as OpenTuner, GA, and greedy algorithms, cannot gen-
eralize. For these algorithms, rerunning a new search with
many compilations is necessary for every new program, as
they do not learn any patterns from the programs to direct
the search and can be viewed as a smart random search.

To evaluate how generalizable deep RL could be with dif-
ferent programs and whether any prior knowledge could
be useful, we train on 100 randomly-generated programs
using PPO. Random programs are used for transfer learning
due to lack of sufficient benchmarks and because it is the
worst-case scenario, i.e., they are very different from the
programs that we use for inference. The improvement can
be higher if we train on programs that are similar to the
ones we inference on. We train a network with 256× 256
fully connected layers and use the histogram of previously
applied passes concatenated to the program features as the
observation and passes as actions.

As described in Section 5.3, we experiment with two nor-
malization techniques for the program features: 1© taking
the logarithm of all the program features and 2© normaliz-
ing the program features to the total number of instruc-
tions in the program. In each pass sequence, the inter-
mediate reward was defined as the logarithm of the im-
provement in cycle count after applying each pass. The
logarithm was chosen so that the RL agent will not give
much larger weights to big rewards from programs with
longer execution time. Three approaches were evaluated:
filtered-norm1 uses the filtered (based on the analysis
in Section 4 where we only keep the important features and
passes) program features and passes from Section with nor-
malization technique 1©, original-norm2 uses all the
program features and passes with normalization technique
2©, and filtered-norm2 uses the filtered program fea-
tures and passes from Section 4 with normalization tech-
nique 2©. Filtering the features and passes might not be
ideal, especially when different programs have different
feature characteristics and impactful passes. However, re-
ducing the number of features and passes helps to reduce
variance among all programs and significantly narrow the
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Figure 8: Episode reward mean as a function of step for
the original approach where we use all the program fea-
tures and passes and for the filtered approach where we
filter the passes and features (with different normalization
techniques). Higher values indicate faster circuit speed.

search space.

Figure 8 shows the episode reward mean as a function
of the step for the three approaches. We observe that
filtered-norm2 and filtered-norm1 converge
much faster and achieve a higher episode reward mean
than original-norm2, which uses all the features and
passes. At roughly 8,000 steps the filtered-norm2 and
filter-norm1 already achieve a very high episode re-
ward mean, with minor improvements in later steps. Further-
more, the episode reward mean of the filtered approaches
is still higher than that of original-norm2 even when
we allowed it to train for 20 times more steps (i.e., 160,000
steps). This indicates that filtering the features and passes
significantly improved the learning process. All three ap-
proaches learned to always apply pass -loop-rotate, and
-loop-unroll after -loop-rotate. Another useful pass that the
three approaches learned to apply is -loop-simplify, which
performs several transformations to transform natural loops
into a simpler form that enables subsequent analyses and
transformations.

We now compare the generalization results of
filtered-norm2 and filtered-norm1 with
the other black-box algorithms. We use 100 randomly-
generated programs as the training set and nine real
benchmarks from CHStone as the testing set for the deep
RL-based methods. With the state-of-the-art black-box
algorithms, we first search for the best pass sequences that
achieved the lowest aggregated hardware cycle counts for
the 100 random programs and then directly apply them to
the nine test set programs. In Figure 9, the bar chart shows
the percentage improvement of the circuit performance
compared to -O3 on the nine real benchmarks, the dots
on the blue line show the total number of samples each
inference takes for one new program.
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Figure 9: Circuit Speedup and Sample Size Comparison for
deep RL Generalization.

This evaluation shows that the deep RL-based inference
achieves higher speedup than the predetermined sequences
produced by the state-of-the-art black-box algorithms for
new programs. The predetermined sequences that are over-
fitted to the random programs can cause poor performance
in unseen programs (e.g., -24% for Genetic-DEAP). Be-
sides, normalization technique 2© works better compared
to normalization technique 1© for deep RL generalization
(4% vs 3% speedup). This indicates that normalizing the
different instructions to the total number of instructions i.e.,
the distribution of the different instructions in Technique 2©
represents more universal characteristics across different
programs, while taking the log in Technique 1© only sup-
presses the value ranges of different program features. Fur-
thermore, when we use other 12,874 randomly generated
programs as the testing set with filtered-norm2, the
speedup is 6% compared to -O3.

7 CONCLUSIONS

In this paper, we propose an approach based on deep RL
to improve the performance of HLS designs by optimizing
the order in which the compiler applies optimization phases.
We use random forests to analyze the relationship between
program features and optimization passes. We then leverage
this relationship to reduce the search space by identifying
the most likely optimization phases to improve the perfor-
mance, given the program features. Our RL based approach
achieves 28% better performance than compiling with the
-O3 flag after training for a few minutes, and a 24% improve-
ment after training for less than a minute. Furthermore, we
show that unlike prior work, our solution shows potential to
generalize to a variety of programs. While in this paper we
have applied deep RL to HLS, we believe that the same ap-
proach can be successfully applied to software compilation
and optimization. Going forward, we envision using deep
RL techniques to optimize a wide range of programs and
systems.
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