
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

SUPPLEMENTARY MATERIAL TO “MOTHERNETS: RAPID DEEP ENSEMBLE
LEARNING”

Shared MotherNetsHatched ensemble networks

Shared param.Ensemble param.

Figure A: Shared-MotherNets reduces inference time by
sharing parameters between ensembles.

A ALGORITHMS FOR CONSTRUCTING THE
MOTHERNET

We outline algorithms for constructing the MotherNet given
a cluster of neural networks. We describe the algorithms for
both fully-connected and convolutional neural networks.

Fully-Connected Neural Networks. Algorithm A de-
scribes how to construct the MotherNet for a cluster of
fully-connected neural networks. We proceed layer-by-layer
selecting the layer with the least number of parameters at
every position.

Convolutional Neural Networks. Algorithm B provides a
detailed strategy to construct the MotherNet for a cluster of
convolutional neural networks. We proceed block-by-block,
where each block is composed of multiple convolutional
layers. The MotherNet has as many blocks as the network
with the least number of blocks. Then, for every block, we
proceed layer-by-layer and construct the MotherNet layer
at every position as follows: First, we compute the least
number of convolutional filters and convolutional filter sizes
at that position across all ensemble networks. Let these
be Fmin and Smin respectively. Then, in MotherNet, we
include a convolutional layer with Fmin filters of Smin size
at that position.

B SHARED-MOTHERNETS

We explain how MotherNets improve the efficiency of en-
semble inference.

Ensemble inference. Inference in an ensemble of neural
networks proceeds as follows: First, the data item (e.g., an
image or a feature vector) is passed through every network
in the ensemble. These forward passes produce multiple

Algorithm A Constructing the MotherNet for fully-
connected neural networks

Input: E: ensemble networks in one cluster;
Initialize: M: empty MotherNet;

// set input/output layer sizes

M.input.num param← E[0].input.num param;
M.output.num param← E[0].output.num param;
M.num hidden← getSmallestNetwork(E).num hidden;

// set hidden layer sizes

for i← 0 . . . M.num hidden-1 do
M.hidden[i].num param← getMin(E,i);

return M;

// Get the min. size layer at posn

Function getMin(E,posn)
min← E[0].hidden[posn].num param;

for j ← 0 . . . len(E)-1 do
if E[j].hidden[posn].num param < min then

min← E[j].hidden[posn].num param

return min;

predictions – one prediction for every network in the ensem-
ble. The prediction of the ensemble is then computed by
combining the individual predictions using some averaging
or voting function. As the size of the ensemble grows, the
inference cost in terms of memory and time required for
inference increases linearly. This is because for every addi-
tional ensemble network, we need to maintain its parameters
as well as do an additional forward pass on them.

Shared-MotherNets. We introduce shared-MotherNets to
reduce inference time and memory requirement of ensem-
bles trained through MotherNets. In shared-MotherNets, af-
ter the process of hatching (step 2 from §2), the parameters
originating from the MotherNet are incrementally trained
in a shared manner. This yields a neural network ensemble
with a single copy of MotherNet parameters reducing both
inference time and memory requirement.

Constructing a shared-MotherNet. Given an ensemble E
of K hatched networks (i.e., those networks that are ob-
tained from a trained MotherNet), we construct a shared-
MotherNet S as follows: First, S is initialized with K input
and output layers, one for every hatched network. This al-
lows S to produce as many as K predictions. Then, every

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Supplementary Material to “MotherNets: Rapid Deep Ensemble Learning”

Algorithm B Constructing the MotherNet for convolutional neural networks block-by-block.

Input: E: ensemble networks in one cluster;
Initialize: M: empty MotherNet;

// set input/output layer sizes and number of blocks

M.input.num param← E[0].input.num param;
M.output.num param← E[0].output.num param;
M.num blocks← getShallowestNetwork(E).num blocks;

// set hidden layers block-by-block

for k ← 0 . . . M.num blocks-1 do
M.block[k].num hidden← getShallowestBlockAt(E,k).num hidden; // select the shallowest block

for i← 0 . . . M.block[k].num hidden-1 do
M.block[k].hidden[i]..num filters, M.block[k].hidden[i]..filter size← getMin(E,k,i)

return M;

// Get minimum number of filters and filter size at posn

Function getMin(E,blk,posn)
min num filters← E[0].block[blk].hidden[posn].num filters;
min filter size← E[0].block[blk].hidden[posn].filter size;
for j ← 0 . . . len(E) do

if E[j].block[blk].hidden[posn].num filters < min num filters then
min num filters← E[j].block[blk].hidden[posn].num filters;

if E[j].block[blk].hidden[posn].filter size < min filter size then
min filter size← E[j].block[blk].hidden[posn].filter size;

return min num filters, min filter size;

hidden layer of S is constructed one-by-one going from the
input to the output layer and consolidating all neurons across
all of E that originate from the MotherNet. To consolidate
a MotherNet neuron at layer li, we first reduce the k copies
of that neuron (across all K networks in H) to a single copy.
All inputs to the neuron that may originate from various
other neurons in the layer li−1 across different hatched net-
works are added together. The output of this consolidated
neuron is then forwarded to all neurons in the next layer
li+1 (across all hatched networks) which were connected to
the consolidated neuron.

 6

 7

 8

er
r.

ra
te

 (%
)

MN

Shared-MN

 0

 10

 20

1 2 3 4 5

in
f.

tim
e

(m
s)

number of clusters

Figure B: Improving inference
time

Figure A shows an
example of how this
process works for a sim-
ple ensemble of three
hatched networks. The
filled circles represent
neurons originating
from the MotherNet
and the colored circles
represent neurons from
ensemble networks. To
construct the shared-
MotherNet (shown
on the right), we go

layer-by-layer consolidating MotherNet neurons.

The shared-MotherNet is then trained incrementally. This
proceeds similarly to step 3 from §2, however, now through
the shared-MotherNet, the neurons originating from the
MotherNet are trained jointly. This results in an ensemble
that has K outputs, but some parameters between the net-
works are shared instead of being completely independent.
This reduces the overall number of parameters, improving
both the speed and the memory requirement of inference.

Memory reduction. Assume an ensemble E =
{N0, N1, . . . NK−1} of K neural networks (where Ni de-
notes a neural network architecture in the ensemble with
|Ni| number of parameters) and its MotherNetM . The num-
ber of parameters in the ensemble is reduced by a factor of
χ given by:

χ = 1− k|M |∑K−1
i=0 |Ni|

Results. Figure B shows how shared-MotherNets improves
inference time for an ensemble of 5 variants of VGGNet
as described in Table 1. This ensemble is trained on the
CIFAR-10 data set. We report both overall ensemble test
error rate and the inference time per image. We see an
improvement of 2× with negligible loss in accuracy. This

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Supplementary Material to “MotherNets: Rapid Deep Ensemble Learning”

improvement is because shared-MotherNets has a reduced
number of parameters requiring less computation during
inference time. This improvement scales with the ensemble
size.

C MODEL COVARIANCE AND ENSEMBLE
PREDICTIVE ACCURACY

We can analyze how model covariance effects ensemble
performance by using Chebyshev’s Inequality to bound the
chance that a model predicts an example incorrectly. By
showing that lower covariance between models makes this
bound on the probability smaller, we give an intuitive rea-
son why ensembles with lower covariance between models
perform better. The proof shows as well that the average
model’s predictive accuracy is important; finally, no assump-
tions need to be made for the proof to hold. The individual
models can be of different quality and have different chances
of getting each example correct.

Given a fixed training dataset, let Yi be the softmax value
of model i in the ensemble for the correct class, and let
Ŷ = 1

m

∑m
i=1 Yi be the ensemble’s average softmax value

on the correct class. Both are random variables with the
randomness of Ŷ and Yi coming through the randomness
of neural network training. Under the mild assumption that
E[Ŷ] > 1

2 , so that the a one vs. all softmax classifier would
say on average that the correct class is more likely, than
Chebyshev’s Inequality bounds the probability of incorrect
prediction. Namely, the correct prediction is made with cer-
tainty if Ŷ > 1

2 and so the probability of incorrect prediction
is less than

P (|Ŷ − E[Ŷ]| ≥ E[Ŷ]− 1

2
) ≤ V ar(Ŷ)

E[Ŷ]− 1
2

From the form of the equation, we immediately see that
keeping the average model accuracy E[Yi] high is im-
portant, and that degradation in model quality can offset
reductions in variance. If we expand out V ar(Ŷ) Since
the variance of Ŷ decomposes into 1

m2 (
∑m

i=1 V ar(Yi) +∑
i 6=i′ Cov(Yi, Yi′), we see that low model covariance

keeps the variance of the ensemble low, and that models
which have covariance other models provides little benefit
to the ensemble.

