A COMPLEXITY ANALYSIS OF THE
GREEDY ALLOCATION ALGORITHM

Flotilla creation first searches for the reference training rate
(time complexity is O(N)), then iteratively finds the best
candidate DNN to add in the flotilla (time complexity is
O(N x N x M), and finally assigns all the remaining
GPUs available to the DNNSs in the flotilla (time complexity
is O(Ny, x M)). So the time complexity of flotilla creation
is O(Ny, x N x M). Algorithm 1 shows the flotilla creation
algorithm.

GPU assignment first prunes the factorial solution space by
identifying and assigning GPUs to the DNNs whose training
rate meets certain requirements in O(N}) time complexity.
It then searches for the optimal GPU assignment strategy
for the remaining DNNs. The algorithm is shown in Al-
gorithm 2. This algorithm assumes the number of GPUs
per node is the same among nodes (GPUsPerNode), which
holds in the major supercomputers. Let N}, be the number
of remaining DNNs. The solution space is N;!. Most of
the time, IV, ,’C is a small number less than five. However,
enumerating all the possible solutions is still in factorial
time complexity. We set the maximum number of solutions
to explore as 1024, reducing the time complexity to O(1).
The time complexity of GPU assignment is thus O(Ny).

Algorithm 1 createFlotilla

Input: cands, R, M
Output: Fi,my
1: Dygst, T fqst = fastestDNN(cands, R) // Find the DNN
with the largest training rate with a single GPU
2: Fp, My, my, = [Dfast], 1, [1]
3: while | F| < |cands| do
4: Dbest7 Tbest s Mbest =
findNext(r qs¢, I, cands, Fy, M — Mj,) // Find the
next DNN, its training rate and required GPU count
5 if Dpese == —1 then
6: break
7. endif
8:
9

]:k-append(Dbest)
: myc.append(Mpest)
10: M+ = Myest
11: end while
12: while M;, < M do
13: Dgjow = slowest DN N (Fy, my, R) // in terms of
speed on the currently assigned GPUs
14: my[slow]+ =1
15: M+ =1
16: end while
fk, my

Algorithm 2 getGPUAssignment

Input: Fj, my

Output: A

1: j, Ak, remaining, assigned =
LONn, a {1, N}

remaining -= assigned
memo, assigned = {}, {}

2: for all i E remaining do

3: 1fm V%G PUsPerNode == 0 then
4: asszgned.add(z)

5: j = assignGPUs(Ag, i, j, mz(-k))

6: endif

7: end for

8:

9:

10: for all : € remaining do

1. if —mgk)%GPUsPerNode not in memo then
12: memo[—mgk)%GPUsPerNode] =1

13: else

14: for it = ¢, memo[—mgk)%GPUsPerNode] do
15: assigned.add(ii)

16: j = assignGPUSs(Ay, i, j, m'™)

17: end for

18: del memo[mgk)%GPUsPerNode]

19: end if

20: end for

21: remaining -= assigned

22: if [remaining| > 0 then

23: 1y, bestScore, bestA, jeopy, Acopy =
[], 00, j, clone(Ay)

24: for all i € remaining do

25: m;,y.append((7, m()))

26: end for

27: for permutation in allPermutations(m x)) do

28: Js Ak = Jeopy, clone(Acopy)

29: for ¢, ml(-k) in permutation do

30: j = assignGPUs(Ay, i, j, m*))

31: end for

32: score = calculateScore(Ay,) // Score is calculated
based on the loss function in Eq. 7

33: if score < bestScore then

34: bestScore,bestA = score, Ay,

35: end if

36: end for

37: Ay = bestA

38: end ifA,

Algorithm 3 assignGPUs

Input: Ay, 1,7, mz(-k)

Qutput: j

1: while m{*) > 0 do
2: --—1j—|——1m()—:1

3: end whlle 9

180
160 -
140

120 Bl
100 + Bl
80 + o
60 o
M HHHWHHH |
zo | |

0 20 4

0 60 80 100
DNNs used in experiments

Training Rate (images/sec)

o

Figure 1: Training rate of each DNN on single GPU.

= Training Rate

== Epochs

1)

Epochs

Training Rate (#GPU

250 500 750 1000

Model Size
Figure 2: Correlations between model size of a DNN and the
training rate and the number of epochs until convergence.

B EXPERIMENT DETAILS
B.1 Characteristics of Experimental DNNs

The DNNs used in this experiment are derived from six
popular DNNs, DenseNet-121, DenseNet-169, DenseNet-
201, ResNet-50, ResNet-101 and ResNet-152. The first
three are variations of DenseNet (Huang et al., 2017). The
three variations share the same structure, but differ in the
number of DNN layers, indicated by their suffixes. The
latter three are variations of ResNet (He et al., 2016).

The 100 DNNs used in our experiments have a range of
model sizes, from 232 MB to 1.19GB. Different DNNs
have different GPU memory requirements and thus requires
different batch sizes to maximize GPU utilization. For each,
we use the maximum batch size that can fit into GPU’s
memory. Figure 1 shows the distribution of their training
rates on a single GPU which vary from 21 to 176 images/sec.

Figure 2 outlines the relations between the training rates and
model sizes of the DNNs, as well as the relations between
convergence rates (i.e., the number of epochs needed for
the DNNSs to converge) and their model sizes. As model
size increases, the training rate tends to drop as more com-
putations are involved in the DNN, but there are no clear
correlations with the convergence rate. It is the reason that
the resource allocation algorithm in FLEET primarily con-
siders training rate explicitly, while relies on the periodical
(re)scheduling to indirectly adapt to the variations of DNNs

in the converging rates.

B.2 System Settings

All experiments are conducted on SummitDev (Sum, 2019),
a development machine for Summit supercomputer at Oak
Ridge National Lab. Each node is equipped with two IBM
POWERS CPUs and 256GB DRAM, and four NVIDIA
Tesla P100 GPUs. Each POWERS CPU has 10 cores with 8
HW threads each. The default SMT level is set to one unless
noted otherwise. The number of cores allocated per GPU
is five in all the experiments. NVLink 1.0 is the connection
among all GPUs and between CPUs and GPUs within a
node. EDR InfiniBand connects different nodes in a full fat-
tree. The file system is an IBM Spectrum Scale file system,
which provides 2.5 TB/s for sequential I/O and 2.2 TB/s for
random I/O. our experiments show that thanks to the large
I/0 throughput of the file system, I/O is not the bottleneck
of DNN training. The used CUDA version is 9.2.

FLEET is built on Tensorflow 1.12 (as the core train-
ing engine) , Horovod v0.15.2 (Sergeev & Del Balso,
2018) (as the basis for distributed DNN training),
and mpidpy v3.0.0 (for the pipeline construction).
We set inter_op-parallelism_threads and
intra_op-parallelism_threads to # logical cores
for parallel TensorFlow operaitons on CPU. The used
CUDA version is 9.2.

B.3 Profiling Details

To minimize the overhead of profiling, we only profile the
training rates of each DNN in the ensemble with the number
of GPUs varying from one to M;(M; < M). For m =
1,---, My, we train a DNN for a maximum of 48 batches
and use the training time of the last 20 batches to calculate
the exact training rate: r;(m),i = 1,--- , N. Based on the
profiled training rates, we estimate the training rates of each
DNN when m > M;. Specifically, the profiling has three
steps:

1. Collect the training rates of each DNN on a single
GPU, R(1) = {r;(1)},s=1,--- ,N.

2. Estimate the number of GPUs required to make the
DNN that has the smallest training rate on a single GPU
achieve the largest single-GPU training rate, M, =
[mé?‘x(R(l))].

min(R(1))

3. Collect the training rates of each DNN with the number
of GPUs varying from two to My = max(M,, Mp),
where My, = 2 x GPUsPerNode.

Note that steps 1 and 3 can be done in parallel because the
trainings of different DNNs with different number of GPUs
are independent. The training rate of the ¢-th DNN with

1000

800

600

400

Training Rate

200{

Number of GPUs

Figure 3: The profiled training rates (images/sec) of 100
DNNs in an ensemble with Imagenet.

the number of GPUs higher than M; is estimated via the
following equation:

Ti(Mb) % (Ti(Mb) My — 1)””*1V[b. "
ri

ri(m) = mx A (bel)x L

The formula for M; and Equation 1 are the result of perfor-
mance modeling on our observations on the DNN perfor-
mance trend as illustrated in Figure 3. It achieves a good
tradeoff between the profiling cost and the performance
prediction accuracy.

The profiling process also measures the throughput of a
range of preprocessors (# cores=1, 2, 4, 8, 16, 32) in the
pipeline. This step is quick since preprocessing does not
exhibit large variations. Based on the profiled information,
FLEET calculates the minimum number of preprocessors
that can meet the demands of an arbitrary M DNNs (with
one running on one GPU), and uses it to set the number of
preprocessors.

REFERENCES

Summit user guide oak ridge leadership comput-
ing facility. https://www.olcf.ornl.
gov/for-users/system-user—-guides/
summitdev-quickstart-guide/, 2019. Ac-
cessed 3/3/2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp- 770-778, 2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700-4708, 2017.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/
https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/
https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/

