
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

A COMPLEXITY ANALYSIS OF THE
GREEDY ALLOCATION ALGORITHM

Flotilla creation first searches for the reference training rate
(time complexity is O(N)), then iteratively finds the best
candidate DNN to add in the flotilla (time complexity is
O(Nk × N × M), and finally assigns all the remaining
GPUs available to the DNNs in the flotilla (time complexity
is O(Nk ×M)). So the time complexity of flotilla creation
isO(Nk×N ×M). Algorithm 1 shows the flotilla creation
algorithm.

GPU assignment first prunes the factorial solution space by
identifying and assigning GPUs to the DNNs whose training
rate meets certain requirements in O(Nk) time complexity.
It then searches for the optimal GPU assignment strategy
for the remaining DNNs. The algorithm is shown in Al-
gorithm 2. This algorithm assumes the number of GPUs
per node is the same among nodes (GPUsPerNode), which
holds in the major supercomputers. Let N ′

k be the number
of remaining DNNs. The solution space is N ′

k!. Most of
the time, N ′

k is a small number less than five. However,
enumerating all the possible solutions is still in factorial
time complexity. We set the maximum number of solutions
to explore as 1024, reducing the time complexity to O(1).
The time complexity of GPU assignment is thus O(Nk).

Algorithm 1 createFlotilla

Input: cands,R,M
Output: Fk,mk

1: Dfast, rfast = fastestDNN(cands,R) // Find the DNN
with the largest training rate with a single GPU

2: Fk,Mk,mk = [Dfast], 1, [1]
3: while |Fk| < |cands| do
4: Dbest, rbest,Mbest =

findNext(rfast, R, cands,Fk,M −Mk) // Find the
next DNN, its training rate and required GPU count

5: if Dbest == −1 then
6: break
7: end if
8: Fk.append(Dbest)
9: mk.append(Mbest)

10: Mk+ = Mbest

11: end while
12: while Mk < M do
13: Dslow = slowestDNN(Fk,mk, R) // in terms of

speed on the currently assigned GPUs
14: mk[slow]+ = 1
15: Mk+ = 1
16: end while
Fk,mk

Algorithm 2 getGPUAssignment

Input: Fk,mk

Output: Ak

1: j, Ak, remaining, assigned =
1, 0Nk,M , {1, · · · , N}, {}

2: for all i ∈ remaining do
3: if m(k)

i %GPUsPerNode == 0 then
4: assigned.add(i)
5: j = assignGPUs(Ak, i, j,m

(k)
i)

6: end if
7: end for
8: remaining -= assigned
9: memo, assigned = {}, {}

10: for all i ∈ remaining do
11: if −m(k)

i %GPUsPerNode not in memo then
12: memo[−m(k)

i %GPUsPerNode] = i
13: else
14: for ii = i,memo[−m(k)

i %GPUsPerNode] do
15: assigned.add(ii)
16: j = assignGPUs(Ak, ii, j,m

(k)
ii)

17: end for
18: del memo[m

(k)
i %GPUsPerNode]

19: end if
20: end for
21: remaining -= assigned
22: if |remaining| > 0 then
23: m̃(k), bestScore, bestA, jcopy, Acopy =

[],∞, j, clone(Ak)
24: for all i ∈ remaining do
25: m̃(k).append((i,m(k)

i))
26: end for
27: for permutation in allPermutations(m̃(k)) do
28: j, Ak = jcopy, clone(Acopy)

29: for i,m
(k)
i in permutation do

30: j = assignGPUs(Ak, i, j,m
(k)
i)

31: end for
32: score = calculateScore(Ak) // Score is calculated

based on the loss function in Eq. 7
33: if score < bestScore then
34: bestScore, bestA = score,Ak

35: end if
36: end for
37: Ak = bestA
38: end ifAk

Algorithm 3 assignGPUs

Input: Ak, i, j,m
(k)
i

Output: j

1: while m
(k)
i > 0 do

2: aki,j = 1; j+ = 1; m(k)
i − = 1

3: end whilej

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

T
ra

in
in

g
 R

a
te

 (
im

a
g

e
s
/s

e
c
)

DNNs used in experiments

Figure 1: Training rate of each DNN on single GPU.

Model Size

Tr
ai

ni
ng

 R
at

e
(#

G
PU

=1
)

Ep
oc

hs
0

50

100

150

200

0

5

10

15

20

25

250 500 750 1000

Training Rate Epochs

Figure 2: Correlations between model size of a DNN and the
training rate and the number of epochs until convergence.

B EXPERIMENT DETAILS

B.1 Characteristics of Experimental DNNs

The DNNs used in this experiment are derived from six
popular DNNs, DenseNet-121, DenseNet-169, DenseNet-
201, ResNet-50, ResNet-101 and ResNet-152. The first
three are variations of DenseNet (Huang et al., 2017). The
three variations share the same structure, but differ in the
number of DNN layers, indicated by their suffixes. The
latter three are variations of ResNet (He et al., 2016).

The 100 DNNs used in our experiments have a range of
model sizes, from 232 MB to 1.19GB. Different DNNs
have different GPU memory requirements and thus requires
different batch sizes to maximize GPU utilization. For each,
we use the maximum batch size that can fit into GPU’s
memory. Figure 1 shows the distribution of their training
rates on a single GPU which vary from 21 to 176 images/sec.

Figure 2 outlines the relations between the training rates and
model sizes of the DNNs, as well as the relations between
convergence rates (i.e., the number of epochs needed for
the DNNs to converge) and their model sizes. As model
size increases, the training rate tends to drop as more com-
putations are involved in the DNN, but there are no clear
correlations with the convergence rate. It is the reason that
the resource allocation algorithm in FLEET primarily con-
siders training rate explicitly, while relies on the periodical
(re)scheduling to indirectly adapt to the variations of DNNs

in the converging rates.

B.2 System Settings

All experiments are conducted on SummitDev (Sum, 2019),
a development machine for Summit supercomputer at Oak
Ridge National Lab. Each node is equipped with two IBM
POWER8 CPUs and 256GB DRAM, and four NVIDIA
Tesla P100 GPUs. Each POWER8 CPU has 10 cores with 8
HW threads each. The default SMT level is set to one unless
noted otherwise. The number of cores allocated per GPU
is five in all the experiments. NVLink 1.0 is the connection
among all GPUs and between CPUs and GPUs within a
node. EDR InfiniBand connects different nodes in a full fat-
tree. The file system is an IBM Spectrum Scale file system,
which provides 2.5 TB/s for sequential I/O and 2.2 TB/s for
random I/O. our experiments show that thanks to the large
I/O throughput of the file system, I/O is not the bottleneck
of DNN training. The used CUDA version is 9.2.

FLEET is built on Tensorflow 1.12 (as the core train-
ing engine) , Horovod v0.15.2 (Sergeev & Del Balso,
2018) (as the basis for distributed DNN training),
and mpi4py v3.0.0 (for the pipeline construction).
We set inter op parallelism threads and
intra op parallelism threads to # logical cores
for parallel TensorFlow operaitons on CPU. The used
CUDA version is 9.2.

B.3 Profiling Details

To minimize the overhead of profiling, we only profile the
training rates of each DNN in the ensemble with the number
of GPUs varying from one to Mt(Mt < M). For m =
1, · · · ,Mt, we train a DNN for a maximum of 48 batches
and use the training time of the last 20 batches to calculate
the exact training rate: ri(m), i = 1, · · · , N . Based on the
profiled training rates, we estimate the training rates of each
DNN when m > Mt. Specifically, the profiling has three
steps:

1. Collect the training rates of each DNN on a single
GPU, R(1) = {ri(1)}, i = 1, · · · , N .

2. Estimate the number of GPUs required to make the
DNN that has the smallest training rate on a single GPU
achieve the largest single-GPU training rate, Ma =

[max(R(1))
min(R(1))].

3. Collect the training rates of each DNN with the number
of GPUs varying from two to Mt = max(Ma,Mb),
where Mb = 2×GPUsPerNode.

Note that steps 1 and 3 can be done in parallel because the
trainings of different DNNs with different number of GPUs
are independent. The training rate of the i-th DNN with

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

1 2 3 4 5 6 7 8
Number of GPUs

0

200

400

600

800

1000

Tr
ai

ni
ng

 R
at

e

Figure 3: The profiled training rates (images/sec) of 100
DNNs in an ensemble with Imagenet.

the number of GPUs higher than Mt is estimated via the
following equation:

ri(m) = m× ri(Mb)

Mb
×
(

ri(Mb)

ri(Mb − 1)
×Mb − 1

Mb

)m−Mb

. (1)

The formula for Mb and Equation 1 are the result of perfor-
mance modeling on our observations on the DNN perfor-
mance trend as illustrated in Figure 3. It achieves a good
tradeoff between the profiling cost and the performance
prediction accuracy.

The profiling process also measures the throughput of a
range of preprocessors (# cores=1, 2, 4, 8, 16, 32) in the
pipeline. This step is quick since preprocessing does not
exhibit large variations. Based on the profiled information,
FLEET calculates the minimum number of preprocessors
that can meet the demands of an arbitrary M DNNs (with
one running on one GPU), and uses it to set the number of
preprocessors.

REFERENCES

Summit user guide oak ridge leadership comput-
ing facility. https://www.olcf.ornl.
gov/for-users/system-user-guides/
summitdev-quickstart-guide/, 2019. Ac-
cessed 3/3/2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/
https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/
https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/

