
FEDERATED OPTIMIZATION IN HETEROGENEOUS NETWORKS

Tian Li 1 Anit Kumar Sahu 2 Manzil Zaheer 3 Maziar Sanjabi 4 Ameet Talwalkar 1 5 Virginia Smith 1

ABSTRACT
Federated Learning is a distributed learning paradigm with two key challenges that differentiate it from traditional
distributed optimization: (1) significant variability in terms of the systems characteristics on each device in
the network (systems heterogeneity), and (2) non-identically distributed data across the network (statistical
heterogeneity). In this work, we introduce a framework, FedProx, to tackle heterogeneity in federated networks.
FedProx can be viewed as a generalization and re-parametrization of FedAvg, the current state-of-the-art
method for federated learning. While this re-parameterization makes only minor modifications to the method
itself, these modifications have important ramifications both in theory and in practice. Theoretically, we provide
convergence guarantees for our framework when learning over data from non-identical distributions (statistical
heterogeneity), and while adhering to device-level systems constraints by allowing each participating device to
perform a variable amount of work (systems heterogeneity). Practically, we demonstrate that FedProx allows
for more robust convergence than FedAvg across a suite of realistic federated datasets. In particular, in highly
heterogeneous settings, FedProx demonstrates significantly more stable and accurate convergence behavior
relative to FedAvg—improving absolute test accuracy by 22% on average.

1 INTRODUCTION

Federated learning has emerged as an attractive paradigm
for distributing training of machine learning models in net-
works of remote devices. While there is a wealth of work
on distributed optimization in the context of machine learn-
ing, two key challenges distinguish federated learning from
traditional distributed optimization: high degrees of systems
and statistical heterogeneity1 (McMahan et al., 2017; Li
et al., 2019).

In an attempt to handle heterogeneity and tackle high com-
munication costs, optimization methods that allow for lo-
cal updating and low participation are a popular approach
for federated learning (McMahan et al., 2017; Smith et al.,
2017). In particular, FedAvg (McMahan et al., 2017) is
an iterative method that has emerged as the de facto opti-
mization method in the federated setting. At each iteration,
FedAvg first locally performs E epochs of stochastic gra-

1Carnegie Mellon University 2Bosch Center for Artificial Intel-
ligence 3Goolge Research 4Facebook AI 5Determined AI. Corre-
spondence to: Tian Li <tianli@cmu.edu>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

1Privacy is a third key challenge in the federated setting. While
not the focus of this work, standard privacy-preserving approaches
such as differential privacy and secure multiparty communication
can naturally be combined with the methods proposed herein—
particularly since our framework proposes only lightweight algo-
rithmic modifications to prior work.

dient descent (SGD) on K devices—where E is a small
constant and K is a small fraction of the total devices in
the network. The devices then communicate their model
updates to a central server, where they are averaged.

While FedAvg has demonstrated empirical success in het-
erogeneous settings, it does not fully address the underlying
challenges associated with heterogeneity. In the context
of systems heterogeneity, FedAvg does not allow partici-
pating devices to perform variable amounts of local work
based on their underlying systems constraints; instead it
is common to simply drop devices that fail to compute E
epochs within a specified time window (Bonawitz et al.,
2019). From a statistical perspective, FedAvg has been
shown to diverge empirically in settings where the data is
non-identically distributed across devices (e.g., McMahan
et al., 2017, Sec 3). Unfortunately, FedAvg is difficult to
analyze theoretically in such realistic scenarios and thus
lacks convergence guarantees to characterize its behavior
(see Section 2 for additional details).

In this work, we propose FedProx, a federated optimiza-
tion algorithm that addresses the challenges of heterogene-
ity both theoretically and empirically. A key insight we
have in developing FedProx is that an interplay exists
between systems and statistical heterogeneity in federated
learning. Indeed, both dropping stragglers (as in FedAvg)
or naively incorporating partial information from stragglers
(as in FedProx with the proximal term set to 0) implicitly
increases statistical heterogeneity and can adversely impact

Federated Optimization in Heterogeneous Networks

convergence behavior. To mitigate this issue, we propose
adding a proximal term to the objective that helps to improve
the stability of the method. This term provides a principled
way for the server to account for heterogeneity associated
with partial information. Theoretically, these modifications
allow us to provide convergence guarantees for our method
and to analyze the effect of heterogeneity. Empirically, we
demonstrate that the modifications improve the stability
and overall accuracy of federated learning in heterogeneous
networks—improving the absolute testing accuracy by 22%
on average in highly heterogeneous settings.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide background on federated learning and
an overview of related work. We then present our proposed
framework, FedProx, in Section 3, and derive convergence
guarantees for the framework accounting for both statistical
and systems heterogeneity in Section 4. Finally, in Section 5,
we provide a thorough empirical evaluation of FedProx on
a suite of synthetic and real-world federated datasets. Our
empirical results help to illustrate and validate our theoreti-
cal analysis, and demonstrate the practical improvements of
FedProx over FedAvg in heterogeneous networks.

2 BACKGROUND AND RELATED WORK

Large-scale machine learning, particularly in data center
settings, has motivated the development of numerous dis-
tributed optimization methods in the past decade (see, e.g.,
Boyd et al., 2010; Dekel et al., 2012; Dean et al., 2012;
Zhang et al., 2013; Li et al., 2014a; Shamir et al., 2014;
Reddi et al., 2016; Zhang et al., 2015; Richtárik & Takáč,
2016; Smith et al., 2018). However, as computing substrates
such as phones, sensors, and wearable devices grow both in
power and in popularity, it is increasingly attractive to learn
statistical models locally in networks of distributed devices,
in contrast to moving the data to the data center. This prob-
lem, known as federated learning, requires tackling novel
challenges with privacy, heterogeneous data and devices,
and massively distributed networks (Li et al., 2019).

Recent optimization methods have been proposed that are
tailored to the specific challenges in the federated setting.
These methods have shown significant improvements over
traditional distributed approaches such as ADMM (Boyd
et al., 2010) or mini-batch methods (Dekel et al., 2012) by
allowing both for inexact local updating in order to balance
communication vs. computation in large networks, and for
a small subset of devices to be active at any communication
round (McMahan et al., 2017; Smith et al., 2017). For exam-
ple, Smith et al. (2017) propose a communication-efficient
primal-dual optimization method that learns separate but
related models for each device through a multi-task learning
framework. Despite the theoretical guarantees and practical
efficiency of the proposed method, such an approach is not

generalizable to non-convex problems, e.g., deep learning,
where strong duality is no longer guaranteed. In the non-
convex setting, Federated Averaging (FedAvg), a heuristic
method based on averaging local Stochastic Gradient De-
scent (SGD) updates in the primal, has instead been shown
to work well empirically (McMahan et al., 2017).

Unfortunately, FedAvg is quite challenging to analyze due
to its local updating scheme, the fact that few devices are
active at each round, and the issue that data is frequently
distributed in a heterogeneous nature in the network. In par-
ticular, as each device generates its own local data, statistical
heterogeneity is common with data being non-identically
distributed between devices. Several works have made steps
towards analyzing FedAvg in simpler, non-federated set-
tings. For instance, parallel SGD and related variants (Zhang
et al., 2015; Shamir et al., 2014; Reddi et al., 2016; Zhou &
Cong, 2018; Stich, 2019; Wang & Joshi, 2018; Woodworth
et al., 2018; Lin et al., 2020), which make local updates
similar to FedAvg, have been studied in the IID setting.
However, the results rely on the premise that each local
solver is a copy of the same stochastic process (due to the
IID assumption). This line of reasoning does not apply to
the heterogeneous setting.

Although some recent works (Yu et al., 2018; Wang et al.,
2019; Hao et al., 2019; Jiang & Agrawal, 2018) have ex-
plored convergence guarantees in statistically heterogeneous
settings, they make the limiting assumption that all devices
participate in each round of communication, which is often
infeasible in realistic federated networks (McMahan et al.,
2017). Further, they rely on specific solvers to be used on
each device (either SGD or GD), as compared to the solver-
agnostic framework proposed herein, and add additional
assumptions of convexity (Wang et al., 2019) or uniformly
bounded gradients (Yu et al., 2018) to their analyses. There
are also heuristic approaches that aim to tackle statistical
heterogeneity by sharing the local device data or server-side
proxy data (Jeong et al., 2018; Zhao et al., 2018; Huang
et al., 2018). However, these methods may be unrealistic: in
addition to imposing burdens on network bandwidth, send-
ing local data to the server (Jeong et al., 2018) violates the
key privacy assumption of federated learning, and sending
globally-shared proxy data to all devices (Zhao et al., 2018;
Huang et al., 2018) requires effort to carefully generate or
collect such auxiliary data.

Beyond statistical heterogeneity, systems heterogeneity is
also a critical concern in federated networks. The storage,
computational, and communication capabilities of each de-
vice in federated networks may differ due to variability in
hardware (CPU, memory), network connectivity (3G, 4G,
5G, wifi), and power (battery level). These system-level
characteristics dramatically exacerbate challenges such as
straggler mitigation and fault tolerance. One strategy used

Federated Optimization in Heterogeneous Networks

in practice is to ignore the more constrained devices failing
to complete a certain amount of training (Bonawitz et al.,
2019). However (as we demonstrate in Section 5), this can
have negative effects on convergence as it limits the number
of effective devices contributing to training, and may induce
bias in the device sampling procedure if the dropped devices
have specific data characteristics.

In this work, inspired by FedAvg, we explore a broader
framework, FedProx, that is capable of handling hetero-
geneous federated environments while maintaining similar
privacy and computational benefits. We analyze the con-
vergence behavior of the framework through a statistical
dissimilarity characterization between local functions, while
also taking into account practical systems constraints. Our
dissimilarity characterization is inspired by the randomized
Kaczmarz method for solving linear system of equations
(Kaczmarz, 1993; Strohmer & Vershynin, 2009), a similar
assumption of which has been used to analyze variants of
SGD in other settings (see, e.g., Schmidt & Roux, 2013;
Vaswani et al., 2019; Yin et al., 2018). Our proposed frame-
work provides improved robustness and stability for opti-
mization in heterogeneous federated networks.

Finally, in terms of related work, we note that two aspects
of our proposed work—the proximal term in FedProx and
the bounded dissimilarity assumption used in our analysis—
have been previously studied in the optimization literature,
though often with very different motivations and in non-
federated settings. For completeness, we provide a further
discussion in Appendix B on this background work.

3 FEDERATED OPTIMIZATION: METHODS

In this section, we introduce the key ingredients behind
recent methods for federated learning, including FedAvg,
and then outline our proposed framework, FedProx.

Federated learning methods (e.g., McMahan et al., 2017;
Smith et al., 2017) are designed to handle multiple devices
collecting data and a central server coordinating the global
learning objective across the network. In particular, the aim
is to minimize:

min
w

f(w) =

N∑
k=1

pkFk(w) = Ek[Fk(w)], (1)

where N is the number of devices, pk ≥ 0, and
∑
k pk=1.

In general, the local objectives measure the local empiri-
cal risk over possibly differing data distributions Dk, i.e.,
Fk(w) := Exk∼Dk

[fk(w;xk)], with nk samples available
at each device k. Hence, we can set pk=nk

n , where n=∑
k nk is the total number of data points. In this work, we

consider Fk(w) to be possibly non-convex.

To reduce communication, a common technique in feder-
ated optimization is that on each device, a local objective

function based on the device’s data is used as a surrogate
for the global objective function. At each outer iteration,
a subset of the devices are selected and local solvers are
used to optimize the local objective functions on each of
the selected devices. The devices then communicate their
local model updates to the central server, which aggregates
them and updates the global model accordingly. The key to
allowing flexible performance in this scenario is that each of
the local objectives can be solved inexactly. This allows the
amount of local computation vs. communication to be tuned
based on the number of local iterations that are performed
(with additional local iterations corresponding to more exact
local solutions). We introduce this notion formally below,
as it will be utilized throughout the paper.

Definition 1 (γ-inexact solution). For a function
h(w;w0) = F (w) + µ

2 ‖w − w0‖2, and γ ∈ [0, 1],
we say w∗ is a γ-inexact solution of minw h(w;w0)
if ‖∇h(w∗;w0)‖ ≤ γ‖∇h(w0;w0)‖, where
∇h(w;w0) = ∇F (w) + µ(w − w0). Note that a
smaller γ corresponds to higher accuracy.

We use γ-inexactness in our analysis (Section 4) to mea-
sure the amount of local computation from the local solver
at each round. As discussed earlier, different devices are
likely to make different progress towards solving the local
subproblems due to variable systems conditions, and it is
therefore important to allow γ to vary both by device and
by iteration. This is one of the motivations for our proposed
framework discussed in the next sections. For ease of nota-
tion, we first derive our main convergence results assuming
a uniform γ as defined here (Section 4), and then provide
results with variable γ’s in Corollary 9.

3.1 Federated Averaging (FedAvg)

In Federated Averaging (FedAvg) (McMahan et al., 2017),
the local surrogate of the global objective function at de-
vice k is Fk (·), and the local solver is stochastic gradient
descent (SGD), with the same learning rate and number
of local epochs used on each device. At each round, a
subset K � N of the total devices are selected and run
SGD locally for E number of epochs, and then the resulting
model updates are averaged. The details of FedAvg are
summarized in Algorithm 1.

McMahan et al. (2017) show empirically that it is crucial to
tune the optimization hyperparameters of FedAvg properly.
In particular, the number of local epochs in FedAvg plays
an important role in convergence. On one hand, perform-
ing more local epochs allows for more local computation
and potentially reduced communication, which can greatly
improve the overall convergence speed in communication-
constrained networks. On the other hand, with dissimilar
(heterogeneous) local objectives Fk, a larger number of local
epochs may lead each device towards the optima of its local

Federated Optimization in Heterogeneous Networks

Algorithm 1 Federated Averaging (FedAvg)

Input: K, T , η, E, w0, N , pk, k = 1, · · · , N
for t = 0, · · · , T − 1 do

Server selects a subset St ofK devices at random (each
device k is chosen with probability pk)
Server sends wt to all chosen devices
Each device k ∈ St updates wt for E epochs of SGD
on Fk with step-size η to obtain wt+1

k

Each device k ∈ St sends wt+1
k back to the server

Server aggregates the w’s as wt+1 = 1
K

∑
k∈St

wt+1
k

end for

objective as opposed to the global objective—potentially
hurting convergence or even causing the method to diverge.
Further, in federated networks with heterogeneous systems
resources, setting the number of local epochs to be high
may increase the risk that devices do not complete training
within a given communication round and must therefore
drop out of the procedure (Bonawitz et al., 2019).

In practice, it is therefore important to find a way to set the
local epochs to be high (to reduce communication) while
also allowing for robust convergence. More fundamentally,
we note that the ‘best’ setting for the number of local epochs
is likely to change at each iteration and on each device—as
a function of both the local data and available systems re-
sources. Indeed, a more natural approach than mandating a
fixed number of local epochs is to allow the epochs to vary
according to the characteristics of the network, and to care-
fully merge solutions by accounting for this heterogeneity.
We formalize this strategy in FedProx, introduced below.

3.2 Proposed Framework: FedProx

Our proposed framework, FedProx (Algorithm 2), is simi-
lar to FedAvg in that a subset of devices are selected at each
round, local updates are performed, and these updates are
then averaged to form a global update. However, FedProx
makes the following simple yet critical modifications, which
result in significant empirical improvements and also allow
us to provide convergence guarantees for the method.

Tolerating partial work. As previously discussed, dif-
ferent devices in federated networks often have different
resource constraints in terms of the computing hardware,
network connections, and battery levels. Therefore, it is un-
realistic to force each device to perform a uniform amount
of work (i.e., running the same number of local epochs,
E), as in FedAvg. In FedProx, we generalize FedAvg
by allowing for variable amounts of work to be performed
locally across devices based on their available systems re-
sources, and then aggregate the partial solutions sent from
the stragglers (as compared to dropping these devices). In
other words, instead of assuming a uniform γ for all de-
vices throughout the training process, FedProx implicitly

accommodates variable γ’s for different devices and at dif-
ferent iterations. We formally define γtk-inexactness for
device k at iteration t below, which is a natural extension
from Definition 1.

Definition 2 (γtk-inexact solution). For a function
hk(w;wt) = Fk(w) + µ

2 ‖w − wt‖2, and γ ∈ [0, 1], we
say w∗ is a γtk-inexact solution of minw hk(w;wt)
if ‖∇hk(w∗;wt)‖ ≤ γtk‖∇hk(wt;wt)‖, where
∇hk(w;wt) = ∇Fk(w) + µ(w − wt). Note that a
smaller γtk corresponds to higher accuracy.

Analogous to Definition 1, γtk measures how much local
computation is performed to solve the local subproblem
on device k at the t-th round. The variable number of
local iterations can be viewed as a proxy of γtk. Utilizing
the more flexible γtk-inexactness, we can readily extend
the convergence results under Definition 1 (Theorem 4) to
consider issues related to systems heterogeneity such as
stragglers (see Corollary 9).

Proximal term. As mentioned in Section 3.1, while toler-
ating nonuniform amounts of work to be performed across
devices can help alleviate negative impacts of systems het-
erogeneity, too many local updates may still (potentially)
cause the methods to diverge due to the underlying hetero-
geneous data. We propose to add a proximal term to the
local subproblem to effectively limit the impact of variable
local updates. In particular, instead of just minimizing the
local function Fk(·), device k uses its local solver of choice
to approximately minimize the following objective hk:

min
w
hk(w; wt) = Fk(w) +

µ

2
‖w − wt‖2 . (2)

The proximal term is beneficial in two aspects: (1) It ad-
dresses the issue of statistical heterogeneity by restricting
the local updates to be closer to the initial (global) model
without any need to manually set the number of local epochs.
(2) It allows for safely incorporating variable amounts of
local work resulting from systems heterogeneity. We sum-
marize the steps of FedProx in Algorithm 2.

Algorithm 2 FedProx (Proposed Framework)

Input: K, T , µ, γ, w0, N , pk, k = 1, · · · , N
for t = 0, · · · , T − 1 do

Server selects a subset St ofK devices at random (each
device k is chosen with probability pk)
Server sends wt to all chosen devices
Each chosen device k ∈ St finds a wt+1

k

which is a γtk-inexact minimizer of: wt+1
k ≈

arg minw hk(w; wt) = Fk(w) + µ
2 ‖w − w

t‖2
Each device k ∈ St sends wt+1

k back to the server
Server aggregates the w’s as wt+1 = 1

K

∑
k∈St

wt+1
k

end for

Federated Optimization in Heterogeneous Networks

We note that proximal terms such as the one above are a
popular tool utilized throughout the optimization literature;
for completeness, we provide a more detailed discussion
on this in Appendix B. An important distinction of the pro-
posed usage is that we suggest, explore, and analyze such a
term for the purpose of tackling heterogeneity in federated
networks. Our analysis (Section 4) is also unique in con-
sidering solving such an objective in a distributed setting
with: (1) non-IID partitioned data, (2) the use of any local
solver, (3) variable inexact updates across devices, and (4) a
subset of devices being active at each round. These assump-
tions are critical to providing a characterization of such a
framework in realistic federated scenarios.

In our experiments (Section 5), we demonstrate that tol-
erating partial work is beneficial in the presence of sys-
tems heterogeneity and our modified local subproblem in
FedProx results in more robust and stable convergence
compared to vanilla FedAvg for heterogeneous datasets.
In Section 4, we also see that the usage of the proximal
term makes FedProx more amenable to theoretical analy-
sis (i.e., the local objective may be more well-behaved). In
particular, if µ is chosen accordingly, the Hessian of hk may
be positive semi-definite. Hence, when Fk is non-convex,
hk will be convex, and when Fk is convex, it becomes µ-
strongly convex.

Finally, we note that since FedProx makes only
lightweight modifications to FedAvg, this allows us to
reason about the behavior of the widely-used FedAvg
method, and enables easy integration of FedProx into
existing packages/systems, such as TensorFlow Federated
and LEAF (TFF; Caldas et al., 2018). In particular, we
note that FedAvg is a special case of FedProx with (1)
µ = 0, (2) the local solver specifically chosen to be SGD,
and (3) a constant γ (corresponding to the number of local
epochs) across devices and updating rounds (i.e., no notion
of systems heterogeneity). FedProx is in fact much more
general in this regard, as it allows for partial work to be per-
formed across devices and any local (possibly non-iterative)
solver to be used on each device.

4 FEDPROX: CONVERGENCE ANALYSIS

FedAvg and FedProx are stochastic algorithms by nature:
in each round, only a fraction of the devices are sampled
to perform the update, and the updates performed on each
device may be inexact. It is well known that in order for
stochastic methods to converge to a stationary point, a de-
creasing step-size is required. This is in contrast to non-
stochastic methods, e.g., gradient descent, that can find a
stationary point by employing a constant step-size. In or-
der to analyze the convergence behavior of methods with
constant step-size (as is usually implemented in practice),
we need to quantify the degree of dissimilarity among the

local objective functions. This could be achieved by assum-
ing the data to be IID, i.e., homogeneous across devices.
Unfortunately, in realistic federated networks, this assump-
tion is impractical. Thus, we first propose a metric that
specifically measures the dissimilarity among local func-
tions (Section 4.1), and then analyze FedProx under this
assumption while allowing for variable γ’s (Section 4.2).

4.1 Local dissimilarity

Here we introduce a measure of dissimilarity between the
devices in a federated network, which is sufficient to prove
convergence. This can also be satisfied via a simpler and
more restrictive bounded variance assumption of the gradi-
ents (Corollary 10), which we explore in our experiments in
Section 5. Interestingly, similar assumptions (e.g., Schmidt
& Roux, 2013; Vaswani et al., 2019; Yin et al., 2018) have
been explored elsewhere but for differing purposes; we pro-
vide a discussion of these works in Appendix B.

Definition 3 (B-local dissimilarity). The local functions
Fk are B-locally dissimilar at w if Ek

[
‖∇Fk(w)‖2

]
≤

‖∇f(w)‖2B2. We further define B(w)=
√

Ek[‖∇Fk(w)‖2]
‖∇f(w)‖2

for2 ‖∇f(w)‖ 6=0.

Here Ek[·] denotes the expectation over devices with masses
pk = nk/n and

∑N
k=1 pk = 1 (as in Equation 1). Defini-

tion 3 can be seen as a generalization of the IID assumption
with bounded dissimilarity, while allowing for statistical het-
erogeneity. As a sanity check, when all the local functions
are the same, we have B(w) = 1 for all w. However, in the
federated setting, the data distributions are often heteroge-
neous and B > 1 due to sampling discrepancies even if the
samples are assumed to be IID. Let us also consider the case
where Fk (·)’s are associated with empirical risk objectives.
If the samples on all the devices are homogeneous, i.e., they
are sampled in an IID fashion, then as mink nk → ∞, it
follows thatB(w)→ 1 for every w as all the local functions
converge to the same expected risk function in the large sam-
ple limit. Thus, B(w) ≥ 1 and the larger the value of B(w),
the larger is the dissimilarity among the local functions.

Using Definition 3, we now state our formal dissimilarity
assumption, which we use in our convergence analysis. This
simply requires that the dissimilarity defined in Definition 3
is bounded. As discussed later, our convergence rate is a
function of the statistical heterogeneity/device dissimilarity
in the network.

Assumption 1 (Bounded dissimilarity). For some ε > 0,
there exists a Bε such that for all the points w ∈ Scε =
{w | ‖∇f(w)‖2 > ε}, B(w) ≤ Bε.

2As an exception we define B(w) = 1 when
Ek
[
‖∇Fk(w)‖2

]
= ‖∇f(w)‖2, i.e. w is a stationary so-

lution that all the local functions Fk agree on.

Federated Optimization in Heterogeneous Networks

For most practical machine learning problems, there is no
need to solve the problem to highly accurate stationary so-
lutions, i.e., ε is typically not very small. Indeed, it is well-
known that solving the problem beyond some threshold may
even hurt generalization performance due to overfitting (Yao
et al., 2007). Although in practical federated learning prob-
lems the samples are not IID, they are still sampled from
distributions that are not entirely unrelated (if this were the
case, e.g., fitting a single global model w across devices
would be ill-advised). Thus, it is reasonable to assume that
the dissimilarity between local functions remains bounded
throughout the training process. We also measure the dis-
similarity metric empirically on real and synthetic datasets
in Section 5.3.3 and show that this metric captures real-
world statistical heterogeneity and is correlated with practi-
cal performance (the smaller the dissimilarity, the better the
convergence).

4.2 FedProx Analysis

Using the bounded dissimilarity assumption (Assumption 1),
we now analyze the amount of expected decrease in the
objective when one step of FedProx is performed. Our
convergence rate (Theorem 6) can be directly derived from
the results of the expected decrease per updating round. We
assume the same γtk for any k, t for ease of notation in the
following analyses.

Theorem 4 (Non-convex FedProx convergence: B-local
dissimilarity). Let Assumption 1 hold. Assume the functions
Fk are non-convex, L-Lipschitz smooth, and there exists
L− > 0, such that∇2Fk � −L−I, with µ̄ := µ− L− > 0.
Suppose that wt is not a stationary solution and the local
functions Fk are B-dissimilar, i.e. B(wt) ≤ B. If µ, K,
and γ in Algorithm 2 are chosen such that

ρ=

(
1

µ
− γB

µ
−B(1+γ)

√
2

µ̄
√
K

−LB(1+γ)

µ̄µ

−L(1+γ)2B2

2µ̄2
−LB

2(1+γ)2

µ̄2K

(
2
√

2K+2

))
>0,

then at iteration t of Algorithm 2, we have the following
expected decrease in the global objective:

ESt

[
f(wt+1)

]
≤f(wt)−ρ‖∇f(wt)‖2,

where St is the set of K devices chosen at iteration t.

We direct the reader to Appendix A.1 for a detailed proof.
The key steps include applying our notion of γ-inexactness
(Definition 1) for each subproblem and using the bounded
dissimilarity assumption, while allowing for only K de-
vices to be active at each round. This last step in particular
introduces ESt , an expectation with respect to the choice
of devices, St, in round t. We note that in our theory, we

require µ̄ > 0, which is a sufficient but not necessary con-
dition for FedProx to converge. Hence, it is possible that
some other µ (not necessarily satisfying µ̄ > 0) can also
enable convergence, as we explore empirically (Section 5).

Theorem 4 uses the dissimilarity in Definition 3 to iden-
tify sufficient decrease of the objective value at each itera-
tion for FedProx. In Appendix A.2, we provide a corol-
lary characterizing the performance with a more common
(though slightly more restrictive) bounded variance assump-
tion. This assumption is commonly employed, e.g., when
analyzing methods such as SGD. We next provide sufficient
(but not necessary) conditions that ensure ρ > 0 in Theorem
4 such that sufficient decrease is attainable after each round.

Remark 5. For ρ in Theorem 4 to be positive, we need
γB < 1 and B√

K
< 1. These conditions help to quantify

the trade-off between dissimilarity (B) and the algorithm
parameters (γ, K).

Finally, we can use the above sufficient decrease to the char-
acterize the rate of convergence to the set of approximate
stationary solutions Ss = {w | E

[
‖∇f(w)‖2

]
≤ ε} under

the bounded dissimilarity assumption, Assumption 1. Note
that these results hold for general non-convex Fk(·).

Theorem 6 (Convergence rate: FedProx). Given some
ε > 0, assume that for B ≥ Bε, µ, γ, and K the assump-
tions of Theorem 4 hold at each iteration of FedProx.
Moreover, f(w0)− f∗ = ∆. Then, after T = O(∆

ρε) itera-

tions of FedProx, we have 1
T

∑T−1
t=0 E

[
‖∇f(wt)‖2

]
≤ ε.

While the results thus far hold for non-convex Fk(·), we
can also characterize the convergence for the special case
of convex loss functions with exact minimization in terms
of local objectives (Corollary 7). A proof is provided in
Appendix A.3.

Corollary 7 (Convergence: Convex case). Let the asser-
tions of Theorem 4 hold. In addition, let Fk (·)’s be convex
and γtk = 0 for any k, t, i.e., all the local problems are
solved exactly, if 1 � B ≤ 0.5

√
K, then we can choose

µ ≈ 6LB2 from which it follows that ρ ≈ 1
24LB2 .

Note that small ε in Assumption 1 translates to larger Bε.
Corollary 7 suggests that, in order to solve the problem
with increasingly higher accuracies using FedProx, one
needs to increase µ appropriately. We empirically verify
that µ > 0 leads to more stable convergence in Section 5.3.
Moreover, in Corollary 7, if we plug in the upper bound
for Bε, under a bounded variance assumption (Corollary
10), the number of required steps to achieve accuracy ε is
O(L∆

ε + L∆σ2

ε2). Our analysis helps to characterize the
performance of FedProx and similar methods when local
functions are dissimilar.

Federated Optimization in Heterogeneous Networks

Remark 8 (Comparison with SGD). We note that
FedProx achieves the same asymptotic convergence guar-
antee as SGD: Under the bounded variance assumption, for
small ε, if we replace Bε with its upper-bound in Corollary
10 and choose µ large enough, the iteration complexity of
FedProx when the subproblems are solved exactly and
Fk(·)’s are convex is O(L∆

ε + L∆σ2

ε2), the same as SGD
(Ghadimi & Lan, 2013).

To provide context for the rate in Theorem 6, we compare
it with SGD in the convex case in Remark 8. In general,
our analysis of FedProx does not yield convergence rates
that improve upon classical distributed SGD (without local
updating)—even though FedProx possibly performs more
work locally at each communication round. In fact, when
data are generated in a non-identically distributed fashion,
it is possible for local updating schemes such as FedProx
to perform worse than distributed SGD. Therefore, our theo-
retical results do not necessarily demonstrate the superiority
of FedProx over distributed SGD; rather, they provide
sufficient (but not necessary) conditions for FedProx to
converge. Our analysis is the first we are aware of to analyze
any federated (i.e., with local-updating schemes and low
device participation) optimization method for Problem (1)
in heterogeneous settings.

Finally, we note that the previous analyses assume no sys-
tems heterogeneity and use the same γ for all devices and it-
erations. However, we can extend them to allow for γ to vary
by device and by iteration (as in Definition 2), which cor-
responds to allowing devices to perform variable amounts
of work as determined by the local systems conditions. We
provide convergence results with variable γ’s below.
Corollary 9 (Convergence: Variable γ’s). Assume the func-
tions Fk are non-convex, L-Lipschitz smooth, and there ex-
istsL− > 0, such that∇2Fk � −L−I, with µ̄ := µ−L− >
0. Suppose that wt is not a stationary solution and the local
functions Fk are B-dissimilar, i.e. B(wt) ≤ B. If µ, K,
and γtk in Algorithm 2 are chosen such that

ρt=

(
1

µ
− γ

tB

µ
−B(1+γt)

√
2

µ̄
√
K

−LB(1+γt)

µ̄µ

−L(1+γt)2B2

2µ̄2
−LB

2(1+γt)2

µ̄2K

(
2
√

2K+2

))
>0,

then at iteration t of Algorithm 2, we have the following
expected decrease in the global objective:

ESt

[
f(wt+1)

]
≤f(wt)−ρt‖∇f(wt)‖2,

where St is the set of K devices chosen at iteration t and
γt=maxk∈St

γtk.

The proof can be easily extended from the proof for The-
orem 4 , noting the fact that Ek[(1 + γtk)‖∇Fk(wt)‖] ≤
(1 + maxk∈St γ

t
k)Ek[‖∇Fk(wt)‖].

5 EXPERIMENTS

We now present empirical results for the generalized
FedProx framework. In Section 5.2, we demonstrate the
improved performance of FedProx tolerating partial solu-
tions in the face of systems heterogeneity. In Section 5.3,
we show the effectiveness of FedProx in the settings with
statistical heterogeneity (regardless of systems heterogene-
ity). We also study the effects of statistical heterogeneity
on convergence (Section 5.3.1) and show how empirical
convergence is related to our theoretical bounded dissimilar-
ity assumption (Assumption 1) (Section 5.3.3). We provide
thorough details of the experimental setup in Section 5.1 and
Appendix C. All code, data, and experiments are publicly
available at: github.com/litian96/FedProx.

5.1 Experimental Details

We evaluate FedProx on diverse tasks, models, and real-
world federated datasets. In order to better characterize
statistical heterogeneity and study its effect on convergence,
we also evaluate on a set of synthetic data, which allows
for more precise manipulation of statistical heterogeneity.
We simulate systems heterogeneity by assigning different
amounts of local work to different devices.

Synthetic data. To generate synthetic data, we follow
a similar setup to that in Shamir et al. (2014), addition-
ally imposing heterogeneity among devices. In particular,
for each device k, we generate samples (Xk, Yk) accord-
ing to the model y = argmax(softmax(Wx + b)), x ∈
R60,W ∈ R10×60, b ∈ R10. We model Wk ∼ N (uk, 1),
bk ∼ N (uk, 1), uk ∼ N (0, α); xk ∼ N (vk,Σ), where the
covariance matrix Σ is diagonal with Σj,j = j−1.2. Each el-
ement in the mean vector vk is drawn fromN (Bk, 1), Bk ∼
N(0, β). Therefore, α controls how much local models dif-
fer from each other and β controls how much the local data
at each device differs from that of other devices. We vary
α, β to generate three heterogeneous distributed datasets,
denoted Synthetic (α, β), as shown in Figure 2. We also
generate one IID dataset by setting the same W, b on all
devices and setting Xk to follow the same distribution. Our
goal is to learn a global W and b. Full details are given in
Appendix C.1.

Real data. We also explore four real datasets; statistics are
summarized in Table 1. These datasets are curated from
prior work in federated learning as well as recent feder-
ated learning benchmarks (McMahan et al., 2017; Caldas
et al., 2018). We study a convex classification problem with
MNIST (LeCun et al., 1998) using multinomial logistic re-
gression. To impose statistical heterogeneity, we distribute
the data among 1,000 devices such that each device has
samples of only two digits and the number of samples per
device follows a power law. We then study a more com-
plex 62-class Federated Extended MNIST (Cohen et al.,

https://github.com/litian96/FedProx

Federated Optimization in Heterogeneous Networks

2017; Caldas et al., 2018) (FEMNIST) dataset using the
same model. For the non-convex setting, we consider a text
sentiment analysis task on tweets from Sentiment140 (Go
et al., 2009) (Sent140) with an LSTM classifier, where each
twitter account corresponds to a device. We also investigate
the task of next-character prediction on the dataset of The
Complete Works of William Shakespeare (McMahan et al.,
2017) (Shakespeare). Each speaking role in the plays is as-
sociated with a different device. Details of datasets, models,
and workloads are provided in Appendix C.1.

Table 1. Statistics of four real federated datasets.

Dataset Devices Samples Samples/device

mean stdev
MNIST 1,000 69,035 69 106
FEMNIST 200 18,345 92 159
Shakespeare 143 517,106 3,616 6,808
Sent140 772 40,783 53 32

Implementation. We implement FedAvg (Algorithm 1)
and FedProx (Algorithm 2) in Tensorflow (Abadi et al.,
2016). In order to draw a fair comparison with FedAvg, we
employ SGD as a local solver for FedProx, and adopt a
slightly different device sampling scheme than that in Algo-
rithms 1 and 2: sampling devices uniformly and then averag-
ing the updates with weights proportional to the number of
local data points (as originally proposed in McMahan et al.
(2017)). While this sampling scheme is not supported by our
analysis, we observe similar relative behavior of FedProx
vs. FedAvg whether or not it is employed. Interestingly,
we also observe that the sampling scheme proposed herein
in fact results in more stable performance for both methods
(see Appendix C.3.4, Figure 12). This suggests an addi-
tional benefit of the proposed framework. Full details are
provided in Appendix C.2.

Hyperparameters & evaluation metrics. For each
dataset, we tune the learning rate on FedAvg (with E=1
and without systems heterogeneity) and use the same learn-
ing rate for all experiments on that dataset. We set the
number of selected devices to be 10 for all experiments on
all datasets. For each comparison, we fix the randomly se-
lected devices, the stragglers, and mini-batch orders across
all runs. We report all metrics based on the global objec-
tive f(w). Note that in our simulations (see Section 5.2
for details), we assume that each communication round cor-
responds to a specific aggregation time stamp (measured
in real-world global wall-clock time)—we therefore report
results in terms of rounds rather than FLOPs or wall-clock
time. See details of the hyper-parameters in Appendix C.2.

5.2 Systems Heterogeneity: Tolerating Partial Work

In order to measure the effect of allowing for partial so-
lutions to be sent to handle systems heterogeneity with
FedProx, we simulate federated settings with varying sys-
tem heterogeneity, as described below.

Systems heterogeneity simulations. We assume that there
exists a global clock during training, and each participating
device determines the amount of local work as a function of
this clock cycle and its systems constraints. This specified
amount of local computation corresponds to some implicit
value γtk for device k at the t-th iteration. In our simulations,
we fix a global number of epochs E, and force some devices
to perform fewer updates than E epochs given their current
systems constraints. In particular, for varying heterogeneous
settings, at each round, we assign x number of epochs (cho-
sen uniformly at random between [1, E]) to 0%, 50%, and
90% of the selected devices, respectively. Settings where 0%
devices perform fewer than E epochs of work correspond to
the environments without systems heterogeneity, while 90%
of the devices sending their partial solutions corresponds to
highly heterogeneous environments. FedAvg will simply
drop these 0%, 50%, and 90% stragglers upon reaching
the global clock cycle, and FedProx will incorporate the
partial updates from these devices.

In Figure 1, we set E to be 20 and study the effects of aggre-
gating partial work from the otherwise dropped devices. The
synthetic dataset here is taken from Synthetic (1,1) in Figure
2. We see that on all the datasets, systems heterogeneity has
negative effects on convergence, and larger heterogeneity
results in worse convergence (FedAvg). Compared with
dropping the more constrained devices (FedAvg), incor-
porating variable amounts of work (FedProx, µ = 0) is
beneficial and leads to more stable and faster convergence.
We also observe that setting µ > 0 in FedProx can further
improve convergence, as we discuss in Section 5.3.

We additionally investigate two less heterogeneous settings.
First, we limit the capability of all the devices by setting E
to be 1 (i.e., all the devices run at most one local epoch), and
impose systems heterogeneity in a similar way. We show
training loss in Figure 9 and testing accuracy in Figure 10
in the appendix. Even in these settings, allowing for partial
work can improve convergence compared with FedAvg.
Second, we explore a setting without any statistical hetero-
geneity using an identically distributed synthetic dataset
(Synthetic IID). In this IID setting, as shown in Figure 5
in Appendix C.3.2, FedAvg is rather robust under device
failure, and tolerating variable amounts of local work may
not cause major improvement. This serves as an additional
motivation to rigorously study the effect of statistical het-
erogeneity on new methods designed for federated learning,
as simply relying on IID data (a setting unlikely to occur in
practice) may not tell a complete story.

Federated Optimization in Heterogeneous Networks

0%
stragglers

50%
stragglers

90%
stragglers

Figure 1. FedProx results in significant convergence improvements relative to FedAvg in heterogeneous networks. We simulate
different levels of systems heterogeneity by forcing 0%, 50%, and 90% devices to be the stragglers (dropped by FedAvg). (1) Comparing
FedAvg and FedProx (µ = 0), we see that allowing for variable amounts of work to be performed can help convergence in the presence
of systems heterogeneity. (2) Comparing FedProx (µ = 0) with FedProx (µ > 0), we show the benefits of our added proximal term.
FedProx with µ > 0 leads to more stable convergence and enables otherwise divergent methods to converge, both in the presence of
systems heterogeneity (50% and 90% stragglers) and without systems heterogeneity (0% stragglers). Note that FedProx with µ = 0 and
without systems heterogeneity (no stragglers) corresponds to FedAvg. We also report testing accuracy in Figure 7, Appendix C.3.2, and
show that FedProx improves the test accuracy on all datasets.

5.3 Statistical Heterogeneity: Proximal Term

To better understand how the proximal term can be benefi-
cial in heterogeneous settings, we first show convergence
can become worse as statistical heterogeneity increases.

5.3.1 Effects of Statistical Heterogeneity

In Figure 2 (the first row), we study how statistical hetero-
geneity affects convergence using four synthetic datasets
without the presence of systems heterogeneity (fixing E
to be 20). From left to right, as data become more hetero-
geneous, convergence becomes worse for FedProx with
µ = 0 (i.e., FedAvg). Though it may slow convergence
for IID data, we see that setting µ > 0 is particularly useful
in heterogeneous settings. This indicates that the modified
subproblem introduced in FedProx can benefit practical
federated settings with varying statistical heterogeneity. For
perfectly IID data, some heuristics such as decreasing µ
if the loss continues to decrease may help avoid the decel-
eration of convergence (see Figure 11 in Appendix C.3.3).
In the sections to follow, we see similar results in our non-
synthetic experiments.

5.3.2 Effects of µ > 0

The key parameters of FedProx that affect performance
are the amount of local work (as parameterized by the num-
ber of local epochs, E), and the proximal term scaled by µ.
Intuitively, large E may cause local models to drift too far

away from the initial starting point, thus leading to potential
divergence (McMahan et al., 2017). Therefore, to handle
the divergence or instability of FedAvg with non-IID data,
it is helpful to tune E carefully. However, E is constrained
by the underlying system’s environments on the devices,
and it is difficult to determine an appropriate uniform E for
all devices. Alternatively, it is beneficial to allow for device-
specific E’s (variable γ’s) and tune a best µ (a parameter
that can be viewed as a re-parameterization of E) to prevent
divergence and improve the stability of methods. A proper
µ can restrict the trajectory of the iterates by constraining
the iterates to be closer to that of the global model, thus
incorporating variable amounts of updates and guaranteeing
convergence (Theorem 6).

We show the effects of the proximal term in FedProx
(µ > 0) in Figure 1. For each experiment, we compare the
results between FedProx with µ = 0 and FedProx with
a best µ (see the next paragraph for discussions on how to
select µ). For all datasets, we observe that the appropriate µ
can increase the stability for unstable methods and can force
divergent methods to converge. This holds both when there
is systems heterogeneity (50% and 90% stragglers) and
there is no systems heterogeneity (0% stragglers). µ > 0
also increases the accuracy in most cases (see Figure 6
and Figure 7 in Appendix C.3.2). In particular, FedProx
improves absolute testing accuracy relative to FedAvg by
22% on average in highly heterogeneous environments (90%
stragglers) (see Figure 7).

Federated Optimization in Heterogeneous Networks

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0
Tr

ai
ni

ng
 L

os
s

Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

1

2

3
Synthetic (0,0)

0 50 100 150 200
Rounds

1

2

3

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

0 50 100 150 200
Rounds

0.0

0.1

0.2

0.3

Va
ria

nc
e

of
 L

oc
al

 G
ra

d. Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

10

20

30

40

Synthetic (0,0)

0 50 100 150 200
Rounds

20

40

60

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

25

50

75

100

Synthetic (1,1)

Figure 2. Effect of data heterogeneity on convergence. We remove the effects of systems heterogeneity by forcing each device to run the
same amount of epochs. In this setting, FedProx with µ = 0 reduces to FedAvg. (1) Top row: We show training loss (see results on
testing accuracy in Appendix C.3, Figure 6) on four synthetic datasets whose statistical heterogeneity increases from left to right. Note
that the method with µ = 0 corresponds to FedAvg. Increasing heterogeneity leads to worse convergence, but setting µ > 0 can help to
combat this. (2) Bottom row: We show the corresponding dissimilarity measurement (variance of gradients) of the four synthetic datasets.
This metric captures statistical heterogeneity and is consistent with training loss — smaller dissimilarity indicates better convergence.

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID
FedAvg (FedProx, =0)
FedProx, dynamic
FedProx, >0

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

Figure 3. Effectiveness of setting µ adaptively based on the current
model performance. We increase µ by 0.1 whenever the loss
increases and decreases it by 0.1 whenever the loss decreases for
5 consecutive rounds. We initialize µ to 1 for Synthetic IID (in
order to be adversarial to our methods), and initialize µ to 0 for
Synthetic (1,1). This simple heuristic works well empirically.

Choosing µ. One natural question is to determine how to
set the penalty constant µ in the proximal term. A large µ
may potentially slow the convergence by forcing the updates
to be close to the starting point, while a small µ may not
make any difference. In all experiments, we tune the best
µ from the limited candidate set {0.001, 0.01, 0.1, 1}. For
the five federated datasets in Figure 1, the best µ values are
1, 1, 1, 0.001, and 0.01, respectively. While automatically
tuning µ is difficult to instantiate directly from our theoret-
ical results, in practice, we note that µ can be adaptively
chosen based on the current performance of the model. For
example, one simple heuristic is to increase µ when seeing
the loss increasing and decreasing µ when seeing the loss
decreasing. In Figure 3, we demonstrate the effectiveness of
this heuristic using two synthetic datasets. Note that we start
from initial µ values that are adversarial to our methods. We
provide full results showing the competitive performance
of this approach in Appendix C.3.3. Future work includes
developing methods to automatically tune this parameter
for heterogeneous datasets, based, e.g., on the theoretical
groundwork provided here.

5.3.3 Dissimilarity Measurement and Divergence

Finally, in Figure 2 (the bottom row), we demonstrate that
our B-local dissimilarity measurement in Definition 3 cap-
tures the heterogeneity of datasets and is therefore an appro-
priate proxy of performance. In particular, we track the vari-
ance of gradients on each device,Ek[‖∇Fk(w)−∇f(w)‖2],
which is lower bounded byBε (see Bounded Variance Equiv-
alence Corollary 10). Empirically, we observe that increas-
ing µ leads to smaller dissimilarity among local functions
Fk, and that the dissimilarity metric is consistent with the
training loss. Therefore, smaller dissimilarity indicates bet-
ter convergence, which can be enforced by setting µ ap-
propriately. We also show the dissimilarity metric on real
federated data in Appendix C.3.2.

6 CONCLUSION
In this work, we have proposed FedProx, an optimization
framework that tackles the systems and statistical hetero-
geneity inherent in federated networks. FedProx allows
for variable amounts of work to be performed locally across
devices, and relies on a proximal term to help stabilize
the method. We provide the convergence guarantees for
FedProx in realistic federated settings under a device dis-
similarity assumption, while also accounting for practical
issues such as stragglers. Our empirical evaluation across a
suite of federated datasets has validated our theoretical anal-
ysis and demonstrated that the FedProx framework can
significantly improve the convergence behavior of federated
learning in realistic heterogeneous networks.

ACKNOWLEDGEMENTS

We thank Sebastian Caldas, Jakub Konečný, Brendan
McMahan, Nathan Srebro, and Jianyu Wang for their help-

Federated Optimization in Heterogeneous Networks

ful discussions. AT and VS are supported in part by DARPA
FA875017C0141, the National Science Foundation grants
IIS1705121 and IIS1838017, an Okawa Grant, a Google
Faculty Award, an Amazon Web Services Award, a JP Mor-
gan A.I. Research Faculty Award, a Carnegie Bosch Institute
Research Award, and the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corpora-
tion (SRC) program sponsored by DARPA. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not nec-
essarily reflect the views of DARPA, the National Science
Foundation, or any other funding agency.

REFERENCES

Tensorflow federated: Machine learning on decentral-
ized data. URL https://www.tensorflow.org/
federated.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M. K., Levenberg, J., Monga, R., Moore, S., Murray,
D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P.,
Wicke, M., Yu, Y., and Zheng, X. Tensorflow: A system
for large-scale machine learning. In Operating Systems
Design and Implementation, 2016.

Allen-Zhu, Z. How to make the gradients small stochas-
tically: Even faster convex and nonconvex sgd. In Ad-
vances in Neural Information Processing Systems, 2018.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C., Konecny, J., Mazzocchi,
S., McMahan, H. B., Overveldt, T. V., Petrou, D., Ram-
age, D., and Roselander, J. Towards federated learning at
scale: system design. In Conference on Machine Learn-
ing and Systems, 2019.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 2010.

Caldas, S., Wu, P., Li, T., Konečnỳ, J., McMahan, H. B.,
Smith, V., and Talwalkar, A. Leaf: A benchmark for fed-
erated settings. arXiv preprint arXiv:1812.01097, 2018.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. Em-
nist: an extension of mnist to handwritten letters. arXiv
preprint arXiv:1702.05373, 2017.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le,
Q. V., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang,
K., and Ng, A. Large scale distributed deep networks.
In Advances in Neural Information Processing Systems,
2012.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. Op-
timal Distributed Online Prediction Using Mini-Batches.
Journal of Machine Learning Research, 2012.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 2013.

Go, A., Bhayani, R., and Huang, L. Twitter sentiment
classification using distant supervision. CS224N Project
Report, Stanford, 2009.

Goldblum, M., Reich, S., Fowl, L., Ni, R., Cherepanova,
V., and Goldstein, T. Unraveling meta-learning: Under-
standing feature representations for few-shot tasks. arXiv
preprint arXiv:2002.06753, 2020.

Hao, Y., Rong, J., and Sen, Y. On the linear speedup analysis
of communication efficient momentum sgd for distributed
non-convex optimization. In International Conference on
Machine Learning, 2019.

Huang, L., Yin, Y., Fu, Z., Zhang, S., Deng, H., and
Liu, D. Loadaboost: Loss-based adaboost federated
machine learning on medical data. arXiv preprint
arXiv:1811.12629, 2018.

Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., and Kim, S.-
L. Communication-efficient on-device machine learning:
Federated distillation and augmentation under non-iid
private data. arXiv preprint arXiv:1811.11479, 2018.

Jiang, P. and Agrawal, G. A linear speedup analysis of dis-
tributed deep learning with sparse and quantized commu-
nication. In Advances in Neural Information Processing
Systems, 2018.

Kaczmarz, S. Approximate solution of systems of linear
equations. International Journal of Control, 1993.

Khodak, M., Balcan, M.-F. F., and Talwalkar, A. S. Adaptive
gradient-based meta-learning methods. In Advances in
Neural Information Processing Systems, 2019.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 1998.

Li, M., Andersen, D. G., Smola, A. J., and Yu, K. Com-
munication efficient distributed machine learning with
the parameter server. In Advances in Neural Information
Processing Systems, 2014a.

Li, M., Zhang, T., Chen, Y., and Smola, A. J. Efficient mini-
batch training for stochastic optimization. In Conference
on Knowledge Discovery and Data Mining, 2014b.

https://www.tensorflow.org/federated
https://www.tensorflow.org/federated

Federated Optimization in Heterogeneous Networks

Li, T., Sahu, A., Talwalkar, A., and Smith, V. Federated
learning: Challenges, methods, and future directions.
arXiv preprint arXiv:1908.07873, 2019.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Feddane: A federated newton-type method.
arXiv preprint arXiv:2001.01920, 2020.

Lin, T., Stich, S. U., and Jaggi, M. Don’t use large mini-
batches, use local sgd. In International Conference on
Learning Representations, 2020.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,
and Arcas, B. A. y. Communication-efficient learning of
deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics, 2017.

Pennington, J., Socher, R., and Manning, C. Glove: Global
vectors for word representation. In Empirical Methods in
Natural Language Processing, 2014.

Reddi, S. J., Konečnỳ, J., Richtárik, P., Póczós, B., and
Smola, A. Aide: Fast and communication efficient dis-
tributed optimization. arXiv preprint arXiv:1608.06879,
2016.

Richtárik, P. and Takáč, M. Distributed coordinate descent
method for learning with big data. Journal of Machine
Learning Research, 2016.

Schmidt, M. and Roux, N. L. Fast convergence of stochastic
gradient descent under a strong growth condition. arXiv
preprint arXiv:1308.6370, 2013.

Shamir, O., Srebro, N., and Zhang, T. Communication-
efficient distributed optimization using an approximate
newton-type method. In International Conference on
Machine Learning, 2014.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S.
Federated multi-task learning. In Advances in Neural
Information Processing Systems, 2017.

Smith, V., Forte, S., Ma, C., Takac, M., Jordan, M. I.,
and Jaggi, M. Cocoa: A general framework for
communication-efficient distributed optimization. Jour-
nal of Machine Learning Research, 2018.

Stich, S. U. Local sgd converges fast and communicates
little. In International Conference on Learning Represen-
tations, 2019.

Strohmer, T. and Vershynin, R. A randomized kaczmarz al-
gorithm with exponential convergence. Journal of Fourier
Analysis and Applications, 2009.

Vaswani, S., Bach, F., and Schmidt, M. Fast and faster
convergence of sgd for over-parameterized models (and
an accelerated perceptron). In International Conference
on Artificial Intelligence and Statistics, 2019.

Wang, J. and Joshi, G. Cooperative sgd: A
unified framework for the design and analysis of
communication-efficient sgd algorithms. arXiv preprint
arXiv:1808.07576, 2018.

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya,
C., He, T., and Chan, K. Adaptive federated learning
in resource constrained edge computing systems. IEEE
Journal on Selected Areas in Communications, 2019.

Woodworth, B. E., Wang, J., Smith, A., McMahan, B.,
and Srebro, N. Graph oracle models, lower bounds, and
gaps for parallel stochastic optimization. In Advances in
Neural Information Processing Systems, 2018.

Yao, Y., Rosasco, L., and Caponnetto, A. On early stopping
in gradient descent learning. Constructive Approximation,
2007.

Yin, D., Pananjady, A., Lam, M., Papailiopoulos, D., Ram-
chandran, K., and Bartlett, P. Gradient diversity: a key
ingredient for scalable distributed learning. In Interna-
tional Conference on Artificial Intelligence and Statistics,
2018.

Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd for
non-convex optimization with faster convergence and
less communication. In AAAI Conference on Artificial
Intelligence, 2018.

Zhang, S., Choromanska, A. E., and LeCun, Y. Deep learn-
ing with elastic averaging sgd. In Advances in Neural
Information Processing Systems, 2015.

Zhang, Y., Duchi, J. C., and Wainwright, M. J.
Communication-efficient algorithms for statistical opti-
mization. Journal of Machine Learning Research, 2013.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

Zhou, F. and Cong, G. On the convergence properties of
a k-step averaging stochastic gradient descent algorithm
for nonconvex optimization. In International Joint Con-
ference on Artificial Intelligence, 2018.

Zhou, P., Yuan, X., Xu, H., Yan, S., and Feng, J. Efficient
meta learning via minibatch proximal update. In Ad-
vances in Neural Information Processing Systems, 2019.

Federated Optimization in Heterogeneous Networks

A COMPLETE PROOFS

A.1 Proof of Theorem 4

Proof. Using our notion of γ-inexactness for each local solver (Definition 1), we can define et+1
k such that:

∇Fk(wt+1
k) + µ(wt+1

k − wt)− et+1
k = 0,

‖et+1
k ‖ ≤ γ‖∇Fk(wt)‖ . (3)

Now let us define w̄t+1 = Ek
[
wt+1
k

]
. Based on this definition, we know

w̄t+1 − wt =
−1

µ
Ek
[
∇Fk(wt+1

k)
]

+
1

µ
Ek
[
et+1
k

]
. (4)

Let us define µ̄ = µ− L− > 0 and ŵt+1
k = arg minw hk(w;wt). Then, due to the µ̄-strong convexity of hk, we have

‖ŵt+1
k − wt+1

k ‖ ≤ γ

µ̄
‖∇Fk(wt)‖. (5)

Note that once again, due to the µ̄-strong convexity of hk, we know that ‖ŵt+1
k − wt‖ ≤ 1

µ̄‖∇Fk(wt)‖. Now we can use
the triangle inequality to get

‖wt+1
k − wt‖ ≤ 1 + γ

µ̄
‖∇Fk(wt)‖. (6)

Therefore,

‖w̄t+1 − wt‖ ≤ Ek
[
‖wt+1

k − wt‖
]
≤ 1 + γ

µ̄
Ek
[
‖∇Fk(wt)‖

]
≤ 1 + γ

µ̄

√
Ek[‖∇Fk(wt)‖2] ≤ B(1 + γ)

µ̄
‖∇f(wt)‖,

where the last inequality is due to the bounded dissimilarity assumption.

Now let us define Mt+1 such that w̄t+1 − wt = −1
µ

(
∇f(wt) + Mt+1

)
, i.e. Mt+1 = Ek

[
∇Fk(wt+1

k)−∇Fk(wt)− et+1
k

]
.

We can bound ‖Mt+1‖:

‖Mt+1‖ ≤ Ek
[
L‖wt+1

k − wtk‖+ ‖et+1
k ‖

]
≤

(
L(1 + γ)

µ̄
+ γ

)
× Ek

[
‖∇Fk(wt)‖

]
≤

(
L(1 + γ)

µ̄
+ γ

)
B‖∇f(wt)‖ , (7)

where the last inequality is also due to bounded dissimilarity assumption. Based on the L-Lipschitz smoothness of f and
Taylor expansion, we have

f(w̄t+1) ≤ f(wt) + 〈∇f(wt), w̄t+1 − wt〉+
L

2
‖w̄t+1 − wt‖2

≤ f(wt)− 1

µ
‖∇f(wt)‖2 − 1

µ
〈∇f(wt),Mt+1〉+

L(1 + γ)2B2

2µ̄2
‖∇f(wt)‖2

≤ f(wt)−
(

1− γB
µ

− LB(1 + γ)

µ̄µ
− L(1 + γ)2B2

2µ̄2

)
× ‖∇f(wt)‖2. (8)

From the above inequality it follows that if we set the penalty parameter µ large enough, we can get a decrease in the
objective value of f(w̄t+1)− f(wt) which is proportional to ‖∇f(wt)‖2. However, this is not the way that the algorithm
works. In the algorithm, we only use K devices that are chosen randomly to approximate w̄t. So, in order to find the
E
[
f(wt+1)

]
, we use local Lipschitz continuity of the function f .

f(wt+1) ≤ f(w̄t+1) + L0‖wt+1 − w̄t+1‖, (9)

where L0 is the local Lipschitz continuity constant of function f and we have

L0 ≤ ‖∇f(wt)‖+ Lmax(‖w̄t+1 − wt‖, ‖wt+1 − wt‖) ≤ ‖∇f(wt)‖+ L(‖w̄t+1 − wt‖+ ‖wt+1 − wt‖).

Therefore, if we take expectation with respect to the choice of devices in round t we need to bound

ESt

[
f(wt+1)

]
≤ f(w̄t+1) +Qt, (10)

Federated Optimization in Heterogeneous Networks

where Qt = ESt

[
L0‖wt+1 − w̄t+1‖

]
. Note that the expectation is taken over the random choice of devices to update.

Qt ≤ ESt

[(
‖∇f(wt)‖+ L(‖w̄t+1 − wt‖+ ‖wt+1 − wt‖)

)
× ‖wt+1 − w̄t+1‖

]
≤
(
‖∇f(wt)‖+ L‖w̄t+1 − wt‖

)
ESt

[
‖wt+1 − w̄t+1‖

]
+ LESt

[
‖wt+1 − wt‖ · ‖wt+1 − w̄t+1‖

]
≤
(
‖∇f(wt)‖+ 2L‖w̄t+1 − wt‖

)
ESt

[
‖wt+1 − w̄t+1‖

]
+ LESt

[
‖wt+1 − w̄t+1‖2

]
(11)

From (7), we have that ‖w̄t+1 − wt‖ ≤ B(1+γ)
µ̄ ‖∇f(wt)‖. Moreover,

ESt

[
‖wt+1 − w̄t+1‖

]
≤
√

ESt [‖wt+1 − w̄t+1‖2] (12)

and

ESt

[
‖wt+1 − w̄t+1‖2

]
≤ 1

K
Ek
[
‖wt+1

k − w̄t+1‖2
]

≤ 2

K
Ek
[
‖wt+1

k − wt‖2
]
, (as w̄t+1 = Ek

[
wt+1
k

]
)

≤ 2

K

(1 + γ)2

µ̄2
Ek
[
‖∇Fk(wt)‖2

]
(from (6))

≤ 2B2

K

(1 + γ)2

µ̄2
‖∇f(wt)‖2, (13)

where the first inequality is a result of K devices being chosen randomly to get wt and the last inequality is due to bounded
dissimilarity assumption. If we replace these bounds in (11) we get

Qt ≤

(
B(1 + γ)

√
2

µ̄
√
K

+
LB2(1 + γ)2

µ̄2K

(
2
√

2K + 2

))
‖∇f(wt)‖2 (14)

Combining (8), (10), (9) and (14) and using the notation α = 1
µ we get

ESt

[
f(wt+1)

]
≤ f(wt)−

(
1

µ
− γB

µ
− B(1 + γ)

√
2

µ̄
√
K

− LB(1 + γ)

µ̄µ

− L(1 + γ)2B2

2µ̄2
− LB2(1 + γ)2

µ̄2K

(
2
√

2K + 2

))
‖∇f(wt)‖2.

A.2 Proof for Bounded Variance

Corollary 10 (Bounded variance equivalence). Let Assumption 1 hold. Then, in the case of bounded variance, i.e.,

Ek
[
‖∇Fk(w)−∇f(w)‖2

]
≤ σ2, for any ε > 0 it follows that Bε ≤

√
1 + σ2

ε .

Proof. We have,

Ek[‖∇Fk(w)−∇f(w)‖2] = Ek[‖∇Fk(w)‖2]− ‖∇f(w)‖2 ≤ σ2

⇒ Ek[‖∇Fk(w)‖2] ≤ σ2 + ‖∇f(w)‖2

⇒ Bε =

√
Ek[‖∇Fk(w)‖2]

‖∇f(w)‖2
≤
√

1 +
σ2

ε
.

With Corollary 10 in place, we can restate the main result in Theorem 4 in terms of the bounded variance assumption.

Federated Optimization in Heterogeneous Networks

Theorem 11 (Non-convex FedProx convergence: Bounded variance). Let the assertions of Theorem 4 hold. In addition,
let the iterate wt be such that ‖∇f(wt)‖2 ≥ ε, and let Ek

[
‖∇Fk(w)−∇f(w)‖2

]
≤ σ2 hold instead of the dissimilarity

condition. If µ, K and γ in Algorithm 2 are chosen such that

ρ=

(
1

µ
−

(
γ

µ
+

(1+γ)
√

2

µ̄
√
K

+
L(1+γ)

µ̄µ

)√
1+

σ2

ε
−
(
L(1+γ)2

2µ̄2
+
L(1+γ)2

µ̄2K

(
2
√

2K+2

))(
1+

σ2

ε

))
>0,

then at iteration t of Algorithm 2, we have the following expected decrease in the global objective:

ESt

[
f(wt+1)

]
≤f(wt)−ρ‖∇f(wt)‖2,

where St is the set of K devices chosen at iteration t.

The proof of Theorem 11 follows from the proof of Theorem 4 by noting the relationship between the bounded variance
assumption and the dissimilarity assumption as portrayed by Corollary 10.

A.3 Proof of Corollary 7

In the convex case, where L− = 0 and µ̄ = µ, if γ = 0, i.e., all subproblems are solved accurately, we can get a decrease
proportional to ‖∇f(wt)‖2 if B <

√
K. In such a case if we assume 1 << B ≤ 0.5

√
K, then we can write

ESt

[
f(wt+1)

]
/ f(wt)− 1

2µ
‖∇f(wt)‖2 +

3LB2

2µ2
‖∇f(wt)‖2 . (15)

In this case, if we choose µ ≈ 6LB2 we get

ESt

[
f(wt+1)

]
/ f(wt)− 1

24LB2
‖∇f(wt)‖2 . (16)

Note that the expectation in (16) is a conditional expectation conditioned on the previous iterate. Taking expectation of both
sides, and telescoping, we have that the number of iterations to at least generate one solution with squared norm of gradient
less than ε is O(LB

2∆
ε).

Federated Optimization in Heterogeneous Networks

B CONNECTIONS TO OTHER SINGLE-MACHINE AND DISTRIBUTED METHODS

Two aspects of the proposed work—the proximal term in FedProx, and the bounded dissimilarity assumption used in our
analysis—have been previously studied in the optimization literature, but with very different motivations. For completeness,
we provide a discussion below on our relation to these prior works.

Proximal term. The proposed modified objective in FedProx shares a connection with elastic averaging SGD
(EASGD) (Zhang et al., 2015), which was proposed as a way to train deep networks in the data center setting, and
uses a similar proximal term in its objective. While the intuition is similar to EASGD (this term helps to prevent large
deviations on each device/machine), EASGD employs a more complex moving average to update parameters, is limited to
using SGD as a local solver, and has only been analyzed for simple quadratic problems. The proximal term we introduce
has also been explored in previous optimization literature with different purposes, such as Allen-Zhu (2018), to speed up
(mini-batch) SGD training on a single machine, and in Li et al. (2014b) for efficient SGD training both in a single machine
and distributed settings. However, the analysis in Li et al. (2014b) is limited to a single machine setting with different
assumptions (e.g., IID data and solving the subproblem exactly at each round).

In addition, DANE (Shamir et al., 2014) and AIDE (Reddi et al., 2016), distributed methods designed for the data center
setting, propose a similar proximal term in the local objective function, but also augment this with an additional gradient
correction term. Both methods assume that all devices participate at each communication round, which is impractical
in federated settings. Indeed, due to the inexact estimation of full gradients (i.e., ∇φ(w(t−1)) in Shamir et al. (2014, Eq
(13))) with device subsampling schemes and the staleness of the gradient correction term (Shamir et al., 2014, Eq (13)),
these methods are not directly applicable to our setting. Regardless of this, we explore a variant of such an approach in
federated settings and see that the gradient direction term does not help in this scenario—performing uniformly worse than
the proposed FedProx framework for heterogeneous datasets, despite the extra computation required (see Figure 4). We
refer interested readers to Li et al. (2020) for more detailed discussions.

Finally, we note that there is an interesting connection between meta-learning methods and federated optimization meth-
ods (Khodak et al., 2019), and similar proximal terms have recently been investigated in the context of meta-learning for
improved performance on few-shot learning tasks (Goldblum et al., 2020; Zhou et al., 2019).

0 25 50 75 100 125 150 175 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

=0, E=20, FedProx
=1, E=20, FedProx
=0, E=20, FedDANE
=1, E=20, FedDANE

0 25 50 75 100 125 150 175 200
Rounds

0

5

10

15

20

25

30
Synthetic (0,0)

0 25 50 75 100 125 150 175 200
Rounds

0

5

10

15

20

25

30

35

40
Synthetic (0.5,0.5)

0 25 50 75 100 125 150 175 200
Rounds

0

20

40

60

80

100

Synthetic (1,1)

0 25 50 75 100 125 150 175 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

=0, E=20, c=10, FedProx
=0, E=20, c=10, FedDANE
=0, E=20, c=20, FedDANE
=0, E=20, c=30, FedDANE

0 25 50 75 100 125 150 175 200
Rounds

0

5

10

15

20

25

30
Synthetic (0,0)

0 25 50 75 100 125 150 175 200
Rounds

0

5

10

15

20

25

30

35

40
Synthetic (0.5,0.5)

0 25 50 75 100 125 150 175 200
Rounds

0

20

40

60

80

100

Synthetic (1,1)

Figure 4. DANE and AIDE (Shamir et al., 2014; Reddi et al., 2016) are methods proposed in the data center setting that use a similar
proximal term as FedProx as well as an additional gradient correction term. We modify DANE to apply to federated settings by allowing
for local updating and low participation of devices. We show the convergence of this modified method, which we call FedDane, on
synthetic datasets. In the top figures, we subsample 10 devices out of 30 on all datasets for both FedProx and FedDane. While
FedDane performs similarly as FedProx on the IID data, it suffers from poor convergence on the non-IID datasets. In the bottom
figures, we show the results of FedDane when we increase the number of selected devices in order to narrow the gap between our
estimated full gradient and the real full gradient (in the gradient correction term). Note that communicating with all (or most of the)
devices is already unrealistic in practical settings. We observe that although sampling more devices per round might help to some extent,
FedDane is still unstable and tends to diverge. This serves as additional motivation for the specific subproblem we propose in FedProx.

Federated Optimization in Heterogeneous Networks

Bounded dissimilarity assumption. The bounded dissimilarity assumption we discuss in Assumption 1 has appeared in
different forms, for example in Schmidt & Roux (2013); Yin et al. (2018); Vaswani et al. (2019). In Yin et al. (2018), the
bounded similarity assumption is used in the context of asserting gradient diversity and quantifying the benefit in terms of
scaling of the mean square error for mini-batch SGD for IID data. In Schmidt & Roux (2013); Vaswani et al. (2019), the
authors use a similar assumption, called strong growth condition, which is a stronger version of Assumption 1 with ε = 0.
They prove that some interesting practical problems satisfy such a condition. They also use this assumption to prove optimal
and better convergence rates for SGD with constant step-sizes. Note that this is different from our approach as the algorithm
that we are analyzing is not SGD, and our analysis is different in spite of the similarity in the assumptions.

Federated Optimization in Heterogeneous Networks

C SIMULATION DETAILS AND ADDITIONAL EXPERIMENTS

C.1 Datasets and Models

Here we provide full details on the datasets and models used in our experiments. We curate a diverse set of non-synthetic
datasets, including those used in prior work on federated learning (McMahan et al., 2017), and some proposed in LEAF, a
benchmark for federated settings (Caldas et al., 2018). We also create synthetic data to directly test the effect of heterogeneity
on convergence, as in Section 5.1.

• Synthetic: We set (α, β)=(0,0), (0.5,0.5) and (1,1) respectively to generate three non-identical distributed datasets (Figure
2). In the IID data (Figure 5), we set the same W, b ∼ N (0, 1) on all devices and Xk to follow the same distribution
N (v,Σ) where each element in the mean vector v is zero and Σ is diagonal with Σj,j = j−1.2. For all synthetic datasets,
there are 30 devices in total and the number of samples on each device follows a power law.

• MNIST: We study image classification of handwritten digits 0-9 in MNIST (LeCun et al., 1998) using multinomial
logistic regression. To simulate a heterogeneous setting, we distribute the data among 1000 devices such that each device
has samples of only 2 digits and the number of samples per device follows a power law. The input of the model is a
flattened 784-dimensional (28 × 28) image, and the output is a class label between 0 and 9.

• FEMNIST: We study an image classification problem on the 62-class EMNIST dataset (Cohen et al., 2017) using
multinomial logistic regression. To generate heterogeneous data partitions, we subsample 10 lower case characters (‘a’-‘j’)
from EMNIST and distribute only 5 classes to each device. We call this federated version of EMNIST FEMNIST. There
are 200 devices in total. The input of the model is a flattened 784-dimensional (28 × 28) image, and the output is a class
label between 0 and 9.

• Shakespeare: This is a dataset built from The Complete Works of William Shakespeare (McMahan et al., 2017). Each
speaking role in a play represents a different device. We use a two-layer LSTM classifier containing 100 hidden units
with an 8D embedding layer. The task is next-character prediction, and there are 80 classes of characters in total. The
model takes as input a sequence of 80 characters, embeds each of the characters into a learned 8-dimensional space and
outputs one character per training sample after 2 LSTM layers and a densely-connected layer.

• Sent140: In non-convex settings, we consider a text sentiment analysis task on tweets from Sentiment140 (Go et al.,
2009) (Sent140) with a two layer LSTM binary classifier containing 256 hidden units with pretrained 300D GloVe
embedding (Pennington et al., 2014). Each twitter account corresponds to a device. The model takes as input a sequence
of 25 characters, embeds each of the characters into a 300-dimensional space by looking up Glove and outputs one
character per training sample after 2 LSTM layers and a densely-connected layer.

C.2 Implementation Details

(Implementation) In order to draw a fair comparison with FedAvg, we use SGD as a local solver for FedProx, and adopt
a slightly different device sampling scheme than that in Algorithms 1 and 2: sampling devices uniformly and averaging
updates with weights proportional to the number of local data points (as originally proposed in McMahan et al. (2017)).
While this sampling scheme is not supported by our analysis, we observe similar relative behavior of FedProx vs. FedAvg
whether or not it is employed (Figure 12). Interestingly, we also observe that the sampling scheme proposed herein results in
more stable performance for both methods. This suggests an added benefit of the proposed framework.

(Machines) We simulate the federated learning setup (1 server and N devices) on a commodity machine with 2 Intel R©

Xeon R© E5-2650 v4 CPUs and 8 NVidia R© 1080Ti GPUs.

(Hyperparameters) We randomly split the data on each local device into an 80% training set and a 20% testing set. We
fix the number of selected devices per round to be 10 for all experiments on all datasets. We also do a grid search on the
learning rate based on FedAvg. We do not decay the learning rate through all rounds. For all synthetic data experiments,
the learning rate is 0.01. For MNIST, FEMNIST, Shakespeare, and Sent140, we use the learning rates of 0.03, 0.003, 0.8,
and 0.3. We use a batch size of 10 for all experiments.

(Libraries) All code is implemented in Tensorflow Version 1.10.1 (Abadi et al., 2016). Please see
github.com/litian96/FedProx for full details.

https://github.com/litian96/FedProx

Federated Optimization in Heterogeneous Networks

C.3 Additional Experiments and Full Results

C.3.1 Effects of Systems Heterogeneity on IID Data

We show the effects of allowing for partial work on a perfect IID synthetic data (Synthetic IID).

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic IID (0% stragglers)

FedAvg
FedProx (=0)

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Synthetic IID (10% stragglers)

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Synthetic IID (50% stragglers)

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Synthetic IID (90% stragglers)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8

Te
st

in
g

Ac
cu

ra
cy

Synthetic IID (0% stragglers)

FedAvg
FedProx (=0)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8
Synthetic IID (10% stragglers)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8
Synthetic IID (50% stragglers)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8

Synthetic IID (90% stragglers)

Figure 5. FedAvg is robust to device failure with IID data. In this case, whether incorporating partial solutions from the stragglers would
not have much effect on convergence.

C.3.2 Complete Results

In Figure 6, we present testing accuracy on four synthetic datasets associated with the experiments shown in Figure 2.

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

1

2

3
Synthetic (0,0)

0 50 100 150 200
Rounds

1

2

3

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8

Te
st

in
g

Ac
cu

ra
cy

Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

0.8
Synthetic (0,0)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8
Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

0.2

0.4

0.6

Synthetic (1,1)

0 50 100 150 200
Rounds

0.0

0.1

0.2

0.3

Va
ria

nc
e

of
 L

oc
al

 G
ra

d. Synthetic-IID

FedAvg (FedProx, =0)
FedProx, >0

0 50 100 150 200
Rounds

10

20

30

40

Synthetic (0,0)

0 50 100 150 200
Rounds

20

40

60

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

25

50

75

100

Synthetic (1,1)

Figure 6. Training loss, test accuracy, and dissimilarity measurement for experiments described in Fig. 2.

Federated Optimization in Heterogeneous Networks

In Figure 7, we show the testing accuracy associated with the experiments described in Figure 1. We calculate the accuracy
improvement numbers by identifying the accuracies of FedProx and FedAvg when they have either converged, started
to diverge, or run sufficient number of rounds (e.g., 1000 rounds), whichever comes earlier. We consider the methods to
converge when the loss difference in two consecutive rounds |ft − ft−1| is smaller than 0.0001, and consider the methods to
diverge when we see ft − ft−10 greater than 1.

0%
stragglers

50%
stragglers

90%
stragglers

Figure 7. The testing accuracy of the experiments in Figure 1. FedProx achieves on average 22% improvement in terms of testing
accuracy in highly heterogeneous settings (90% stragglers).

In Figure 8, we report the dissimilarity measurement on five datasets (including four real datasets) described in Figure 1.
Again, the dissimilarity characterization is consistent with the real performance (the loss).

0 50 100 150 200
Rounds

50

100

150

Va
ria

nc
e

of
 L

oc
al

 G
ra

d. Synthetic

FedAvg (FedProx, =0)
FedProx (>0)

0 100 200 300 400
Rounds

10

20

30
MNIST

0 50 100 150 200
Rounds

50

100

150

200

FEMNIST

0 5 10 15 20
Rounds

0

2

4

6

Shakespeare

0 200 400 600 800
Rounds

0

10

20

30
Sent140

Figure 8. The dissimilarity metric on five datasets in Figure 1. We remove systems heterogeneity by only considering the case when no
participating devices drop out of the network. Our dissimilarity assumption captures the data heterogeneity and is consistent with practical
performance (see training loss in Figure 1).

Federated Optimization in Heterogeneous Networks

In Figure 9 and Figure 10, we show the effects (both loss and testing accuracy) of allowing for partial solutions under
systems heterogeneity when E = 1 (i.e., the statistical heterogeneity is less likely to affect convergence negatively).

0%
stragglers

50%
stragglers

90%
stragglers

Figure 9. The loss of FedAvg and FedProx under various systems heterogeneity settings when each device can run at most 1 epoch at
each iteration (E = 1). Since local updates will not deviate too much from the global model compared with the deviation under large E’s,
it is less likely that the statistical heterogeneity will affect convergence negatively. Tolerating for partial solutions to be sent to the central
server (FedProx, µ = 0) still performs better than dropping the stragglers (FedAvg).

0%
stragglers

50%
stragglers

90%
stragglers

Figure 10. The testing accuracy of the experiments shown in Figure 9.

C.3.3 Adaptively setting µ

One of the key parameters of FedProx is µ. We provide the complete results of a simple heuristic of adaptively setting µ on
four synthetic datasets in Figure 11. For the IID dataset (Synthetic-IID), µ starts from 1, and for the other non-IID datasets,
µ starts from 0. Such initialization is adversarial to our methods. We decrease µ by 0.1 when the loss continues to decrease
for 5 rounds and increase µ by 0.1 when we see the loss increase. This heuristic allows for competitive performance. It
could also alleviate the potential issue that µ > 0 might slow down convergence on IID data, which rarely occurs in real
federated settings.

Federated Optimization in Heterogeneous Networks

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

FedAvg (FedProx, =0)
FedProx, dynamic
FedProx, >0

0 50 100 150 200
Rounds

1

2

3
Synthetic (0,0)

0 50 100 150 200
Rounds

1

2

3

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

Figure 11. Full results of choosing µ adaptively on all the synthetic datasets. We increase µ by 0.1 whenever the loss increases and
decreases it by 0.1 whenever the loss decreases for 5 consecutive rounds. We initialize µ to 1 for the IID data (Synthetic-IID) (in order to
be adversarial to our methods), and initialize it to 0 for the other three non-IID datasets. We observe that this simple heuristic works well
in practice.

C.3.4 Comparing Two Device Sampling Schemes

We show the training loss, testing accuracy, and dissimilarity measurement of FedProx on a set of synthetic data using two
different device sampling schemes in Figure 12. Since our goal is to compare these two sampling schemes, we let each
device perform the uniform amount of work (E = 20) for both methods.

0 50 100 150 200
Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

0 50 100 150 200
Rounds

1

2

3
Synthetic (0,0)

0 50 100 150 200
Rounds

1

2

3

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

1

2

3

Synthetic (1,1)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8

Te
st

in
g

Ac
cu

ra
cy

Synthetic-IID

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

0.8
Synthetic (0,0)

0 50 100 150 200
Rounds

0.2

0.4

0.6

0.8
Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

0.2

0.4

0.6

Synthetic (1,1)

0 50 100 150 200
Rounds

0.0

0.1

0.2

0.3

Va
ria

nc
e

of
 L

oc
al

 G
ra

d. Synthetic-IID

0 50 100 150 200
Rounds

20

40

Synthetic (0,0)

0 50 100 150 200
Rounds

20

40

60

Synthetic (0.5,0.5)

0 50 100 150 200
Rounds

50

100

Synthetic (1,1)

=0, E=20, uniform sampling+weighted average
=1, E=20, uniform sampling+weighted average

=0, E=20, weighted sampling+simple average
=1, E=20, weighted sampling+simple average

Figure 12. Differences between two sampling schemes in terms of training loss, testing accuracy, and dissimilarity measurement. Sampling
devices with a probability proportional to the number of local data points and then simply averaging local models performs slightly better
than uniformly sampling devices and averaging the local models with weights proportional to the number of local data points. Under
either sampling scheme, the settings with µ = 1 demonstrate more stable performance than settings with µ = 0.

