
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Trained Quantization Thresholds (TQT)

A COST OF AFFINE QUANTIZER

A.1 Cross-terms due to zero-points

Consider two real numbers r1 and r2 and their product
r3 = r1 · r2. Using the affine mapping from (2) to represent
this, we get:

s3(q3 − z3) = s1(q1 − z1) · s2(q2 − z2), (12)

which can be expressed as

q3 = z3 +
s1s2
s3

[
q1q2 − q1z2 − q2z1 + z1z2

]
. (13)

The cross-terms in (13) add complexity and often require
special handling to remain efficient. While the added cost
can be amortized over several accumulations of a matrix
multiplication or convolution operation, it would still require
optimizations8, both algorithmic and kernel-level.

By eliminating zero-points, the cross-terms vanish and the
operation simplifies to:

q3 =
s1s2
s3

[
q1q2

]
. (14)

A.2 Real-valued scale-factors

With positive real scale-factors, the constant multiplier
s1s2/s3 in (14), empirically found to be in the interval
(0, 1) (Jacob et al., 2017), can be expressed in the normal-
ized form 2−ns0 where n is a non-negative integer and s0
is in the interval [0.5, 1). In other words, the accumulator
(storing q1q2) needs to be scaled by a fixed-point multi-
plier that approximates s0 and right-shifted by n bits (with
round-to-nearest):

q3 = 2−ns0
[
q1q2

]
. (15)

However, by constraining scale-factors s1, s2, s3 to strict
power-of-2, the scaling operation reduces to a rather simple
bit-shift (with round-to-nearest):

q3 = 2−f
[
q1q2

]
. (16)

B LOG THRESHOLD TRAINING

Initially, it may seem that with the definition of a gradi-
ent with respect to the raw threshold, backpropagation and
gradient descent could be immediately used to train it. How-
ever, just as training weights in a vanilla neural network
requires care in the choice of optimizer and learning rate,
here too care must be taken to ensure training stability and
convergence. There are three main properties we would
like our training procedure to satisfy: numerical stability,
scale invariance, and convergence. We discuss each of these
issues and the engineering tweaks used to solve them here.

8Some of which are covered in (Jacob et al., 2016a; 2017;
Krishnamoorthi, 2018).

B.1 Numerical Stability

One obvious problem with training raw thresholds t ∈ R+

is that gradient updates could potentially bump a threshold
to a negative value, causing log2 t and therefore scale-factor
s to diverge. If this happens even once, the network as
a whole will break. An easy solution is to train log2 t as
opposed to t itself, since its domain is log2 t ∈ R. Using log
thresholds is convenient because it already appears in the
expression for s(t). However, the most important benefit
is described in Section B.2, where the log representation
makes ensuring scale invariance very easy.

B.2 Scale Invariance

For a given input distribution we prefer that the threshold
gradients have similar magnitudes regardless of the position
of the threshold itself. This threshold scale invariance is
useful for making sure training is not too slow when the
thresholds are far from their optimal values. Similarly, the
properties of our threshold gradients should not depend on
the scale of the input distribution. This input scale invari-
ance is important because it ensures that quantized training
behaves the same way for the different weights and activa-
tions in the network, even if the variance of their distribu-
tions vary over many orders of magnitude.

Unfortunately, neither of these scale invariances hold. Far
from improving, Figure 7 shows that in moving from raw
threshold training (left) to log threshold training (middle),
both scale invariance properties of the threshold gradients
actually degrade.

−10 −5 0 5 10
−106
−103
−100

0

100
103
106

Raw Grad ∇tL
σ = 10−2

σ = 10−1

σ = 10+0

σ = 10+1

σ = 10+2

−10 −5 0 5 10
log2 t

−106
−103
−100

0

100
103
106

Log Grad ∇log2 tL

−10 −5 0 5 10
−106
−103
−100

0

100
103
106

Desired Log Grad ∇log2 tL

Figure 7. Gradients of L2-loss with respect to raw threshold
(left) or log threshold (middle, right) versus log threshold, for
Gaussian(σ) inputs of varying σ. Desired (normed) gradients for
the log threshold case are shown on the right.

Threshold scale invariance: Updates to the log threshold
would be threshold scale invariant if the gradients on both
sides of the negative-to-positive jump were flat, as seen in
the right plot of Figure 7. However, this is not the case for
log threshold gradients (center plot of Figure 7). On the
left-of-jump side, as log2 t decreases, gradients of (hence

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Trained Quantization Thresholds (TQT)

−7
−6
−5
−4
−3
−2
−1

0
1

lo
g 2
t

b = 4, σ = 10−2, rg = 1

0 1000 2000
−7
−6
−5
−4
−3
−2
−1

0
1

lo
g 2
t

b = 8, σ = 10−2, rg = 244

−4

−3

−2

−1

0

1
b = 4, σ = 10−1, rg = 5

0 1000 2000
−3

−2

−1

0

1
b = 8, σ = 10−1, rg = 16

−1

0

1

2

3
b = 4, σ = 100, rg = 13

0 1000 2000
Training Steps

−1

0

1

2

3

4
b = 8, σ = 100, rg = 78

−1
0
1
2
3
4
5
6
7
b = 4, σ = 101, rg = 1

0 1000 2000
−1

0
1
2
3
4
5
6
7
b = 8, σ = 101, rg = 173

−1
0
1
2
3
4
5
6
7
8
9

10
b = 4, σ = 102, rg = 4

0 1000 2000
−1

0
1
2
3
4
5
6
7
8
9

10
11
b = 8, σ = 102, rg = 24

Raw Grad - SGD

Log Grad - SGD

Norm Log Grad - SGD

Log Grad - Adam

Figure 8. Raw, log and normed log threshold training on L2-loss for 2000 steps with learning rate α = 0.1. We compare different
bit-widths - 4 (top) and 8 (bottom), and Gaussian(σ) inputs of varying σ - smallest (left) to largest (right). The empirical value of rg is
estimated from the last few hundred steps of Adam.

updates to) log2 t get exponentially smaller, meaning it will
converge very slowly to lower optimal values (see the log
grad SGD case in the left plots of Figure 8). Similarly,
on the right-of-jump side, as log2 t increases, updates to
log2 t increase exponentially, meaning it will converge very
quickly and possibly unstably to higher optimal values (see
the log grad SGD case in the right plots of Figure 8). In the
raw threshold domain, we would like gradients of (hence
updates to) t to scale proportional to t. This is also not the
case for the left-of-jump side of raw threshold gradients (left
plot of Figure 7). In other words, the raw and log threshold
gradients are swapped from what we would prefer on the
left-of-jump sides.

Input scale invariance: Updates to the log threshold are
input scale invariant if the gradients are threshold scale
invariant and x-axis shifted copies for varying input scales,
as seen in the right plot of Figure 7. However, this is not
the case for log threshold gradients (center plot of Figure 7)
as the gradient magnitudes depend on the scale of the input.
In fact when accounting for the threshold scale dependence,
the gradient magnitudes depend quadratically on the scale
of the input.

Normed gradients: While neither raw or log threshold
gradients have the desired properties of scale invariance,
only minimal modifications to our log threshold gradient
is needed to get these properties to hold (see desired log
threshold gradient on the right of Figure 7). In particular, if
we normalize the gradient gi by its bias-corrected moving
average variance, we achieve a close approximation of the
desired gradients g̃i, shown in (17). To improve stability,
we can encapsulate (17) in a clipping function to guarantee
no large gradients, shown in (18).

Yet another desired property highlighted in Figure 7 is that
near the jump, the ratio of the gradient magnitudes to either
side of the jump is to be preserved between the original and

normed gradient cases. This is important for the conver-
gence dynamics of the system discussed in Section B.3. In
dynamic situations, the gradient normalization solution (17)
approximates this feature as well.

vi ← βvi−1 + (1− β)g2i

v̂i ←
vi

1− βi

g̃i ←
gi√
v̂i + ε

(17)

g̃i ← tanh

(
gi√
v̂i + ε

)
(18)

Figure 8 shows training curves on the toy L2 quantization
error problem across various bit-widths, input scales, and
optimization algorithms. Raw gradient with SGD fails for
large σ and converges too slowly for small σ, as we would
expect from Sections B.1 and B.2. Additionally, they have
b, σ-dependent stability once converged. Switching from
raw to log threshold gradients, we see that log gradient with
Adam performs well, yet log gradient with SGD performs
poorly, with weak convergence rates for small σ and di-
vergence for large σ. However, after performing gradient
normalization (18), normed log gradient with SGD performs
well, demonstrating that lack of proper gradient norming is
the main issue preventing convergence using standard gradi-
ent descent. Besides the differing convergence rates, another
characteristic becomes immediately obvious - stability after
convergence. For example, raw gradient method tends to os-
cillate wildly between multiple integer-level log thresholds,
whereas normed log gradient method is better behaved and
tends to stay within a single integer log threshold band.

Adam optimizer: While gradient norming (18) led to good
results with SGD, we note that Adam without this gradient
norming also works quite well. It is easy to see why this is -

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Trained Quantization Thresholds (TQT)

Adam has built-in gradient norming (Kingma & Ba, 2014).
Thus we can avoid redefining the gradients by simply using
an optimizer that includes adaptive gradients, such as Adam
or RMSprop (Hinton et al., 2012). While RMSprop appears
to superficially resemble (18) more closely than Adam, we
suspect Adam has better behavior in the absence of gradient
clipping due to its use of moments to smooth the gradients.
To use Adam safely, we derive rough bounds on the learning
rate and momentum parameters to ensure the oscillations
seen in Figure 8 for log gradient with Adam do not exceed
a single integer bin. This is important because if they move
across bins often, the network may have more trouble adapt-
ing to the changing distributions from a given quantized
layer, in an effect that may be similar to the motivation for
batch normalization (Ioffe & Szegedy, 2015).

B.3 Convergence

One primary cause of the sharp gradient jumps seen in Fig-
ure 7 is our insistence on power-of-2 scaling. In the forward
pass, features downstream from the quantized layer are
completely unaware of intermediate non-power-of-2 scale-
factors so there are sharp jumps at integral log2 t, similar to
what might be observed when using the STE for traditional
quantization. The net effect is a bang-bang like operation.

In more detail, for a given input distribution there is some
critical integer threshold log2 t

∗ before which the gradients
are negative (causing positive threshold updates) and after
which the gradients are positive. This negative feedback
will force the threshold to oscillate around log2 t

∗. The
gradients gl and gh on either side of log2 t

∗ tend to be fairly
constant within a distance 1 of log2 t

∗ due to power-of-2
scaling. For simplicity, assume |gl| > |gh| so that the ratio
rg = −gl/gh > 1. As rg grows, we would expect the
following behavior: the threshold stays in the higher bin for
a while, slowly decaying until reaching the lower bin, at
which point a large |gl| causes it to jump back to the higher
bin, where it begins a slow decay again. This behavior can
be observed in the left plots of Figure 8 and are shown in
more detail in Figure 9.

If normed log gradients and SGD are used together, the
dynamics are fairly simple. Let log2 ti ← log2 ti−1 − αg̃i
be the SGD update on normed log gradient g̃i (18). Then
because |g̃i| ≤ 1 by design, a given jump in the sawtooth-
like pattern will have magnitude bounded by learning rate
α. Thus by selecting α � 1, we can ensure convergence
within a threshold bin.

However in our experiments, we used the implementation-
ally simpler approach of unnormed log gradients with the
Adam optimizer. While simpler to implement, the analysis
is more complicated due to the second-order nature of the
optimizer. Adam has three key hyperparameters: α, β1, β2
and operates by keeping track of a moving mean of gradi-

ents mi ← β1mi−1 + (1 − β1)gi and a moving variance
vi ← β1vi−1 + (1 − β1)g2i before applying update rule
θi ← θi−1 − α · mi/

√
vi. In practice, bias correction is

used to get m̂i, v̂i, but when considering settling dynamics
for i → ∞, this bias correction is insignificant. Typical
values are α ≈ 10−3, β1 ≈ 0.9, β2 ≈ 0.999.

In Appendix C, a detailed analysis of convergence for Adam
is carried out. From this analysis a simple set of guidelines
emerge. First, the learning rate is set to guarantee α <
0.1/
√
p. Next, we ensure 1/e < β1 < 1 to satisfy the

limits of our analysis. Finally, we make sure rg ≈ p �
1/(1−β2)⇒ 1−β2 � 1/p. These results are summarized
in Table 4. For simplicity, we use α = 0.01, β1 = 0.9, β2 =
0.999 for all of our training.

Table 4. Guidelines for log threshold training with Adam, assum-
ing b = 2b−1 − 1 for signed data.

Bit-width b 4 8

α ≤ 0.1√
2b−1−1

≤ 0.035 ≤ 0.009

β1 ≥ 1/e ≥ 1/e ≥ 1/e

β2 ≥ 1− 0.1
2b−1−1 ≥ 0.99 ≥ 0.999

Steps ≈ α−1 + (1− β2)−1 ≈ 100 ≈ 1000

C ANALYSIS OF ADAM CONVERGENCE

Let T be the period of oscillations at convergence. If we
assume T � 1/(1 − β2), then we can treat the moving
variance estimate as if it is a constant vi = ((T − 1)g2h +
g2l)/T ≈ g2l (1/r2g + 1/T). However, we cannot make the
same assumption for the relationship between T and β1.
Instead, based on our earlier discussion in Section B.3 of
the bang-bang behavior, we assume that a gradient gl is seen
for a single step, then gh is seen for T − 1 steps. Then for a
given cycle of this behavior,mi = βi1(β1m0+(1−β1)gl)+
(1 − βi1)gh, where m0 is the steady-state minimum mean
during the cycle. Because this is steady-state, we can solve
for m0 and mi:

mi = βi1(β1m0 + (1− β1)gl) + (1− βi1)gh

mT = m0 = βT1 (β1m0 + (1− β1)gl) + (1− βT1)gh

m0 =
βT1 (1− β1)− (1− βT1)/rg

1− βT+1
1

gl (19)

mi

gl
= βi+1

1

βT1 (1− β1)− (1− βT1)/rg

1− βT+1
1

+ βi1(1− β1 +
1

rg
)− 1

rg
(20)

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Trained Quantization Thresholds (TQT)

−5.0

−4.5

lo
g 2
t

b = 8, σ = 10−2, rg = 272

log2 t for Log Grad - Adam

1500 1600 1700 1800 1900 2000

−10−3
−10−4
−10−5
−10−6

0
10−6
10−5

∇
lo

g
2
tL

Loss Gradient

−1.2

−1.0

−0.8

b = 8, σ = 10−1, rg = 18

1800 1850 1900 1950 2000
Training Steps

−10−2
−10−3
−10−4

0
10−4
10−3

2.00

2.02

b = 8, σ = 100, rg = 52

1800 1850 1900 1950 2000
−101
−100
−10−1
−10−2

0
10−2
10−1

Figure 9. Close up of Figure 8 for the Adam-trained log threshold gradient on a few select settings.

Adam updates look like θi ← θi−1 − α ·mi/
√
vi or θi ←

θ0−α
∑i
j=0mj/

√
vj . We can solve for T by finding when

θT = θ0 or
∑T
i=0mi/

√
vi = 0. As an intermediate step,

we find:

∆tθ =

t∑
i=0

mi√
vi

=

t∑
i=0

βi1

(
β1

βT
1 (1−β1)−(1−βT

1)/rg

1−βT+1
1

+ 1− β1 + 1
rg

)
− 1

rg√
1/r2g + 1/T

=
1√

1
r2g

+ 1
T

[
1− βt+1

1

1− β1

(
β1
βT1 (1− β1)− (1− βT1)/rg

1− βT+1
1

+1− β1 +
1

rg

)
− t+ 1

rg

]
(21)

Now, we set ∆T θ = 0:

0 =
1√

1
r2g

+ 1
T

[
1− βT+1

1

1− β1

(
β1
βT1 (1− β1)− (1− βT1)/rg

1− βT+1
1

+1− β1 +
1

rg

)
− T + 1

rg

]
= βT+1

1 − β1(1− βT1)

rg(1− β1)
+ 1− βT+1

1 +
1− βT+1

1

rg(1− β1)
− T + 1

rg

T = rg (22)

The worst case happens when rg is large, so if we substitute
T ← rg and assume rg � 1, we get:

∆tθ ≈
√
rg

[
1− βt+1

1

1− β1

(
β1
β
rg
1 (1− β1)− (1− βrg1)/rg

1− βrg+1
1

+1− β1 +
1

rg

)
− t+ 1

rg

]
(23)

=
√
rg

[
1− βt+1

1

1− β1
c1 −

t+ 1

rg

]
(24)

where we replace the large expression in (23) with c1 in
(24). We now solve for the critical point of ∆tθ to determine
tmax = argmaxt∆tθ.

0 =
d

dt
∆tθ

=
√
rg

[
ln(β−11)βtmax+1

1

1− β1
c1 −

1

rg

]
βtmax+1
1 =

1

ln(β−11)

1− β1
rg · c1

(25)

=
1

ln(β−11)

1− βrg+1
1

1 + rg

tmax = logβ1

(
1

ln(β−11)

1− βrg+1
1

1 + rg

)
− 1 (26)

Plugging (25) and (26) into (24),

∆tmax
θ ≈ √rg

[
c1

1− β1
− 1

rg ln(β−11)

− 1

rg
logβ1

(
1

ln(β−11)

1− βrg+1
1

1 + rg

)]
(27)

To simplify this expression, note that β1 < 1 and rg � 1 so
1− βrg1 ≈ 1. Then c1/(1− β1) ≈ 1 + 1/rg ≈ 1 and:

∆tmaxθ ≈
√
rg

[
1 +

1 + ln(rg lnβ−11)

rg lnβ1

]
(28)

Further, if 1/e < β1 < 1, then the right term is negative
and the expression has a simple upper bound:

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Trained Quantization Thresholds (TQT)

∆tmax
θ <
√
rg (29)

In practice, we notice that sometimes noise can can cause θ
to stay on the high-gradient side of the threshold boundary
for multiple steps, causing the momentum to build up. Thus,
to be safe, we recommend designing for ∆tmax

θ < 10
√
rg .

A rough estimate for the number of steps needed for con-
vergence is O(∆dlog2 te/(α|g̃|)). Because of adaptive
gradients, |g̃| should be close to 1, provided we allow
enough time for historical variance to decay -O(1/(1−β2))
steps9. Thus, the overall number of steps would be
O(∆dlog2 te/α + ∆dlog2 te/(1 − β2)). Assuming cali-
bration is used, ∆dlog2 te should be close to 1, giving the
simplified expression O(1/α+ 1/(1− β2)) steps.

Finally, we address how to approximate rg. The operation
of crossing a threshold boundary moves some fraction f of
inputs {xi} from the n ≤ bx/se ≤ p case to the bx/se < n
or bx/se > p cases (assume only bx/se > p for simplicity
from here on). Using the toy L2-loss model (9),

∇(log2 t)
L = s2 ln 2 ·


(⌊x
s

⌉
− x

s

)2
if n ≤

⌊
x
s

⌉
≤ p,

n(n− x/s) if
⌊
x
s

⌉
< n,

p(p− x/s) if
⌊
x
s

⌉
> p

(30)

we see that for any given xi, the ratio rgi between the gradi-
ents in the outer and inner cases is p(p− xi/s)/(bxi/se −
xi/s)

2. But since xi recently switched cases, (p −
xi/s) < 1. As a rough estimate, we might expect rgi ≈
(1/2p)/(1/12) ≈ 6p. Averaged over the entire input,
rg ≈ 6fp / p. The 10× over-design helps address some
uncertainty in this measure as well.

Figure 9 shows a re-run of Figure 8 for the case of Adam
optimization on log threshold gradients. These plots allow
us to validate our Adam convergence analysis above. First
we note that p = 28−1 − 1 = 127, which is an approximate
upper bound on rg and well within the 10× over-design
principle. Next, notice that T ≈ rg. For example, in the
σ = 10−2 case, T ≈ 280 while rg ≈ 272.

Most importantly, we expect the max log-threshold devia-
tion to be upper-bounded by α√rg = (1.6, 0.4, 0.7) from
left to right if our original assumptions hold - that we visit
the lower threshold bin for one step and stay in the upper bin
for T − 1 steps. While the bound holds for all σ, it is close
to not holding for σ = 10−1. A brief inspection reveals

9This is a problem when historical gradient magnitudes were

higher, as is usually the case when ∆dlog2 te < 0, as seen in the
small σ plots of Figure 8.
why this is the case - the log threshold spends far more than
one step in the lower threshold bin per period, violating our
one-step assumption. This violation can be explained by
looking at the gradients, which show that the lower thresh-
old bin sometimes has positive gradients, depending on the
randomness of the input Gaussian vector. These phenomena
motivate our suggestion to over-design by 10×. The cost in
additional steps needed to reach convergence seems like a
worthwhile trade-off.

D BEST OR MEAN VALIDATION

We run validation every 1000 training steps and save the
best top-1 score checkpoint. This approach was initially
driven by a desire to better understand convergence and
stability properties with our method, but we continued using
it since intermediate validation was not too expensive for
5 epochs of retraining. However a valid concern is that
this intermediate validation introduces a positive bias to
our results through cherry-picking. To quantify this, we
compare the positive-biased validation method to simply
taking the average of validation scores at fixed intervals:
20%, 40%, 60%, 80% and 100% of the fifth epoch. As
noted in Table 5, the differences between these methods on
the top-1 accuracy are 0.1% and 0.2% for MobileNet v1 and
VGG 16 respectively, suggesting that cherry-picking only
results in a minor positive bias on our reported accuracy.

Table 5. Best validation (cherry-picked) is compared to the average
of five validations (at pre-determined steps) in the last epoch, for
two networks.

Accuracy (%) Epochs
top-1 top-5

MobileNet v1 1.0 224
70.982 89.886 4.2
70.986 89.860 4.4
71.076 89.930 4.6
71.000 89.870 4.8
71.022 89.944 5.0

Mean 71.0 89.9
Best 71.1 90.0 2.1

VGG 16
71.448 90.438 4.2
71.462 90.456 4.4
71.434 90.436 4.6
71.500 90.426 4.8
71.458 90.456 5.0

Mean 71.5 90.4
Best 71.7 90.4 0.9

