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ABSTRACT
We propose a method of training quantization thresholds (TQT) for uniform symmetric quantizers using standard
backpropagation and gradient descent. Contrary to prior work, we show that a careful analysis of the straight-
through estimator for threshold gradients allows for a natural range-precision trade-off leading to better optima.
Our quantizers are constrained to use power-of-2 scale-factors and per-tensor scaling of weights and activations
to make it amenable for hardware implementations. We present analytical support for the general robustness of
our methods and empirically validate them on various CNNs for ImageNet classification. We are able to achieve
near-floating-point accuracy on traditionally difficult networks such as MobileNets with less than 5 epochs of
quantized (8-bit) retraining. Finally, we present Graffitist, a framework that enables automatic quantization of
TensorFlow graphs for TQT (available at github.com/Xilinx/graffitist).

1 INTRODUCTION

Low-precision quantization (such as uniform quantization
between two clipping thresholds) is an important technique
enabling low-power and high-throughput DNN inference.
However, this reduced precision leads to commensurate
reductions in accuracy.

Retraining weights with quantization-in-the-loop is a useful
technique to regain some lost accuracy. However the quanti-
zation thresholds are typically fixed after initial calibration,
leading to (a) lack of ability to adapt to changing weight and
activation distributions during training, and (b) calibration
based on local quantization errors that is agnostic to the
final network loss. We address these two issues by treating
thresholds as learnable parameters, trained using standard
backpropagation and gradient descent. Therefore during
quantized training, (a) our thresholds can be trained along
with weights simultaneously, and (b) the gradients are com-
puted on the overall loss meaning the learned thresholds are
more optimal for the network as a whole.

We propose a general method for training quantization
thresholds (TQT) using accurate gradients in Section 3.
With thresholds that automatically train to achieve a range-
precision trade-off, this work enables hardware amenable
per-tensor and power-of-2 scaling constraints with minimal
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loss in accuracy. We provide an easy-to-implement and fast
convergence training scheme, which trains thresholds in log-
domain with an adaptive optimizer. In Section 4 we present
a framework for automatic quantization and retraining of
TensorFlow graphs using our methods. We demonstrate that
our implementation and hyperparameter recommendations
are robust, through experiments in Section 5 and analytical
discussion in Appendix B. Finally we present insights from
TQT in Section 6.

2 RELATED WORK

Network quantization became popular with BinaryNet
(Courbariaux et al., 2016), which quantized weights and ac-
tivations to +1 and -1 and trained weights using the straight-
through estimator (STE) (Bengio et al., 2013). Other works
looked at similar low bitwidth networks, such as XOR-
Nets (Rastegari et al., 2016), ternary networks (Li et al.,
2016; Zhu et al., 2016), and TTQ (Zhu et al., 2016). To
achieve higher accuracies, researchers started examining
higher bitwidth quantization such as in DoReFa-Net (Zhou
et al., 2016), WRPN (Mishra et al., 2017), HWGQ (Cai
et al., 2017), LQ-Nets (Zhang et al., 2018) and QIL (Jung
et al., 2018).

More recent work in DNN quantization has focused on
practical considerations for hardware implementations, with
research advertising one or more of the following: uniform
quantization to allow integer arithmetic, per-tensor quanti-
zation to increase homogeneity of compute requirements,
power-of-2 scale factors to allow scaling with efficient bit-
shifts, and symmetric quantization to avoid cross-terms

https://github.com/Xilinx/graffitist
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with each computation arising from a zero-point (Krish-
namoorthi, 2018). Work in this area includes NVIDIA’s
TensorRT (Migacz, 2017), Google’s Quantization-Aware
Training (QAT) (Jacob et al., 2017; TensorFlow, 2017a),
IBM’s FAQ (McKinstry et al., 2018), PACT (Choi et al.,
2018), NICE (Baskin et al., 2018) and FAT (Goncharenko
et al., 2018). TensorRT uses local Kullback-Leibler (KL)
divergence minimization to calibrate quantization thresh-
olds and shows good performance for traditional CNNs, but
uses floating-point scale-factors and does not explore retrain-
ing. FAQ uses percentile initialization to determine clipping
thresholds, but does not train them. PACT introduced the
idea of training not only the weights but also the clipping
parameter α for clipped ReLU using gradient descent and
STE:

∂yq(x;α)

∂α
=

{
0 x ∈ (−∞, α)

1 x ∈ [α,+∞)
(1)

Both QAT and FAT support training quantization thresholds
using a gradient similar to (1), likewise NICE trains a clamp-
ing parameter ca, initialized α standard deviations from the
mean of the input distribution, using a gradient similar to (1).
However, we show in Section 3.5 that these formulations of
clipped threshold gradients do not balance range and preci-
sion, resulting in poor 8-bit quantization performance for
difficult networks such as MobileNets (Howard et al., 2017;
Sandler et al., 2018) shown in Table 1.

In contrast, and independently of our work, IBM’s LSQ
(Esser et al., 2019) found a gradient definition that is sim-
ilar to ours. However, direct comparisons of our results
are not possible due to the large differences between our
experiments and applications. For instance, LSQ learns
the scale-factors directly, which leads to stability issues,
requiring careful fine-tuning of hyperparameters and con-
sequent retraining for 90 epochs. We address this issue in
Section 3 with a gradient formulation to train log-thresholds
instead, which we show in Appendix B to have better stabil-
ity guarantees and faster convergence. Secondly, LSQ does
not constrain scale-factors to power-of-2 and uses higher
precision in the first and last layers to retain performance, in-
curring additional implementation complexity. Lastly, LSQ
does not explore quantization on difficult networks such as
MobileNets, which from our experiments are seen to benefit
the most from training quantization thresholds.

3 TRAINED QUANTIZATION THRESHOLDS

A simple design choice for a uniform quantizer is one that
uses an affine mapping between the real domain r and the
quantized domain q, such as

r = s · (q − z) (2)

where constants s (scale-factor) and z (zero-point) are the
quantization parameters. Generally, s is a positive real

Table 1. Comparison of MobileNet 8-bit quantization performance
between Google’s QAT (from Table 4 of (Krishnamoorthi, 2018))
and ours (TQT). Our quantization scheme is strictly more con-
strained, yet achieves better top-1 accuracy (%) on ImageNet.
Method Precision Quantization Scheme Top-1

MobileNet v1 1.0 224

QAT
FP32 70.9
INT8 per-channel, symmetric, real scaling 70.7
INT8 per-tensor, asymmetric, real scaling 70.0

TQT FP32 71.1
INT8 per-tensor, symmetric, p-of-2 scaling 71.1

MobileNet v2 1.0 224

QAT
FP32 71.9
INT8 per-channel, symmetric, real scaling 71.1
INT8 per-tensor, asymmetric, real scaling 70.9

TQT FP32 71.7
INT8 per-tensor, symmetric, p-of-2 scaling 71.8

number, and z is a quantized value that maps to the real
zero1.

3.1 Quantizer Constraints

While the affine quantizer allows for a direct mapping from
floating point values to integers (without the need for lookup
tables), there is added cost due to special handling of zero-
points and real-valued scale-factors, as illustrated in Ap-
pendix A. For efficient fixed-point implementations, we
constrain our quantization scheme to use:

1. Symmetric: By setting z = 0, the affine quantizer in
(2) reduces to a symmetric quantizer:

r = s · q (3)

Thus we can drop the cross-terms from a matrix mul-
tiplication or convolution operation involving zero-
points (see Appendix A.1).

2. Per-tensor scaling: All elements in a given weight or
activation tensor are quantized using a single scale-
factor s. While it is common practice to use per-
channel scaling for networks with depthwise convo-
lutions such as MobileNets, we find that per-tensor
scaling combined with 8-bit TQT is sufficient.

3. Power-of-2 scaling: Scale-factors are constrained to
the form s = 2−f (where f is an integer denoting
the fractional length; f can be positive or negative).
This enables scaling using simple bit-shifts without
the overhead of a fixed-point multiply operation (see
Appendix A.2).

1This formulation satisfies the domain-specific constraint that
the real zero be exactly representable (Jacob et al., 2016b; 2017;
Krishnamoorthi, 2018).
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3.2 Linear Quantizer - Forward Pass

The quantization function q(x; s) for a tensor x is parameter-
ized only by its scale-factor s, which depends on threshold t
and bit-width b of the tensor2. q(x; s) performs quantization
by applying four point-wise operations (in order): scale,
round, saturate and de-quant.

Scale: Tensor elements are scaled such that the lowest
power-of-2 larger than raw threshold t (i.e., 2dlog2(t)e, where
d.e denotes ceil3) is mapped to the largest value supported in
the quantized domain (i.e., 2b−1 if signed, or 2b if unsigned).
Naturally, elements that fall out of the saturation threshold
2dlog2(t)e in either direction would be clipped.

Round: The scaled tensor elements are round to nearest in-
tegers using bankers rounding (round-half-to-even) denoted
by b.e. This prevents an overall upward or downward bias
which is known to impact end-to-end inference accuracy in
neural networks (Jacob et al., 2017).

Saturate: Once scaled and rounded, elements in the tensor
that exceed the largest supported value in the quantized do-
main are clipped: clip(x;n, p) = min(max(x, n), p). Since
we apply clipping to the scaled tensor, the clipping limits
(n, p) are independent of the real bounds. A signed tensor
is clipped to

(
−2b−1, 2b−1 − 1

)
and an unsigned tensor to(

0, 2b − 1
)
.

De-quant: The last step undoes the scaling step. Therefore,
we emulate the effect of quantization while retaining the
original scale of the input tensor.

Putting together the point-wise operations from above, the
quantization function q(x; s) can be formally written as:

q(x; s) := clip
(⌊x
s

⌉
;n, p

)
· s, (4)

where n = −2b−1, p = 2b−1−1 and s = 2dlog2 te

2b−1 for signed

data; n = 0, p = 2b − 1 and s = 2dlog2 te

2b
for unsigned data.

3.3 Linear Quantizer - Backward Pass

To train the weights and thresholds of the quantized net-
work with gradient descent, we derive the local gradients
of our quantizer q(x; s) with respect to input x and scale-
factor s. We carefully use the STE to approximate gradi-
ents of round/ceil to 1, without approximating round/ceil
to be identity in the backward pass. Specifically, we define
∂
∂xbxe = ∂

∂xdxe = 1, but bxe 6= x and dxe 6= x.

2We fix b for each tensor based on the footprint of the fixed-
point hardware it maps to (albeit configurable), and allow t (hence
s) to be trained with backpropagation.

3The ceil function ensures a power-of-2 scale-factor that is
initially biased in the direction of having more elements within the
clipping range.

Considering the three cases of how bxs e compares to n and
p, we re-write (4) as:

q(x; s) :=


⌊x
s

⌉
· s if n ≤

⌊
x
s

⌉
≤ p,

n · s if
⌊
x
s

⌉
< n,

p · s if
⌊
x
s

⌉
> p.

(5)

The local gradient with respect to scale-factor s is:

∇sq(x; s) :=


⌊x
s

⌉
− x

s
if n ≤

⌊
x
s

⌉
≤ p,

n if
⌊
x
s

⌉
< n,

p if
⌊
x
s

⌉
> p.

(6)

Noting that∇(log2 t)
s = s ln(2),

∇(log2 t)
q(x; s) := s ln(2)·


⌊x
s

⌉
− x

s
if n ≤

⌊
x
s

⌉
≤ p,

n if
⌊
x
s

⌉
< n,

p if
⌊
x
s

⌉
> p

(7)

The choice to train thresholds in the log-domain is simple
yet effective for various stability reasons discussed in detail
in Appendix B.

Similarly, the local gradient with respect to input x is:

∇xq(x; s) :=

{
1 if n ≤

⌊
x
s

⌉
≤ p,

0 otherwise
(8)

3.4 Interpretation of Gradients

To qualitatively understand the role of threshold gradient
∇(log2 t)

q(x; s) and input gradient ∇xq(x; s) during back-
propagation, let us consider the following toy problem:
A single quantizer optimized using least-square-error loss
L = (q(x; s)− x)

2
/2. The overall gradients of L are:

∇(log2 t)
L = (q(x; s)− x) · ∇(log2 t)

q(x; s) (9)

∇xL = (q(x; s)− x) · (∇xq(x; s)− 1) (10)

Figure 1 shows the forward and backward pass transfer
curves for our quantizer. As noted, the exact clipping thresh-
olds of x in the real domain are xn = s · (n − 0.5) and
xp = s · (p+ 0.5).

Role of threshold gradients: As seen from the plots of
∇(log2 t)

L vs. x in Figure 2, threshold gradients are pos-
itive for x within clipping thresholds (xn, xp) and nega-
tive otherwise. When most of the input distribution4 falls
within (xn, xp), the cumulative threshold gradient is pos-
itive causing log2 t to decrease5. In other words, the lim-
its (xn, xp) get pulled inward in favor of larger precision.

4Gaussian in this example, but the analysis holds in general.
5From the update rule log2 t := log2 t−α∇(log2 t)L where α

is the learning rate.



Trained Quantization Thresholds (TQT)

(a) Signed

(b) Unsigned

Figure 1. Forward pass (blue) and backward pass (red) transfer
curves of our quantizer for signed and unsigned data. Local gradi-
ents shown in the top rows, and overall gradients of L2-loss in the
bottom rows. We pick bit-width b = 3 and raw threshold t = 1.0
in this example.

Similarly, when most of the input distribution falls out-
side (xn, xp), the cumulative threshold gradient is negative,
log2 t increases, and the limits (xn, xp) get pushed outward
in favor of larger dynamic range. This technique is natu-
rally robust to distributions with long tails or outliers, by
achieving range-precision trade-off through gradient-based
optimization.

Figure 2. Trained quantization thresholds move inward (left) or
outward (center) to achieve range-precision trade-off. When con-
verged (right), the positive gradients from xwithin (xn, xp) cancel
the negative gradients from x outside(xn, xp).

Role of Input Gradients: Using a similar analysis as for
threshold gradients, we see that the input gradients∇xL are
non-zero for values of x that fall outside (xn, xp), biased to
keep them from getting clipped. This encourages the weight
and activation distributions to be tighter.

Figure 3. Forward pass (blue) and backward pass (red) transfer
curves of TensorFlow’s FakeQuant for signed data. Local gradients
shown in the top rows, and overall gradients of L2-loss in the
bottom rows. We pick bit-width b = 3 and clipping thresholds
n = −1.125, p = 0.875 to match with our example.

To summarize, threshold gradients help train optimal thresh-
olds for clipping weights and activations, whereas input gra-
dients nudge the weights and activations to tighter bounds.
By simultaneously training clipping thresholds and weights
of the quantized network through backpropagation, we
adopt joint (mutual) optimization over a global loss.

3.5 Comparison to Clipped Threshold Gradients

In contrast, certain quantizer implementations define thresh-
old gradients by simply clipping the upstream gradients
at the saturation thresholds. For example TensorFlow’s
FakeQuant (used for QAT) defines gradients with respect to
min/max thresholds as a clip function.

In the forward pass, FakeQuant operation (TensorFlow,
2016a) is mathematically equivalent to our formulation (ex-
cept with zero-point), defined as:

q(x;n, p) :=

clip(x;n, p)− n
p− n
2b − 1

 ·
p− n
2b − 1

+ n, (11)

However, in the backward pass they treat the round func-
tion in (11) to be identity, reducing (11) to a clip function
with clipped gradients. That is, gradients with respect to
thresholds (n, p) are trivially clipped to zero for x within
(n, p), as seen in FakeQuant’s transfer curves in Figure 3
and its kernel definition (TensorFlow, 2016b). As a result,
the overall gradients only push the limits (n, p) outward,
training to the min/max of the input distributions and strictly
favoring range over precision. We believe this behavior can
be corrected to allow effective range-precision trade-off, as
seen in Figure 2 with the toy L2 model, by carefully using
the STE such that ∂

∂xbxe = 1, but bxe 6= x in the backward
pass. While the actual loss landscape is non-trivial, we em-
pirically observe similar qualitative behavior to our toy L2

model, in Section 5.3.
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Another popular clipping threshold method (applicable to
ReLU activations) is PACT, which has similar behavior to
TensorFlow’s FakeQuant. As seen in (1), the gradient with
respect to clipping threshold α takes a value of either 0 or 1
depending on whether the quantizer input x lies to the left
or right of α. This results in a tendency of α to train to the
max limits of the distribution of x. To combat this tendency,
a regularizer on the magnitude of α is applied to the loss
function. However, this requires an additional parameter
λα to be tuned manually and has no awareness for the loss
landscape or the quantization bitwidth.

4 FRAMEWORK FOR TQT
We released Graffitist6, an end-to-end software stack built
on top of TensorFlow, to quantize and retrain deep neural
networks (DNNs) using TQT for accurate and efficient infer-
ence on fixed-point hardware. Fundamentally, Graffitist is a
flexible and scalable framework to process low-level graph
descriptions of DNNs, comprising of a (growing) library of
transforms to implement various neural net optimizations.
Each graph transform consists of unique pattern matching
and manipulation algorithms that when run sequentially pro-
duce an optimized output graph. It is still in experimental
stages as we continue to add support for more operation
types, layer topologies, network styles, graph optimizations,
and compression techniques. Graffitist stands on the shoul-
ders of giants and the interface is inspired in part by earlier
tools from TensorFlow (TensorFlow, 2016c; 2017a).

4.1 Graph Optimizations

Graffitist applies several optimizations to the input graph
prior to quantization. For example, folding batch normaliza-
tion layers into preceding convolutional or fully connected
or depthwise convolutional layers’ weights. We adopt the
following best practices from (Jacob et al., 2017; Krish-
namoorthi, 2018; TensorFlow, 2017a): (a) ensure folded
batch norms in training and inference graphs are mathe-
matically equivalent (i.e., distributions seen during training
match those during inference); (b) apply batch norm cor-
rections for switching between batch and moving average
statistics to reduce jitter in training folded weights due to
noisy batch updates; (c) freeze batch norm moving mean and
variance updates post convergence for improved accuracy.
Other optimizations include collapsing concat-of-concat lay-
ers into single concat, splicing identity nodes not involved in
control edges, transforming average pool layers into depth-
wise conv layers with reciprocal7 multiplier as weights, and
explicitly merging input scales for scale preserving ops such
as concat, bias-add, eltwise-add, and maximum (for leaky
relu).

6Available at github.com/Xilinx/graffitist.
7Reciprocal being 1/F 2 where F is the kernel size.

4.2 Quantization Modes

Graffitist allows for quantization in either static or retrain
modes.

Static Mode. Quantization thresholds (hence scale factors)
are determined based on statistics of weights and activa-
tions derived from a calibration dataset. Specifically, weight
thresholds (per-tensor) are set to the maximum absolute
value (Table 2), and activation thresholds (per-tensor) are
chosen such as to minimize the symmetric Kullback-Leibler-
J distance (D’Alberto & Dasdan, 2009) for each quantization
layer locally. This is done in a strictly topological order to
ensure inputs to a layer are quantized (and fixed) prior to
quantizing the current layer. The entire optimization and
calibration process is automated and only requires a single
API call to Graffitist.

Retrain Mode. Quantization thresholds and weights are si-
multaneously trained on a global loss. Recovery is achieved
within 5 epochs of TQT retraining. This requires two sep-
arate API calls to Graffitist - first to generate a quantized
training graph that can be trained with native TensorFlow
on GPU, and second to generate an equivalent quantized
inference graph that accurately models the target fixed-point
implementation. The benefit of a hardware-accurate infer-
ence graph is twofold: (i) much before deployment, one can
quickly validate the inference accuracy of the quantized net-
work using CPU/GPU, and (ii) scale factors and quantized
weights from TQT can be ported directly onto the target of
choice. On tests across several networks, we found that our
inference graphs run on the CPU were bit-accurate to our
fixed-point implementation on the FPGA.

4.3 Layer Precisions

While Graffitist supports configurable bit-widths for weights
and activations, for the scope of this paper we use two
modes: INT8 with 8/8 (W/A) and INT4 with 4/8 (W/A).
The choice of 4/8 as opposed to 4/4 is primarily guided by
the availability of 4x8 multipliers; even in the absence of
this, the INT4 mode still allows for 50% weight compres-
sion (double packing weights per byte) and reduced memory
footprint for fetching weights. The internal precisions for
different layer topologies are defined below. Quantization
layers marked as q′ indicate that their scale-factors are ex-
plicitly merged / shared. To avoid double quantization, input
tensors are assumed to be already quantized by the previous
layer, with the exception of the primary input (placeholder)
which is explicitly quantized.

• Compute layers (e.g., conv, matmul, depthwise conv)
are quantized as:

q8

(
q′16

(∑(
q8/4(w) · q8(x)

))
+ q′16(b)

)
,

where x is the input tensor, w is the weight tensor, and

https://github.com/Xilinx/graffitist
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b is the bias tensor. If followed by a ReLU or ReLU6
activation function, the last q8() stage is delayed to
until after ReLU/ReLU6, and uses unsigned datatype
to utilize the extra sign bit.

• Eltwise-add layer is quantized as:

q8 (q′8(x) + q′8(y)) ,

where x and y are the input tensors. Similar to the
compute layer case, the last q8() stage is delayed and
uses unsigned datatype if followed by ReLU/ReLU6.

• Leaky ReLU is quantized as:

q8 (max (q′16(x), q′16 (q16(α) · q′16(x)))) ,

where x is the input tensor, and α is the slope of acti-
vation function for negative inputs. The last q8() stage
on the previous compute layer is skipped when it is
followed by Leaky ReLU. Instead a q16() stage is used
to retain high internal precision for the α-multiply op.

• Average pool is quantized as:

q8

(∑
(q8(r) · q8(x))

)
,

where x is the input tensor, and r is the reciprocal.

• Concat is not quantized because the input scales are
merged explicitly, and hence it is lossless:

concat(q′8(x), q′8(y), q′8(z)),

where x, y, and z are input tensors.

4.4 Fused Kernel Implementation

The quantization layer defined in (4) and (6) may be
trivially implemented using native TensorFlow ops and
tf.stop gradient as depicted in Figure 4. However this low-
level implementation has a large memory footprint during
training due to the need for storing intermediate tensors for
gradient computation in the backward pass. This impacts
the maximum batch size that can fit on a single GPU. To
overcome this, Graffitist is packaged with fused quantiza-
tion kernels that are pre-compiled for CPU/GPU. The fused
implementation is efficient, helps avoid memory overhead
and allows training using larger batch sizes compared to the
native implementation.

5 EXPERIMENTS

We evaluate TQT on variants of five classes of CNNs
trained and validated on ImageNet (ILSVRC14) classifi-
cation dataset (Russakovsky et al., 2015). The networks
include VGG {16, 19} (Simonyan & Zisserman, 2014), In-
ception v{1, 2, 3, 4} (Szegedy et al., 2014; Ioffe & Szegedy,

XILINX CONFIDENTIAL

STE

Input

Scale

Round

Saturate

Quantization 

(inference)

Output

De-quant

n, p

s

s

Input

Output

Scale

Round

Saturate

sub

tf.stop_gradientadd

Quantization 

(training)

+ -

De-quant

Ceil

sub

tf.stop_gradientadd

+ -

Pow(2, ⋅)

log2_th

n, p

s
Divide p + 1

Figure 4. Illustration of the unfused quantization layer using the
STE on threshold and input gradient paths. During backpropaga-
tion, the round and ceil functions are hidden by tf.stop gradient.

Table 2. Threshold initialization scheme using MAX or 3SD ini-
tialization for weights and KL-J distance calibrated for activations.

Mode Threshold Initialization
weights activations

Static MAX KL-J

Retrain wt MAX KL-J
wt,th 3SD KL-J

2015; Szegedy et al., 2015; 2016), ResNet v1 {50, 101,
152} (He et al., 2015), MobileNet v{1, 2} 1.0 224 (Howard
et al., 2017; Sandler et al., 2018), and DarkNet 19 (Red-
mon & Farhadi, 2016). We obtained the models, pre-trained
weights (FP32) and pre-processing for each of these net-
works from the TF-Slim model zoo (TensorFlow, 2017b)
except for DarkNet 19 which was converted to TensorFlow
using DW2TF (Hao & Jain, 2018).

We are interested in a scalable and production-ready ap-
proach to INT8/INT4 quantization that maps well on generic
fixed-point hardware. While our simplifying constraints
(from Section 3.1) may not be ideal for lower bit-widths, the
fundamentals of TQT are more generally applicable even
without these constraints. To limit the scope of this paper
to the least-common-denominator fixed-point quantization,
we do not make comparisons with other state-of-the-art
low-bitwidth quantization schemes. Instead we draw com-
parisons of TQT (wt+th) retraining to static quantization and
wt-only retraining. We can derive many interesting insights
from this analysis.

5.1 Threshold Initializations

Calibration sets are prepared for each network using a batch
of 50 unlabeled images, randomly sampled from the val-
idation set, with applied pre-processing. This is used for
initializing the thresholds in both static and retrain modes.
When thresholds are not trained, they are initialized to MAX
for weights, and KL-J distance calibrated for activations.
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However when training thresholds, we find it useful to ini-
tialize the weight thresholds based on n standard deviations
or percentile of the weight distribution rather than MAX.
Table 2 summarizes the threshold initialization scheme we
used for all our experiments.

5.2 Implementation Details

Before exporting the models to TensorFlow protocol buffers
(.pb) for Graffitist to absorb, we make the following
synthetic modifications: (i) replace tf.reduce mean with
tf.nn.avg pool (if any), (ii) remove auxiliary logit layers (if
any), and (iii) remove dropouts (if any). Additionally, we
disable data-augmentation (e.g., random flip / crop) during
retraining. These modifications are done keeping in mind
that TQT focuses primarily on learning thresholds through
backpropagation, while allowing previously trained weights
to be fine-tuned using a relatively small learning rate. As
expected, most of the recovery is achieved within a frac-
tion of an epoch due to thresholds converging, and the rest
of it (up to 5 epochs) is just weights adjusting to the new
thresholds. Because the overall training steps required with
TQT are so few compared to from-scratch training, and that
pre-trained weight distributions are not allowed to wildly
change (overfit), we find it best to disable data-augmentation
and dropout regularization.

Based on the stability analysis and hyperparameter recom-
mendations in Appendix B.2 and B.3, we use the Adam
optimizer with parameters β1 = 0.9 and β2 = 0.999 for
training thresholds and weights in all our experiments. The
initial learning rate is set to 1e− 2 for thresholds and 1e− 6
for weights. Learning rates are decayed exponentially (with
staircase enabled) by a factor of 0.94 every 3000 · (24/N)
steps for weights and by a factor of 0.5 every 1000 · (24/N)
steps for thresholds, where N is the batch size. We use a
batch size of 24 for all networks except for ResNet v1 152
and Inception v4 for which a batch of 16 is used. Softmax
cross-entropy loss is used to compute quantization threshold
gradients and this loss, together with weight regularization
(if any), are used to compute weight gradients. Batch norm
moving means and variances are frozen after 1 epoch.

In Appendix B.3, we discussed the post-convergence oscil-
lations of thresholds around the critical integer threshold
log2 t

∗ due to our power-of-2 scaling constraint. When
thresholds cross this integer level, it can change the distri-
butions of downstream activations, requiring weights and
thresholds of the following layers to adapt to it. To minimize
this effect, we incrementally freeze thresholds starting at
1000 · (24/N) steps, once every 50 steps in the order of
increasing absolute gradient magnitude, if they are on the
correct side of log2 t

∗ (determined using an EMA). This is
automatically handled by the training scripts packaged with
Graffitist.

5.3 Results

Table 3 reports the single-crop ImageNet validation accuracy
for 12 networks. Default image sizes are used: 299×299 for
Inception v{3, 4}, 256× 256 for Darknet 19 and 224× 224
for all other networks. Standard pre-processing for each
network is applied to center crop, resize, and normalize the
input data. The different trials include pre-trained FP32
baseline, static INT8 run, and 4 retrain runs - FP32 wt-only,
INT8 wt-only, INT8 wt+th and INT4 wt+th. Here, INT8
is 8/8 (W/A) and INT4 is 4/8 (W/A). FP32 baseline num-
bers are reported as validated on our end. For an unbiased
comparison, we train the FP32 weights using the same pro-
cedure (optimizers, learning rates, decay, BN freeze etc.) as
with our quantized weight retraining. This FP32 wt-only
retraining serves as a fair baseline to our INT8 and INT4
retrain results. That said, we do not use the retrained FP32
weights to initialize any of our INT8/INT4 retraining runs,
and they always start from pre-trained FP32 weights. This
is done to keep the overhead of retraining to a minimum.

6 DISCUSSION

The validation accuracy and epoch count corresponding to
the best checkpoint are noted in Table 3. As we see, all
the networks converge within 5 epochs. Variance on the
reported accuracy stems from a few sources (in decreasing
order): (a) best rather than mean validation (our findings in
Appendix D suggest this variance is within 0.2%), (b) non-
determinism due to inexact floating point math (empirically
within 0.1%), (c) round to one decimal (bound to 0.05%).
Keeping these variance bounds on accuracy in mind, we can
draw interesting insights into the benefits of TQT.

6.1 Insights from TQT

Our experiments demonstrate floating-point accuracy for
8-bit quantization and near-floating-point accuracy for 4-bit
quantization for most networks. We see that static quan-
tization incurs a higher loss than retrained methods. This
is expected because (a) weights are not trained to adapt
to the quantized network, and (b) quantization thresholds
are picked using local statistics instead of being optimized
on a global loss. For networks that are easier to quantize
to INT8 (e.g., VGGs, Inceptions, ResNets), we find that
retraining weights alone while fixing thresholds to their pre-
calibrated values (based on Table 2) is sufficient. In such
cases, TQT (wt+th) retraining shows no added benefit. How-
ever, for networks known to be difficult to quantize (e.g.,
MobileNets, DarkNets), TQT (wt+th) retraining yields up to
4% higher top-1 accuracy compared to wt-only training for
INT8, and can match FP32 accuracy even with per-tensor,
uniform symmetric, power-of-2 scaling constraints. This
demonstrates the range-precision trade-off through trained
thresholds in action. For lower precisions such as INT4,
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Table 3. Quantization accuracy achieved on different ImageNet CNNs for static quantization, weight-only quantized retraining, and
weight+threshold quantized retraining (TQT). Training is run until validation accuracy plateaus (max 5 epochs). We also compare to
floating-point retraining to isolate the impact of our quantization methods from our training setup.

Mode Precision Bit-width Accuracy (%) Epochs
(W/A) top-1 top-5

VGG 16
FP32 32/32 70.9 89.8

Static INT8 8/8 70.4 89.7

R
et

ra
in

wt FP32 32/32 71.9 90.5 1.0
wt INT8 8/8 71.8 90.5 1.0
wt,th INT8 8/8 71.7 90.4 0.9
wt,th INT4 4/8 71.5 90.3 4.0

VGG 19
FP32 32/32 71.0 89.8

Static INT8 8/8 70.4 89.7

R
et

ra
in

wt FP32 32/32 71.8 90.4 1.0
wt INT8 8/8 71.7 90.4 1.0
wt,th INT8 8/8 71.7 90.4 1.0
wt,th INT4 4/8 71.2 90.1 2.0

Inception v1
FP32 32/32 69.8 89.6

Static INT8 8/8 68.6 88.9

R
et

ra
in

wt FP32 32/32 70.3 90.0 2.8
wt INT8 8/8 70.6 90.3 3.5
wt,th INT8 8/8 70.7 90.2 2.4
wt,th INT4 4/8 67.2 88.2 4.0

Inception v2
FP32 32/32 74.0 91.8

Static INT8 8/8 73.1 91.3

R
et

ra
in

wt FP32 32/32 74.3 92.2 3.3
wt INT8 8/8 74.4 92.3 4.7
wt,th INT8 8/8 74.4 92.4 2.5
wt,th INT4 4/8 71.9 90.8 4.8

Inception v3
FP32 32/32 78.0 93.9

Static INT8 8/8 76.8 93.3

R
et

ra
in

wt FP32 32/32 78.3 94.2 2.1
wt INT8 8/8 78.2 94.1 2.0
wt,th INT8 8/8 78.3 94.3 1.2
wt,th INT4 4/8 76.4 93.1 4.4

Inception v4
FP32 32/32 80.2 95.2

Static INT8 8/8 79.4 94.6

R
et

ra
in

wt FP32 32/32 80.2 95.2 0.0
wt INT8 8/8 80.1 95.3 1.7
wt,th INT8 8/8 80.1 95.2 1.5
wt,th INT4 4/8 78.9 94.7 4.2

Mode Precision Bit-width Accuracy (%) Epochs
(W/A) top-1 top-5

MobileNet v1 1.0 224
FP32 32/32 71.0 90.0

Static INT8 8/8 0.6 3.6

R
et

ra
in

wt FP32 32/32 71.1 90.0 3.4
wt INT8 8/8 67.0 87.9 4.6
wt,th INT8 8/8 71.1 90.0 2.1
wt,th INT4 4/8 – –

MobileNet v2 1.0 224
FP32 32/32 70.1 89.5

Static INT8 8/8 0.3 1.2

R
et

ra
in

wt FP32 32/32 71.7 90.7 3.2
wt INT8 8/8 68.2 89.0 2.7
wt,th INT8 8/8 71.8 90.6 2.2
wt,th INT4 4/8 – –

DarkNet 19
FP32 32/32 73.0 91.4

Static INT8 8/8 68.7 89.7

R
et

ra
in

wt FP32 32/32 74.4 92.3 3.1
wt INT8 8/8 72.9 91.6 3.8
wt,th INT8 8/8 74.5 92.3 1.8
wt,th INT4 4/8 73.2 91.6 2.8

ResNet v1 50
FP32 32/32 75.2 92.2

Static INT8 8/8 74.3 91.7

R
et

ra
in

wt FP32 32/32 75.4 92.5 3.7
wt INT8 8/8 75.3 92.3 1.0
wt,th INT8 8/8 75.4 92.3 1.9
wt,th INT4 4/8 74.4 91.7 2.0

ResNet v1 101
FP32 32/32 76.4 92.9

Static INT8 8/8 74.8 92.0

R
et

ra
in

wt FP32 32/32 76.6 93.2 1.2
wt INT8 8/8 76.3 93.0 1.0
wt,th INT8 8/8 76.4 93.1 0.9
wt,th INT4 4/8 75.7 92.5 2.0

ResNet v1 152
FP32 32/32 76.8 93.2

Static INT8 8/8 76.2 93.0

R
et

ra
in

wt FP32 32/32 76.8 93.3 1.0
wt INT8 8/8 76.7 93.3 1.5
wt,th INT8 8/8 76.7 93.3 1.4
wt,th INT4 4/8 76.0 93.0 1.9

we find that wt-only training does not recover, and so TQT
(wt+th) retraining is necessary. The INT4 accuracy falls
short of FP32, and we believe this maybe due to (a) our
quantization constraints in Section 3.1, and (b) the first/last
layers not retaining full precision8.

8We quantize first/last layers to a minimum of INT8, so that
they can be mapped on the same fixed-point hardware used for
other layers.

6.2 MobileNet Comparisons

For more difficult networks such as MobileNets, it is well
known that symmetric, per-tensor quantization done post-
training or through calibrate-only methods is detrimental
(Krishnamoorthi, 2018; Goncharenko et al., 2018). We be-
lieve this is true, in particular due to the use of depthwise
convolutions with irregular weight distributions and widely
varying ranges between channels. With wt-only retraining
we are only able to recover to within 4% of floating-point
accuracy. However, with TQT (wt+th) retraining, our re-
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Figure 5. Selected weight and activation distributions of MobileNet v1 before (black) and after (red) quantized TQT (wt+th) retraining
for thresholds that changed by non-zero integer amount in log-domain. Initial thresholds (cyan) and trained thresholds (blue) are also
plotted. These are the raw thresholds t. Also indicated above each plot are bit-width b and threshold deviation d := ∆dlog2 te for the
quantized layer. A positive deviation indicates preference for range over precision, and a negative deviation indicates otherwise. We note
that depthwise convolutions’ weights have unique threshold training behavior with a strong preference for precision compared to range.

(a) INT8

(b) INT4

Figure 6. Threshold deviations during TQT training. For each
network, the left plot shows the value of each of the thresholds over
the first 100 training steps, and the right plot shows a histogram of
deviations from the start (initialized thresholds) to the end (trained
thresholds) of training.

sults for 8-bit are the highest we have seen using symmetric,
power-of-2 scaled, per-tensor quantization, even matching
floating-point accuracy with no loss. We draw a few compar-
isons with Google’s QAT results for MobileNets in Table 1
and observe that we incur no loss with INT8 quantization
even with stricter constraints. We believe this is due to the
fact that our threshold gradient formulation is in fact able to
balance range-precision effectively.

In Figure 5 we analyze the retrained distributions for a
few quantized layers in MobileNet v1, highlighting the im-
portance of range-precision trade-off. As seen with the
depthwise convolutional layers’ weights, the trained thresh-
olds move-in from their initialized values by up to 3 integer
bins in the log-domain, favoring precision over dynamic
range. For some other layers, the thresholds move-out from
their initialized values, favoring range over precision. For
more such layers with non-zero threshold deviations, see
Figure 10 in Appendix.

Figure 6 shows a histogram of deviations of trained thresh-
olds for different networks under 8-bit and 4-bit quantized
retraining. We find that larger positive deviations are seen
in the 8-bit case compared to the 4-bit case. This intuitively
makes sense as the method decides to favor range with more
bits of precision, but cuts back on range when only few bits
of precision are available.
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7 CONCLUSION

In Section 3, we proposed a general method for training
quantization thresholds (TQT), amenable to most generic
fixed-point hardware by constraining our method to uniform,
symmetric, power-of-2 scaled, per-tensor quantization. We
showed that our quantizer’s gradient formulation allowed a
unique range-precision trade-off, essential for high-accuracy
quantized networks. We demonstrated a robust, fast con-
vergence training scheme for TQT utilizing log-domain
threshold training with an adaptive optimizer. In Section 4,
we presented Graffitist, a framework for automatic quantiza-
tion and retraining of TensorFlow graphs with our methods.
In Section 5, we empirically validated our methods on a
suite of standard CNNs trained on ImageNet. Finally, in
Sections 6, we provided insightful discussions on TQT and
state-of-the-art results for 8-bit MobileNet quantization.

Our work and results demonstrate the effectiveness of our
techniques for high accuracy quantization of neural net-
works for fixed-point inference. While our work covers
a major use case for quantization, there are many other
quantization flavors we could explore in future work. For
example, it would be useful to see how well the techniques
we designed for strict power-of-2 scaling generalize to non
power-of-2 scale-factors. Some additional relaxations of
our constraints we could explore include per-channel rather
than per-tensor quantization, which could potentially allow
for more aggressive bitwidths on difficult networks like Mo-
bileNets, and non-symmetric or even non-uniform quantiza-
tion schemes, where threshold training via backpropagation
and gradient descent has been tried with mild success. We
would not be surprised to see our methods and analysis tech-
niques have broader applicability for more general classes
of quantizers and problems beyond ImageNet.
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A COST OF AFFINE QUANTIZER

A.1 Cross-terms due to zero-points

Consider two real numbers r1 and r2 and their product
r3 = r1 · r2. Using the affine mapping from (2) to represent
this, we get:

s3(q3 − z3) = s1(q1 − z1) · s2(q2 − z2), (12)

which can be expressed as

q3 = z3 +
s1s2
s3

[
q1q2 − q1z2 − q2z1 + z1z2

]
. (13)

The cross-terms in (13) add complexity and often require
special handling to remain efficient. While the added cost
can be amortized over several accumulations of a matrix
multiplication or convolution operation, it would still require
optimizations9, both algorithmic and kernel-level.

By eliminating zero-points, the cross-terms vanish and the
operation simplifies to:

q3 =
s1s2
s3

[
q1q2

]
. (14)

A.2 Real-valued scale-factors

With positive real scale-factors, the constant multiplier
s1s2/s3 in (14), empirically found to be in the interval
(0, 1) (Jacob et al., 2017), can be expressed in the normal-
ized form 2−ns0 where n is a non-negative integer and s0
is in the interval [0.5, 1). In other words, the accumulator
(storing q1q2) needs to be scaled by a fixed-point multi-
plier that approximates s0 and right-shifted by n bits (with
round-to-nearest):

q3 = 2−ns0
[
q1q2

]
. (15)

However, by constraining scale-factors s1, s2, s3 to strict
power-of-2, the scaling operation reduces to a rather simple
bit-shift (with round-to-nearest):

q3 = 2−f
[
q1q2

]
. (16)

B LOG THRESHOLD TRAINING

Initially, it may seem that with the definition of a gradi-
ent with respect to the raw threshold, backpropagation and
gradient descent could be immediately used to train it. How-
ever, just as training weights in a vanilla neural network
requires care in the choice of optimizer and learning rate,
here too care must be taken to ensure training stability and
convergence. There are three main properties we would
like our training procedure to satisfy: numerical stability,
scale invariance, and convergence. We discuss each of these
issues and the engineering tweaks used to solve them here.

9Some of which are covered in (Jacob et al., 2016a; 2017;
Krishnamoorthi, 2018).

B.1 Numerical Stability

One obvious problem with training raw thresholds t ∈ R+

is that gradient updates could potentially bump a threshold
to a negative value, causing log2 t and therefore scale-factor
s to diverge. If this happens even once, the network as
a whole will break. An easy solution is to train log2 t as
opposed to t itself, since its domain is log2 t ∈ R. Using log
thresholds is convenient because it already appears in the
expression for s(t). However, the most important benefit
is described in Section B.2, where the log representation
makes ensuring scale invariance very easy.

B.2 Scale Invariance

For a given input distribution we prefer that the threshold
gradients have similar magnitudes regardless of the position
of the threshold itself. This threshold scale invariance is
useful for making sure training is not too slow when the
thresholds are far from their optimal values. Similarly, the
properties of our threshold gradients should not depend on
the scale of the input distribution. This input scale invari-
ance is important because it ensures that quantized training
behaves the same way for the different weights and activa-
tions in the network, even if the variance of their distribu-
tions vary over many orders of magnitude.

Unfortunately, neither of these scale invariances hold. Far
from improving, Figure 7 shows that in moving from raw
threshold training (left) to log threshold training (middle),
both scale invariance properties of the threshold gradients
actually degrade.
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Figure 7. Gradients of L2-loss with respect to raw threshold
(left) or log threshold (middle, right) versus log threshold, for
Gaussian(σ) inputs of varying σ. Desired (normed) gradients for
the log threshold case are shown on the right.

Threshold scale invariance: Updates to the log threshold
would be threshold scale invariant if the gradients on both
sides of the negative-to-positive jump were flat, as seen in
the right plot of Figure 7. However, this is not the case for
log threshold gradients (center plot of Figure 7). On the
left-of-jump side, as log2 t decreases, gradients of (hence
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Figure 8. Raw, log and normed log threshold training on L2-loss for 2000 steps with learning rate α = 0.1. We compare different
bit-widths - 4 (top) and 8 (bottom), and Gaussian(σ) inputs of varying σ - smallest (left) to largest (right). The empirical value of rg is
estimated from the last few hundred steps of Adam.

updates to) log2 t get exponentially smaller, meaning it will
converge very slowly to lower optimal values (see the log
grad SGD case in the left plots of Figure 8). Similarly,
on the right-of-jump side, as log2 t increases, updates to
log2 t increase exponentially, meaning it will converge very
quickly and possibly unstably to higher optimal values (see
the log grad SGD case in the right plots of Figure 8). In the
raw threshold domain, we would like gradients of (hence
updates to) t to scale proportional to t. This is also not the
case for the left-of-jump side of raw threshold gradients (left
plot of Figure 7). In other words, the raw and log threshold
gradients are swapped from what we would prefer on the
left-of-jump sides.

Input scale invariance: Updates to the log threshold are
input scale invariant if the gradients are threshold scale
invariant and x-axis shifted copies for varying input scales,
as seen in the right plot of Figure 7. However, this is not
the case for log threshold gradients (center plot of Figure 7)
as the gradient magnitudes depend on the scale of the input.
In fact when accounting for the threshold scale dependence,
the gradient magnitudes depend quadratically on the scale
of the input.

Normed gradients: While neither raw or log threshold
gradients have the desired properties of scale invariance,
only minimal modifications to our log threshold gradient
is needed to get these properties to hold (see desired log
threshold gradient on the right of Figure 7). In particular, if
we normalize the gradient gi by its bias-corrected moving
average variance, we achieve a close approximation of the
desired gradients g̃i, shown in (17). To improve stability,
we can encapsulate (17) in a clipping function to guarantee
no large gradients, shown in (18).

Yet another desired property highlighted in Figure 7 is that
near the jump, the ratio of the gradient magnitudes to either
side of the jump is to be preserved between the original and

normed gradient cases. This is important for the conver-
gence dynamics of the system discussed in Section B.3. In
dynamic situations, the gradient normalization solution (17)
approximates this feature as well.

vi ← βvi−1 + (1− β)g2i

v̂i ←
vi

1− βi

g̃i ←
gi√
v̂i + ε

(17)

g̃i ← tanh

(
gi√
v̂i + ε

)
(18)

Figure 8 shows training curves on the toy L2 quantization
error problem across various bit-widths, input scales, and
optimization algorithms. Raw gradient with SGD fails for
large σ and converges too slowly for small σ, as we would
expect from Sections B.1 and B.2. Additionally, they have
b, σ-dependent stability once converged. Switching from
raw to log threshold gradients, we see that log gradient with
Adam performs well, yet log gradient with SGD performs
poorly, with weak convergence rates for small σ and di-
vergence for large σ. However, after performing gradient
normalization (18), normed log gradient with SGD performs
well, demonstrating that lack of proper gradient norming is
the main issue preventing convergence using standard gradi-
ent descent. Besides the differing convergence rates, another
characteristic becomes immediately obvious - stability after
convergence. For example, raw gradient method tends to os-
cillate wildly between multiple integer-level log thresholds,
whereas normed log gradient method is better behaved and
tends to stay within a single integer log threshold band.

Adam optimizer: While gradient norming (18) led to good
results with SGD, we note that Adam without this gradient
norming also works quite well. It is easy to see why this is -
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Adam has built-in gradient norming (Kingma & Ba, 2014).
Thus we can avoid redefining the gradients by simply using
an optimizer that includes adaptive gradients, such as Adam
or RMSprop (Hinton et al., 2012). While RMSprop appears
to superficially resemble (18) more closely than Adam, we
suspect Adam has better behavior in the absence of gradient
clipping due to its use of moments to smooth the gradients.
To use Adam safely, we derive rough bounds on the learning
rate and momentum parameters to ensure the oscillations
seen in Figure 8 for log gradient with Adam do not exceed
a single integer bin. This is important because if they move
across bins often, the network may have more trouble adapt-
ing to the changing distributions from a given quantized
layer, in an effect that may be similar to the motivation for
batch normalization (Ioffe & Szegedy, 2015).

B.3 Convergence

One primary cause of the sharp gradient jumps seen in Fig-
ure 7 is our insistence on power-of-2 scaling. In the forward
pass, features downstream from the quantized layer are
completely unaware of intermediate non-power-of-2 scale-
factors so there are sharp jumps at integral log2 t, similar to
what might be observed when using the STE for traditional
quantization. The net effect is a bang-bang like operation.

In more detail, for a given input distribution there is some
critical integer threshold log2 t

∗ before which the gradients
are negative (causing positive threshold updates) and after
which the gradients are positive. This negative feedback
will force the threshold to oscillate around log2 t

∗. The
gradients gl and gh on either side of log2 t

∗ tend to be fairly
constant within a distance 1 of log2 t

∗ due to power-of-2
scaling. For simplicity, assume |gl| > |gh| so that the ratio
rg = −gl/gh > 1. As rg grows, we would expect the
following behavior: the threshold stays in the higher bin for
a while, slowly decaying until reaching the lower bin, at
which point a large |gl| causes it to jump back to the higher
bin, where it begins a slow decay again. This behavior can
be observed in the left plots of Figure 8 and are shown in
more detail in Figure 9.

If normed log gradients and SGD are used together, the
dynamics are fairly simple. Let log2 ti ← log2 ti−1 − αg̃i
be the SGD update on normed log gradient g̃i (18). Then
because |g̃i| ≤ 1 by design, a given jump in the sawtooth-
like pattern will have magnitude bounded by learning rate
α. Thus by selecting α � 1, we can ensure convergence
within a threshold bin.

However in our experiments, we used the implementation-
ally simpler approach of unnormed log gradients with the
Adam optimizer. While simpler to implement, the analysis
is more complicated due to the second-order nature of the
optimizer. Adam has three key hyperparameters: α, β1, β2
and operates by keeping track of a moving mean of gradi-

ents mi ← β1mi−1 + (1 − β1)gi and a moving variance
vi ← β1vi−1 + (1 − β1)g2i before applying update rule
θi ← θi−1 − α · mi/

√
vi. In practice, bias correction is

used to get m̂i, v̂i, but when considering settling dynamics
for i → ∞, this bias correction is insignificant. Typical
values are α ≈ 10−3, β1 ≈ 0.9, β2 ≈ 0.999.

In Appendix C, a detailed analysis of convergence for Adam
is carried out. From this analysis a simple set of guidelines
emerge. First, the learning rate is set to guarantee α <
0.1/
√
p. Next, we ensure 1/e < β1 < 1 to satisfy the

limits of our analysis. Finally, we make sure rg ≈ p �
1/(1−β2)⇒ 1−β2 � 1/p. These results are summarized
in Table 4. For simplicity, we use α = 0.01, β1 = 0.9, β2 =
0.999 for all of our training.

Table 4. Guidelines for log threshold training with Adam, assum-
ing b = 2b−1 − 1 for signed data.

Bit-width b 4 8

α ≤ 0.1√
2b−1−1

≤ 0.035 ≤ 0.009

β1 ≥ 1/e ≥ 1/e ≥ 1/e

β2 ≥ 1− 0.1
2b−1−1 ≥ 0.99 ≥ 0.999

Steps ≈ α−1 + (1− β2)−1 ≈ 100 ≈ 1000

C ANALYSIS OF ADAM CONVERGENCE

Let T be the period of oscillations at convergence. If we
assume T � 1/(1 − β2), then we can treat the moving
variance estimate as if it is a constant vi = ((T − 1)g2h +
g2l )/T ≈ g2l (1/r2g + 1/T ). However, we cannot make the
same assumption for the relationship between T and β1.
Instead, based on our earlier discussion in Section B.3 of
the bang-bang behavior, we assume that a gradient gl is seen
for a single step, then gh is seen for T − 1 steps. Then for a
given cycle of this behavior,mi = βi1(β1m0+(1−β1)gl)+
(1 − βi1)gh, where m0 is the steady-state minimum mean
during the cycle. Because this is steady-state, we can solve
for m0 and mi:

mi = βi1(β1m0 + (1− β1)gl) + (1− βi1)gh

mT = m0 = βT1 (β1m0 + (1− β1)gl) + (1− βT1 )gh

m0 =
βT1 (1− β1)− (1− βT1 )/rg

1− βT+1
1

gl (19)

mi

gl
= βi+1

1

βT1 (1− β1)− (1− βT1 )/rg

1− βT+1
1

+ βi1(1− β1 +
1

rg
)− 1

rg
(20)
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Figure 9. Close up of Figure 8 for the Adam-trained log threshold gradient on a few select settings.

Adam updates look like θi ← θi−1 − α ·mi/
√
vi or θi ←

θ0−α
∑i
j=0mj/

√
vj . We can solve for T by finding when

θT = θ0 or
∑T
i=0mi/

√
vi = 0. As an intermediate step,

we find:

∆tθ =

t∑
i=0

mi√
vi

=

t∑
i=0

βi1

(
β1

βT
1 (1−β1)−(1−βT

1 )/rg

1−βT+1
1

+ 1− β1 + 1
rg

)
− 1

rg√
1/r2g + 1/T

=
1√

1
r2g

+ 1
T

[
1− βt+1

1

1− β1

(
β1
βT1 (1− β1)− (1− βT1 )/rg

1− βT+1
1

+1− β1 +
1

rg

)
− t+ 1

rg

]
(21)

Now, we set ∆T θ = 0:

0 =
1√

1
r2g

+ 1
T

[
1− βT+1

1

1− β1

(
β1
βT1 (1− β1)− (1− βT1 )/rg

1− βT+1
1

+1− β1 +
1

rg

)
− T + 1

rg

]
= βT+1

1 − β1(1− βT1 )

rg(1− β1)
+ 1− βT+1

1 +
1− βT+1

1

rg(1− β1)
− T + 1

rg

T = rg (22)

The worst case happens when rg is large, so if we substitute
T ← rg and assume rg � 1, we get:

∆tθ ≈
√
rg

[
1− βt+1

1

1− β1

(
β1
β
rg
1 (1− β1)− (1− βrg1 )/rg

1− βrg+1
1

+1− β1 +
1

rg

)
− t+ 1

rg

]
(23)

=
√
rg

[
1− βt+1

1

1− β1
c1 −

t+ 1

rg

]
(24)

where we replace the large expression in (23) with c1 in
(24). We now solve for the critical point of ∆tθ to determine
tmax = argmaxt∆tθ.

0 =
d

dt
∆tθ

=
√
rg

[
ln(β−11 )βtmax+1

1

1− β1
c1 −

1

rg

]
βtmax+1
1 =

1

ln(β−11 )

1− β1
rg · c1

(25)

=
1

ln(β−11 )

1− βrg+1
1

1 + rg

tmax = logβ1

(
1

ln(β−11 )

1− βrg+1
1

1 + rg

)
− 1 (26)

Plugging (25) and (26) into (24),

∆tmax
θ ≈ √rg

[
c1

1− β1
− 1

rg ln(β−11 )

− 1

rg
logβ1

(
1

ln(β−11 )

1− βrg+1
1

1 + rg

)]
(27)

To simplify this expression, note that β1 < 1 and rg � 1 so
1− βrg1 ≈ 1. Then c1/(1− β1) ≈ 1 + 1/rg ≈ 1 and:

∆tmaxθ ≈
√
rg

[
1 +

1 + ln(rg lnβ−11 )

rg lnβ1

]
(28)

Further, if 1/e < β1 < 1, then the right term is negative
and the expression has a simple upper bound:
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∆tmax
θ <
√
rg (29)

In practice, we notice that sometimes noise can can cause θ
to stay on the high-gradient side of the threshold boundary
for multiple steps, causing the momentum to build up. Thus,
to be safe, we recommend designing for ∆tmax

θ < 10
√
rg .

A rough estimate for the number of steps needed for con-
vergence is O(∆dlog2 te/(α|g̃|)). Because of adaptive
gradients, |g̃| should be close to 1, provided we allow
enough time for historical variance to decay -O(1/(1−β2))
steps10. Thus, the overall number of steps would be
O(∆dlog2 te/α + ∆dlog2 te/(1 − β2)). Assuming cali-
bration is used, ∆dlog2 te should be close to 1, giving the
simplified expression O(1/α+ 1/(1− β2)) steps.

Finally, we address how to approximate rg. The operation
of crossing a threshold boundary moves some fraction f of
inputs {xi} from the n ≤ bx/se ≤ p case to the bx/se < n
or bx/se > p cases (assume only bx/se > p for simplicity
from here on). Using the toy L2-loss model (9),

∇(log2 t)
L = s2 ln 2 ·


(⌊x
s

⌉
− x

s

)2
if n ≤

⌊
x
s

⌉
≤ p,

n(n− x/s) if
⌊
x
s

⌉
< n,

p(p− x/s) if
⌊
x
s

⌉
> p

(30)

we see that for any given xi, the ratio rgi between the gradi-
ents in the outer and inner cases is p(p− xi/s)/(bxi/se −
xi/s)

2. But since xi recently switched cases, (p −
xi/s) < 1. As a rough estimate, we might expect rgi ≈
(1/2p)/(1/12) ≈ 6p. Averaged over the entire input,
rg ≈ 6fp / p. The 10× over-design helps address some
uncertainty in this measure as well.

Figure 9 shows a re-run of Figure 8 for the case of Adam
optimization on log threshold gradients. These plots allow
us to validate our Adam convergence analysis above. First
we note that p = 28−1 − 1 = 127, which is an approximate
upper bound on rg and well within the 10× over-design
principle. Next, notice that T ≈ rg. For example, in the
σ = 10−2 case, T ≈ 280 while rg ≈ 272.

Most importantly, we expect the max log-threshold devia-
tion to be upper-bounded by α√rg = (1.6, 0.4, 0.7) from
left to right if our original assumptions hold - that we visit
the lower threshold bin for one step and stay in the upper bin
for T − 1 steps. While the bound holds for all σ, it is close
to not holding for σ = 10−1. A brief inspection reveals

10This is a problem when historical gradient magnitudes were

higher, as is usually the case when ∆dlog2 te < 0, as seen in the
small σ plots of Figure 8.
why this is the case - the log threshold spends far more than
one step in the lower threshold bin per period, violating our
one-step assumption. This violation can be explained by
looking at the gradients, which show that the lower thresh-
old bin sometimes has positive gradients, depending on the
randomness of the input Gaussian vector. These phenomena
motivate our suggestion to over-design by 10×. The cost in
additional steps needed to reach convergence seems like a
worthwhile trade-off.

D BEST OR MEAN VALIDATION

We run validation every 1000 training steps and save the
best top-1 score checkpoint. This approach was initially
driven by a desire to better understand convergence and
stability properties with our method, but we continued using
it since intermediate validation was not too expensive for
5 epochs of retraining. However a valid concern is that
this intermediate validation introduces a positive bias to
our results through cherry-picking. To quantify this, we
compare the positive-biased validation method to simply
taking the average of validation scores at fixed intervals:
20%, 40%, 60%, 80% and 100% of the fifth epoch. As
noted in Table 5, the differences between these methods on
the top-1 accuracy are 0.1% and 0.2% for MobileNet v1 and
VGG 16 respectively, suggesting that cherry-picking only
results in a minor positive bias on our reported accuracy.

Table 5. Best validation (cherry-picked) is compared to the average
of five validations (at pre-determined steps) in the last epoch, for
two networks.

Accuracy (%) Epochs
top-1 top-5

MobileNet v1 1.0 224
70.982 89.886 4.2
70.986 89.860 4.4
71.076 89.930 4.6
71.000 89.870 4.8
71.022 89.944 5.0

Mean 71.0 89.9
Best 71.1 90.0 2.1

VGG 16
71.448 90.438 4.2
71.462 90.456 4.4
71.434 90.436 4.6
71.500 90.426 4.8
71.458 90.456 5.0

Mean 71.5 90.4
Best 71.7 90.4 0.9
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Figure 10. Weight and activation distributions of MobileNet v1 before (black) and after (red) quantized TQT (wt+th) retraining for
thresholds that changed by non-zero integer amount in log-domain. Initial thresholds (cyan) and trained thresholds (blue) are also plotted.
These are the raw thresholds t. Also indicated above each plot are bit-width b and threshold deviation d := ∆dlog2 te for the quantized
layer. A positive deviation indicates preference for range over precision, and a negative deviation indicates otherwise.


