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ABSTRACT
This paper presents a novel end-to-end methodology for enabling the deployment of high-accuracy deep networks
on microcontrollers. To fit within the memory and computational limitations of resource-constrained edge-devices,
we exploit mixed low-bitwidth compression, featuring 8, 4 or 2-bit uniform quantization, and we model the
inference graph with integer-only operations. Our approach aims at determining the minimum bit precision of
every activation and weight tensor given the memory constraints of a device. This is achieved through a rule-based
iterative procedure, which cuts the number of bits of the most memory-demanding layers, aiming at meeting
the memory constraints. After a quantization-aware retraining step, the fake-quantized graph is converted into
an inference integer-only model by inserting the Integer Channel-Normalization (ICN) layers, which introduce
a negligible loss as demonstrated on INT4 MobilenetV1 models. We report the latency-accuracy evaluation
of mixed-precision MobilenetV1 family networks on a STM32H7 microcontroller. Our experimental results
demonstrate an end-to-end deployment of an integer-only Mobilenet network with Top1 accuracy of 68% on a
device with only 2MB of FLASH memory and 512kB of RAM, improving by 8% the Top1 accuracy with respect
to previously published 8 bit implementations for microcontrollers.

1 INTRODUCTION

Enabling machine learning on extreme-edge-devices is chal-
lenging due to their tight memory and computing power
constraints. When envisioning smart sensors operating on
batteries, the target power envelope must be below tens
of mWs to guarantee a battery lifetime of years. This re-
quirement impacts the system architecture design: adding
computational units (e.g. floating-point units) or memory
banks contributes increasing the complexity and the power
cost, and hence the energy, of a system.

Nowadays, microcontroller units (MCUs), such STMicro-
electronics STM32 devices, feature an energy consumption
compliant with the requirement of smart autonomous sen-
sors and include energy-efficient computational units for
running machine learning workloads. However, the typical
size of the embedded memory cuts is limited to a few MB
(a STM32H7 MCU features 2MB of FLASH memory) and
the computation core (commonly a single ARM Cortex-
M CPU) runs up to few hundreds of MHz. To boost the
performance of this class of MCUs while leveraging the
high flexibility of software-programmability, ARM recently
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released a software library, CMSIS-NN (Lai et al., 2018),
which enabled the efficient computation of deep networks
on tiny microcontrollers. The optimized routines composing
the library realize convolutional operations in fixed-point
representations, to exploit instruction-level parallelism. Un-
fortunately, due to memory constraints, only a small set
of relatively complex networks has been ported to the mi-
crocontroller domain yet (Zhang et al., 2017). For what
concerns deep inference models tailored for complex tasks,
e.g. 1000 classes image classification, the deployment on
memory-constrained MCUs is still an open problem.

To address this, recent works focused on designing novel
network topologies optimized not only in terms of accu-
racy but also for computational and memory costs (Howard
et al., 2017; Ma et al., 2018; Wu et al., 2018). In addi-
tion, a variety of compression techniques can be applied
to further shrink a trained model. Among these, the quan-
tization of either activations values and parameters to a
low-bitwidth format, i.e. 8 bit or less, is extremely effective
because, besides reducing the memory footprint, it allows
to operate with low precision integer operations, which can
be efficiently mapped on the limited instruction-set of tiny
microcontrollers. Figure 1 highlights a typical develop-
ment flow to deploy a deep network design into a resource-
constrained device. A pretrained network f(x) is quantized
by means of an initial device-aware fine tuning process,
which can include also a re-training step. The resultant fake-
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Figure 1. Design flow to bring deep neural networks into tiny microntrollers.

quantized model g(x), emulating quantized values during
the forward pass, is turned into an integer-only deployment
model g′(x) by means of an additional optimization step.
Ideally, loss(g′(x)) ≈ loss(g(x)) ≈ loss(f(x)).

State-of-the-art quantization approaches lead to almost-zero
accuracy loss if approximating a deep models with 8 bits
arithmetic (Jacob et al., 2018). This compression level is
however not sufficient to bring deep models with high ac-
curacy into memory-constrained microcontrollers. As an
example, a 8 bit MobilenetV1 (Howard et al., 2017) with
the highest accuracy requires more than 4 MB of embedded
memory, which is prohibitive for the majority of microcon-
troller devices available today. If homogeneously lowering
the number of bits below 8 bits on a per-network base, the
accuracy degradation becomes not negligible (Krishnamoor-
thi, 2018). To keep the accuracy level high, the bit precision
of individual tensors should be tuned such as i) to fit the
memory constraints and ii) to minimize the reduction of
the bitwidth (Dong et al., 2019). These needs motivate our
proposed heterogeneous sub-byte quantization approach,
denoted as Mixed Low Precision Quantization, which finely
controls the per-tensor bit precision in accordance to the
memory budget. Moreover, the compression scheme must
be combined with novel techniques for deriving integer-
only inference models, required to accelerate deep learning
workloads on microntrollers.

In this work we present a methodology for quantizing deep
networks based on a mixed-precision scheme. The selection
of the bit precision of every individual tensor is automated
such as to satisfy the memory limitations of a given device.
Moreover, we improve the methodology (Jacob et al., 2018)
for integer-only inference networks by supporting sub-byte
per-channel quantization. Our experimental evaluation is
conducted over the MobilenetV1 family networks on the
1000 classes Imagenet classification task (Howard et al.,
2017). We argue that this is a representative problem for tiny
microntrollers, not yet solved (Jain et al., 2019), and much
harder than quantizing over-parameterized networks (Choi

et al., 2018).

This paper places the following contributions:

• We introduce the Integer Channel-Normalization (ICN)
activation layer to achieve an efficient conversion of the
fake-quantized graph into an integer-only deployment
graph, also supporting per-channel quantization and
quantization-aware training strategies.

• We present a mixed-precision quantization method-
ology driven by the memory constraints of a target
architecture, which aims at selecting the bit precision
of every weight and activation tensor of an integer-only
network.

• We studied the latency-accuracy tradeoff on iso-
memory mixed-precision networks belonging to the
MobilenetV1 family when running on a STM32H7
microcontroller device.

Our methodology demonstrates, for the very first time, an
integer-only deployment of a MobilenetV1 network on a
STM32H7 microcontroller, featuring only 2MB of FLASH
memory and 512kB of RAM, with 68% Top1 accuracy,
which is 8% higher than previous reported 8 bit integer-
only implementations fitting into the same memory con-
straints (Jacob et al., 2018).

2 RELATED WORK

Quantized Neural Networks. Early works on quantization
of deep networks targeted 16 bits fixed-point implemen-
tations (Lin et al., 2016), which result in an almost loss-
less approximation of full-precision trained networks, or
extreme binarized networks, which, despite the fascinat-
ing low-computational and memory requirements, showed
major accuracy losses when applied on image classifica-
tion benchmarks (Courbariaux et al., 2016; Rastegari et al.,
2016). Several studies demonstrated that 8 bit quantization
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of weights and activations results in a good trade-off be-
tween latency, compression and a near-zero accuracy degra-
dation, also if applied to efficient Imagenet classification
networks (Jacob et al., 2018; Migacz, 2017; Jain et al., 2019).
Among the employed methodologies, TensorRT (Migacz,
2017) approximates the parameters tensor by the minimiza-
tion of the KL divergence metric between quantized and
full-precision values. On the contrary, (Jacob et al., 2018)
quantizes values within a range defined by the tensor min
and max values. Concerning activations, the PACT ap-
proach (Choi et al., 2018) demonstrated the highest effi-
ciency by leveraging backpropagation to learn the quantiza-
tion ranges. Recently, to fit stringent memory requirements,
more aggressive sub-byte precision quantization approaches,
i.e. less than 8 bit, are under investigation (Choukroun et al.,
2019; Jain et al., 2019; Esser et al., 2019; Krishnamoorthi,
2018; Liu & Mattina, 2019). The works (Jain et al., 2019;
Esser et al., 2019) exploits learning-based approaches for de-
termining the quantization ranges of activation and weights
at low-bitwidth precision. State-of-the-art accuracy level on
the efficient MobilenetV1 model has been reported by (Kr-
ishnamoorthi, 2018; Liu & Mattina, 2019), by making use
of per-channel quantization when moving to 4 bits preci-
sion. It is also worth to mention as non-uniform quantizers
have resulted as the best approximators when reducing the
bit precision (Zhang et al., 2018; Wang et al., 2018; Han
et al., 2015). However, a high-precision (floating point)
arithmetic is needed on uncompressed values within the
datapath, hence these methods results not suitable for the
microcontroller domain. In this work, we leverage existing
techniques and show the insights, concerning either compu-
tational and memory aspects, when bringing fake-quantized
networks to the integer-only arithmetic domain, which is
not taken into consideration by this class of works.

Mixed Low Precision Quantization. Mixed-precision
techniques make use of multiple bit precision throughout a
quantized network, motivated by the fact that a lossy and
aggressive linear cut is not necessary to reach a given com-
pression rate. The method (Fromm et al., 2018) targeted per-
pixel binarization based on a defined tensor mask. Despite
achieving an extreme quantization level, a per-pixel quan-
tization cannot be efficiently handled on a microcontroller,
due to the control-based nature of the required dataflow. The
HAWQ (Dong et al., 2019) method relies on a second order
Hessian metric to define prioritization of tensor’s bit preci-
sion to reduce, but without choosing the optimal per-tensor
quantization level. On the same direction, HAQ (Wang et al.,
2018) dynamically explores multiple low-bitwidth precision
at training time by means of reinforcement learning. When
optimizing for memory constraints, a non-uniform quanti-
zation is used. Compered to this, our methodology for bit
precision selection applies statically, before quantization-
aware retraining, and it is based on a rule-based iterative

procedure. Both (Dong et al., 2019) and (Wang et al., 2018)
reports superior accuracy than ours when compressing net-
works to a 1MB of memory footprint, but they rely on a
non-uniform clustering quantization of floating-point pa-
rameters, therefore not fully-comparable with our work in
terms of microcontroller readiness, as current MCUs are not
equipped with the hardware needed for manipulation and
computation on these data formats.

Deep networks for resource-constrained devices. To
bridge the gap between the complexity on deep networks
and the limitations of resource-constrained devices, device-
aware optimization strategies have also been presented. The
work (Blott et al., 2018) introduced FINN-R to quantize and
deploy a generic model into constrained FPGA architectures.
Their quantization approach makes use of integer thresh-
olds (Umuroglu & Jahre, 2017; Gao et al., 2018; Rusci
et al., 2018) for data compression. This method enabled a
lossless integer representation of a fake-quantized networks,
but demands larger memory footprint with respect to our
proposed method. In contrast, the integer-only deployment
in (Jacob et al., 2018) presented a compact fixed-point 8
bit quantization strategy, which performs the folding of
batch-normalization and scaling factors into weights before
applying a uniform quantizer. Additionally, per-layer fixed-
point parameters are needed for adapting the dynamic range
when passing data from a layer to the next one. In contrast
with this work, our methodology generalizes the deploy-
ment process when a more effective quantization strategy is
used, i.e. per-channel mixed-precision quantization.

3 BACKGROUND ON LOW-BITWIDTH
QUANTIZATION

The quantization process aims at quantizing either the net-
work parameters and the activations values, i.e. the tempo-
rary input and output values of the network layers. While
the parameters can be quantized just before the inference
(forward) pass (Migacz, 2017), the quantization of the acti-
vations requires the insertion of fake-quantized activation
layers within the network graph. These additional layers are
responsible for recording the activation range statistics, op-
tionally via backpropagation (Choi et al., 2018), and apply
quantization during the forward pass depending on the col-
lected statistics. Because of injected quantization noise, the
original full-precision network f is approximated with the
correspondent fake-quantized function g. A quantization-
aware retraining of a fake-quantized model is essential to
recover accuracy, especially when low-bitwidth precision is
employed (Jacob et al., 2018).

In the remainder of the paper we only focus on uniform
quantization because its arithmetic is naturally supported by
the instruction-set of general-purpose programmable MCUs.
Hence, without loosing generalities, any tensor t ∈ RN ,
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Table 1. Memory Requirements of a Quantized Convolutional Layer
Label Zx Weights Zw Bq M0 N0 Zy Thresholds

PL+FB (Jacob et al., 2018) 1 cO · kw · kh · cI 1 cO 1 1 1 -
PL+ICN (our) 1 cO · kw · kh · cI 1 cO cO cO 1 -
PC+ICN (our) 1 cO · kw · kh · cI cO cO cO cO 1 -

PC+Thresholds (Umuroglu & Jahre, 2017) 1 cO · kw · kh · cI cO - - - 1 cO · 2Q

either representing weights or activations or only a subset of
them, can be quantized across the range [a, b] with a given
number of Q bits (Jacob et al., 2018) as:

T · St = quant(t) = round(
clamp(t, a, b)

St
)St (1)

where St = b−a
2Q−1 is a real scaling parameter and T is an

integer tensor.

Equation (1) derives from the mapping:

t = St · (Tq − Zt) (2)

where Zt is a bias parameter required to shift the numeric
domain of the quantized tensors Tq into [0, 2Q − 1] or
[−2Q−1, 2Q−1 − 1] ranges, representative of the UINT-Q
and INT-Q datatypes. If a = −b, b > 0, the quantization
range is symmetric and Zt is zero.

In the case of weights, the parameters a and b can be com-
puted as the min and max values of a tensor (Jacob et al.,
2018) or by means of more sophisticated statistic analy-
sis (Migacz, 2017) or via backpropagation (Choi et al.,
2018). A Per-Layer (PL) quantization exploit single val-
ues a and b for the whole full-precision tensor, hence the
Equation 1 is applied layer-wise. A Per-Channel (PC) proce-
dure results more effective by independently approximating
a given tensor along the outer dimension (Krishnamoorthi,
2018). This corresponds to compute the a and b parameters
in correspondence of any output channel of the tensor.

To determine the quantization range of the activation values,
statistics can be collected at training time during the for-
ward pass, or against a specific calibration dataset. The
PACT strategy demonstrated the effectiveness of learn-
ing b via backprogation while a = 0 to reproduce the
non-linearity of the ReLU function. In our implementa-
tion, the round()̇ of Equation 1 is replaced by floor()̇ be-
cause of the lighter software implementation (the operand
gets simply truncated, i.e. a shift operation), becoming:
quant act(x) = floor( clamp(x,0,b)

Sx
) · Sx, Sx = b

2Q−1 .

4 INTEGER-ONLY INFERENCE

Previous work (Jacob et al., 2018) discussed the training
and integer-only deployment of a fake-quantized network
with 8 bit per-layer quantization. The weight quantization

is applied after folding the batch-norm parameters into the
convolutional weights. However, when reducing the bit pre-
cision below 8 bit using per-layer quantization, the folding
process itself can lead to accuracy drop because it can dras-
tically affects the range of the parameters to quantize. As a
reference, Table 2 shows the collapse of the training process
for INT4 MobilenetV1 with the folding of the batch-norm
parameters enabled.

With the aim of an integer-only deployment, we extend (Ja-
cob et al., 2018) to a) prevent the folding of batch normaliza-
tion parameters into convolutional weights and b) support
per-channel low-bitwidth weight quantization. We observe
that any fake-quantized network’s sub-graph composed by a
convolutional layer, a batch-normalization layer and a fake-
quantizer activation module can be modeled by the transfer
function:

y = quant act(
φ− µ
σ
· γ + β) (3)

where φ =
∑
x · w is the output of a full-precision con-

volution and µ, σ, γ, β are channel-wise full-precision pa-
rameters of a batch normalization layer. It is worth to note
that this kind of formulation holds for any feature-wise or
layer-wise scaling factor applied to the convolution’s output
tensor.

When applying a per-layer quantization of either in-
put/output activations and weights, the Rule 2 is injected
into Equation 3 that becomes:

Y = Zy+quant act(
SiSw
So

γ

σ
(Φ+

1

SiSw
·(B−µ+β

σ

γ
)))

(4)

where Φ =
∑

(X − Zx) · (W − Zw) is the integer output
of a low-bitwidth convolution. We define the arrays Bq =
round( 1

SiSw
· (B − µ+ β σγ )), i.e. the quantized bias, and

M = SiSw

So

γ
σ . As done by (Jacob et al., 2018), each element

mi of M can be decomposed as mi = m0i · 2n0i , where
m0i is a signed fractionary fixed-point number with 0.5 ≤
abs(m0i) < 1.0. For the sake of notation, we indicate as
M0 and N0 the two vectors such as M = M0 · 2N0 . Given
this, Equation 4 can be rewritten as:
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Algorithm 1 Cut Activation Bits
Require: a fake-quantized network g of L stacked quantized convolutional layers, a MRW memory constraint, a Qa,min minimum

quantization level
Ensure: the bit precion Qi

x, Q
i
y, i = 0, ..L− 1 to satisfy (7)

1: Qi
y ≡ Qi+1

x ← 8 i = 0, ..L− 1 . Initialization
2: while (7) is not True for every layer do . Stop Condition
3: for i = 0 to L− 2 do . Forward pass
4: while mem(xi, Q

i
x) + mem(yi, Q

i
y) > MRW AND CutBits(xi, Q

i
x, yi, Q

i
y) do

5: Qi
y and Qi+1

x are decremented by one step
6: end while
7: end for
8: for i = L− 1 to 1 do . Backward pass
9: while mem(xi, Q

i
x) + mem(yi, Q

i
y) > MRW AND CutBits(yi, Q

i
y, xi, Q

i
x) do

10: Qi
x and Qi−1

y are decremented by one step
11: end while
12: end for
13: end while
14:
15: function CUTBITS(x1, Qx1 , x2, Qx2 ) . Return True if Qx2 have to be decremented
16: if Qx2 > Qa,min then
17: if Qx2 > Qx1 OR ( Qx2 == Qx1 AND mem(x2, Qx2) > mem(x1, Qx1) ) then
18: return True
19: end if
20: end if
21: return False
22: end function

Y = Zy + clamp(floor(M0 · 2N0 · (Φ + Bq)), 0, 2Q − 1)
(5)

Note that every value in Equation 5 is an integer or a fixed-
point value, so that a quantized convolutional layer can be
computed with an integer-only arithmetic. Since the static
parameters M0, N0, Bq vary along the channel dimension,
we name this activation function (Equation 5) as Integer
Channel-Normalization activation, indicated as ICN. If
weight parameters get quantized per-channel (PC), i.e. every
output channel weight bank has its own Sw and Zw values,
Equation (5) still holds after deriving the Bq, M0 and N0

vector parameters accordingly.

4.1 Memory Requirement

Table 1 schematizes the memory requirements to compute
the transfer Function 5, considering both per-layer (PL) or
per-channel (PC) quantization and the ICN layer. The table
reports the amount of parameters of a convolution opera-
tion with a kw x kh receptive field, cI input channels and
cO output channels. The weight-parameters are stored in
memory as UINT-Q, where Q denotes the number of bits,
so that the represented numeric domain corresponds to [0,
2Q − 1]. Zx, Zw and Zy are in a UINT8 format (Zw as
INT16 if PC is applied), Bq and M0 are stored as INT32
and N0 is a INT8 array. For comparison purpose, Table 1
reports also the higher memory requirement of a quantized
convolutional layer if using the thresholding method pro-

posed by (Umuroglu & Jahre, 2017; Gao et al., 2018), which
exponentially increases with Q.

5 MEMORY-DRIVEN MIXED LOW
PRECISION METHODOLOGY FOR MCU
DEPLOYMENT

To run deep networks on microcontrollers, the memory
footprint is a stringent constraint. Given common microcon-
troller architectures (Zhang et al., 2017), we distinguish:

• Read-Only (RO) Memory, to store frozen inference
parameters, i.e. parameters that will not change during
the lifetime of a smart device.

• Read-Write (RW) Memory, to store temporary val-
ues, i.e. input and output of any quantized convolu-
tional layer that depends on the current sensor data.

At any step of the inference pass, a pair of temporary ac-
tivation tensors, i.e. the input and output of a layer, and
the whole set of fixed parameters must be present in the
memory. If considering a network of L stacked quantized
convolutional layers and a device with MRO and MRW mem-
ory budget (expressed in bytes), the above requirement is
translated as:

L∑
i=0

mem(wi, Q
i
w) +MT i

A
≤ MRO (6)
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Algorithm 2 Cut Weights Bits
Require: a fake-quantized network g of L stacked quantized convolutional layers, a MRO memory constraint, a Qw,min minimum

quantization level, a δ margin
Ensure: The bit precision Qi

w, i = 0, ..L− 1 to satisfy (6)
1: Qi

w ← 8 . Initialization
2: while

∑L−1

i=0
mem(wi, Q

i
w) +MT i

A
> MRO do

3: Compute ri = mem(wi, Q
i
w)/

∑L−1

i=0
mem(wi, Q

i
w) for every layer with Qwi > Qw,min

4: Find R = maxi ri
5: Among the layers with ri > (R− δ), select the k-th with the smallest index i
6: Qk

w is decremented by one step
7: end while

where i indicates the i-th quantized convolutional layer and
mem(t,Q) returns the memory footprint of a tensor t with
bit precision Q. MT i

A
is the memory footprint of the ad-

ditional set of layer’s static parameters (see Table 1) with
datatype detailed in Section 4.1. Concerning activation val-
ues:

mem(xi, Q
i
x) + mem(yi, Q

i
y) ≤ MRW i = 0, .., L− 1

(7)

to ensure input and output of any block fitting the available
memory footprint. Our methodology aims determining the
bit precision Qiw, Q

i
x, Q

i
y of any input xi, output yi and

weight wi tensor of the i-th layer, to match the memory
constraints (6) and (7). Only the values of Q = {2, 4, 8} are
admittable solutions; Q0

x is fixed to 8. Note that yi ≡ xi+1,
hence fixing Qiy is equivalent to set Qi+1

x . Initially, the bit
precision of every tensor is set as Q = 8. Algorithm 1 and
Algorithm 2 reports the pseudo-code of the procedure to cut
the bit precision of, respectively, activations and weights,
under the hypothesis that exists a solution that satisfy (6)
and (7). The procedure in Algorithm 1 iterates over the L
quantized convolutiona layers in a forward and backward
fashion: the bit precision of output tensors Qiy ≡ Qi+1

x are
cut during the forward pass, reductions of the input tensors’
precision Qix ≡ Qi−1y are applied during the backward pass.
Any cut consists of reducing the bit precision by a single
step, i.e. from 8 to 4 and from 4 to 2 bits, and it is applied
if the number of bits of the intended tensor (output during
forward or input during backward) is lower or equal, but
with a higher footprint, than the other activation tensor of
the i-th layer.

Algorithm 2 details the iterative procedure for cutting bits
of the weights parameters. At any iteration, a layer score
ri is computed as the ratio between the layer’s footprint of
the i-th layer and the total occupation. Among the highest
scores ri within a δ margin, the layer with the lowest layer’s
index is selected for the cut. This heuristic rule is intended
to balance the quantization level between the central layers
and the last layers, which are more subject to aggressive
cuts due to the typically higher number of parameters.

6 EXPERIMENTAL RESULTS

We run experiments on the MobilenetV1 family net-
works (Howard et al., 2017) on Imagenet using the Py-
Torch framework. In the following, any model of the
MobilenetV1 family is marked with a label x y, where
x = {128, 160, 192, 224} is the spatial resolution of the
input data and y = {0.25, 0.5, 0.75, 1.0} refers to the width
channel multiplier. The quantization-aware retraining starts
from pre-trained weights1. Every training session executes
on a compute node equipped with 4 NVIDIA-Tesla P100
GPUs for 8 hours. ADAM is chosen as optimizer with an
initial learning rate of 1e-4, which is decreased in a fixed
schedule to 5e-5 and 1e-5 at, respectively, the 5th and 8th
epochs. Running statistics and learned parameters of batch-
normalization layers are frozen after the first training epoch.
Batch size is 128. An asymmetric uniform quantization is
applied on weights: the PACT method is used in case of PL
quantization while min/max statistics are employed in case
of PC quantization. PPQ (Liu & Mattina, 2019) is applied
for refining pre-trained weights before the quantization-
aware retraining. Folding of batch-normalization param-
eters into weights, when applied layer-wise, starts from
the 2nd training epoch. Activations are quantized with the
PACT strategy. The code to reproduce our experiments is
open-source 2.

1Pretrained weights are downloaded from https:
//github.com/tensorflow/models/blob/master/
research/slim/nets/mobilenet_v1.md

2 https://github.com/mrusci/
training-mixed-precision-quantized-networks

Table 2. Integer-Only MobilenetV1 224 1.0
Quantization Method Top1 Accuracy Weight Memory Footprint

Full-precision (Jacob et al., 2018) 70.9% 16.27 MB
PL+FB INT8 (Jacob et al., 2018) 70.1% 4.06 MB

PL+FB INT4 (our) 0.1% 2.05 MB
PL+ICN INT4 (our) 61.75% 2.10 MB
PC+ICN INT4 (our) 66.41% 2.12 MB

PC W4A4 (Liu & Mattina, 2019) 64.3% -
PC W4A8 (Krishnamoorthi, 2018) 65% -

PC+Thresholds INT4 (our) 66.46% 2.35 MB

https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://github.com/mrusci/training-mixed-precision-quantized-networks
https://github.com/mrusci/training-mixed-precision-quantized-networks
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Figure 2. Top1 Accuracy of INT4 integer-only MobilenetV1 models, compared with full-precision, INT8 integer-only and INT4 fake-
quantized models.

Figure 3. Accuracy-latency tradeoff of Mixed-Precision MobilenetV1 networks running on a STM32H7 device with MRO = 2MB and
MRW = 512kB.

To prove the effectiveness of the ICN layers, we quantize
weights and activations of every layers of a MobilenetV1
224 1.0 model to 4 bits and we measure the accuracy
achieved in case of integer-only approximation. Table 2
reports the accuracies for the following configurations:
PL+FB stands for per-layer quantization and folding of
batch-norm parameters into weights, PL+ICN indicates per-
layer quantization with ICN layers and PC+ICN refers to
per-channel quantization with ICN layers. First we can note
that only thanks to the proposed ICN layers, the folding of
the batch-norm parameters, which causes the collapse of the
training process (PL+FB INT4), can be avoided, therefore
enabling the convergence of the training algorithm (PL+ICN
INT4 and PC+ICN INT4). Secondly, the insertion of the
ICN layer introduces an almost negligible accuracy drop
of 0.3% on PL+ICN and 0.05% on PC-ICN with respect
to the fake-quantized graph. Moreover, by means of PC
quantization, the accuracy of our 4 bit model is higher than
other reported implementations (Krishnamoorthi, 2018; Liu
& Mattina, 2019). In addition, Table 2 also reports the mem-
ory footprint of our PC+ICN INT4, which results to be 10%
less memory-demanding than using the integer thresholds

based methodology.

More in details, Figure 2 shows the Top1 accuracy of the
family of INT4 integer-only PC+ICN Mobilenets. Com-
pared with the related INT4 fake-quantized models, using
ICN activations results into negligible loss. Only for the
160 0.75 case a relevant accuracy drop was observed. To
recover it, we found effective to change the datatype of the
quantized bias parameters to Q30.2, hence paying only an
additional shift operation on the accumulator before of the
bias addition.

After validating the ICN solution, we evaluate our proposed
memory-driven methodology for the deployment of deep
networks on microcontrollers. To this end, we apply our
mixed-precision technique on all the Mobilenet configura-
tions after setting the memory constraints MRO = 2MB
and MRW = 512kB, corresponding to the memory charac-
teristics of an STM32H7 device. The trained integer-only
models are deployed and bechmarked on the STM32H7
MCU running at 400MHz, to assess the implications for
inference implementations. To this aim, we leverages an
extended version of the ARM CMSIS-NN (Lai et al., 2018)
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Figure 4. Bit precision (on the radial axes) of weights (blue curves) and activation output tensors (orange curves) for any layer (numbered
from 0 to 27) of the MobilenetV1 models with input size 224 or 192, after setting the memory constraints MRO = 2MB and
MRW = 512kB. Top1 Accuracies on Imagenet are reported in the green boxes in case of Per-Layer (PL) or Per-Channel (PC) Mixed
Precision Quantization.

library, featuring an output stationary dataflow, and we mea-
sure latency in terms of clock cycles. Figure 3 plots the
accuracy-latency tradeoff measured on two configurations.
MixQ-PL indicates per-layer quantization with either the
folding of batch-norm parameters or ICN for layers with
Qy < 8 or Qw < 8. On the contrary, MixQ-PC-ICN indi-
cates integer-only models with per-channel quantization and
ICN as activation layers. Every curve represents a group of
Mobilenet models with same input resolution. Increasing
the width multiplier causes a longer latency because of the
increasing amount of MAC operations. When applying our
mixed-precision method under this memory constraints, Mo-
bilenet models with width multipliers of 0.25 and 0.5, with
the exception of 224 0.5, features no cuts of bit precision.
Hence, under the configuration MixQ-PL, these points cor-
responds to the 8 bit integer-only models described in (Jacob
et al., 2018).

Figure 4 details the individual tensors bit-precision for
larger MobilenetV1 models after applying memory-driven
mixed-precision quantization (Algorithms 1 and 2) on both
MixQ-PL and MixQ-PC-ICN configurations. Models with
higher number of parameters or activations are more af-
fected by the bit reduction procedure. Typically, first layers
feature large spatial maps but weight tensors with low num-
ber of parameters. On the contrary, last layers feature small
activation tensors, but high number of weight parameters,
with the exception of the depthwise layers.

Pareto frontiers of Figure 3 are mostly populated by MixQ-
PC-ICN configurations. The most accurate model, PC+ICN
224 0.75, scores 68% Top1 accuracy by featuring 4 bit
weight on the last convolutional pointwise and on the linear
layers, in addition to Q1

y, Q
2
y, Q

5
y = 4, as determined by the

memory-driven procedure of Section 5. This score is 8%
higher than the more accurate INT8 Mobilenet (192 0.5)
fitting into the same device. Note that all the configurations
featuring width multiplier 1.0 suffers of a dramatic accuracy
degradation with respect to full-precision settings (from 2%
to 15%) due to aggressive quantization required to fit into
the memory constrains. On the latency side, the fastest infer-
ence model (128 0.25 MixQ-PL), which features a homoge-
neous 8 bit quantization, runs at 10fps, 20× higher than the
the most precise configuration (224 0.75 PC+ICN), but only
achieves 43% of Top1 accuracy. We can observe that the
MixQ-PC-ICN quantization introduces a latency overhead
of approx. 20% with respect to the MixQ-PL setting, due
to the additional subtractions of Zw biases within the inner
loop of the convolution. On the other hand, MixQ-PC-ICN
provides up to 4% more accuracy for classification.

To further test our proposed mixed-precision method, we
set the memory constrain to MRO = 1MB and compare
with other mixed-precision methodologies in Table 3. Our
best models feature up to 7% lower accuracy with respect
to (Wang et al., 2018), but, in contrast with this and similar
works, we remark that we only use integer operations also
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Table 3. Comparison with state-of-the-art mixed precision models when MRO is 1MB
Model Quantization Method Top1 Accuracy Memory

MobilenetV1 224 0.5 MixQ-PC-ICN 62.9% 1MB MRO + 512kB MRW

MobilenetV1 192 0.5 MixQ-PC-ICN 60.2% 1MB MRO + 256kB MRW

MobilenetV1 224 0.5 (Jacob et al., 2018) INT8 PL+FB 60.7% 1.34 MB
MobilenetV1 224 0.25 (Jacob et al., 2018) INT8 PL+FB 48.0% 0.47 MB

MobilenetV1 (Wang et al., 2018) MIX not-uniform 57.14% / 67.66% 1.09 / 1.58 MB
MobileNetV2 (Wang et al., 2018) MIX not-uniform 66.75% / 70.90% 0.95 / 1.38 MB
SqueezeNext (Dong et al., 2019) MIX not-uniform 68.02% 1.09 MB

thanks to the exploited uniform quantization. Moreover, our
solution features a 2% higher accuracy than INT8 models
with comparable memory footprint and tailored for integer-
only deployments.

7 CONCLUSION

By mixing quantization methodologies, it is possible to exe-
cute complex deep neural networks such as MobilenetV1 on
memory constrained MCU edge devices. To pursue this ob-
jective, in this work we introduced a mixed-precision quan-
tization technique tailored for memory-constrained micro-
controller devices, leveraging the formulation of a quantized
activation layer, i.e. the Integer Channel-Normalization acti-
vation, to enable sub byte integer-only deployments. The ex-
perimental results show a MobilenetV1 network running on
a microcontroller equipped with 2MB of Flash and 512kB
of RAM and featuring a Top1 accuracy of 68%, which is
8% higher than state-of-the-art integer-only 8 bit implemen-
tations fitting the same memory constraints.
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