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A APPENDIX

A.1 Detailed Data Set Descriptions

A summary of the characteristics of each data set is provided
in Table 5. In detail, we use the following data sets:

• Hospital is a benchmark data set used in the data clean-
ing literature (Rekatsinas et al., 2017). In our experi-
ments, we inject missing errors instead.

• NYPD 1 contains violation crimes reported to the New
York City Police Department (NYPD). We focus on
the latest snapshot of the data set (June 2019) and
remove some of the attributes relating only to time.
In addition, since we cannot obtain ground truth in a
semi-automated fashion for existing missing values, we
simply remove all the rows containing missing values
and later inject missing errors.

• Chicago 2 consists of data on Chicago taxi rides.
Chicago contains naturally-occurring missing values.
As far as we know, no continuous errors exist beyond
the case where the entire tuple is missing. The primary
attributes with missing values are the “Census Tracts”
and “Community Area” columns which denote the US
census tracts and the Chicago-defined community areas
the taxi ride took place, respectively. In order to judge
the performance of MDI methods on the naturally-
occurring errors, ground truth for census tracts may
be queried by latitude-longitude from an FCC API3

and community areas can be subsequently matched via
the census tract with a join table for community areas
4. Since this data set is the tens of gigabytes in size
we sample 40000 rows from each of the top 10 taxi
companies by number of rides.

• Phase is a data set on three-phase current traces col-
lected by a third-party company. Due to privacy poli-
cies we cannot share the source in this paper.

• We use 10 data sets from the UCI repository 5 (Dua
& Graff, 2017). All of them are used as-is in the ex-
periments except the Eye EEG data set which contains
outlier values we subsequently dropped (if they are
beyond three standard deviations from the mean).

1https://data.cityofnewyork.us/Public-
Safety/NYPD-Complaint-Data-Current-Year-To-
Date-/5uac-w243

2https://data.cityofchicago.org/
Transportation/Taxi-Trips/wrvz-psewurl/

3https://www.fcc.gov/census-block-
conversions-api

4http://robparal.blogspot.com/2012/04/
census-tracts-in-chicago-community.html

5http://archive.ics.uci.edu/ml/datasets/

Table 5: Data sets used in experiments sorted by the propor-
tion of discrete to continuous attributes.

Data Set |r | # Continuous Attributes # Discrete Attributes

Tic-Tac-Toe 958 0 10
Hospital 1000 2 14
Mammogram 831 1 5
Thoracic 470 3 14
Contraceptive 1473 2 8
Solar Flare 1066 3 10
NYPD 32399 4 13
Credit 653 6 10
Australian 691 6 9
Chicago 400k 11 7
Balance 625 4 1
Eye EEG 14976 14 1
Phase 9628 4 0
CASP 45730 10 0

We present functional relationships in the above data sets in
Table 7. The functional relationships fall on the spectrum of
the synthetic experiments (see Section 5.5): Trip Total
from Chicago and D from Phase both correspond to k = 4

and k = 3 for f(XY ) 2 linear, respectively; class from
Balance corresponds to k = 4 for f(XY ) 2 interact; all
other functional relationships where XY is some variant of
2-D coordinates correspond to k = 2 and f(XY ) 2 kernel.

A.2 Hyperparameter Tuning

Table 6: Set of hyperparameters for each model over which
we perform grid search cross-validation.

Method Hyperparameter Search Space

AimNet dropout % [0, 0.25, 0.5]

HCQ weight decay [0, 0.01, 0.1]

XGB gamma [0, 0.1, 1]

MIDAS keep % [0.8, 0.65, 0.5]

GAIN alpha [0.1, 1, 10]

MF # trees [50, 100, 300]

MICE # iterations [1, 3, 5]

Given the large number of hyperparameters in each of the
baseline methods and the numerous data sets we wish to
benchmark against, it is intractable to perform a thorough
hyperparameter search for every baseline method. For all
baselines, we begin with their default parameters as de-
scribed in their corresponding papers or specified in their
open-source implementations. We choose the most influen-
tial hyperparameter for each method, as shown in Table 6,
to perform grid search cross-validation across.

https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-Year-To-Date-/5uac-w243
https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-Year-To-Date-/5uac-w243
https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-Year-To-Date-/5uac-w243
https://www.fcc.gov/census-block-conversions-api
https://www.fcc.gov/census-block-conversions-api
http://robparal.blogspot.com/2012/04/census-tracts-in-chicago-community.html
http://robparal.blogspot.com/2012/04/census-tracts-in-chicago-community.html
http://archive.ics.uci.edu/ml/datasets/
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Table 7: Functional relationships with real-valued domains for each data set where Y = f(XY ). ⇤: since Y and XY are
both continuous and f is linear, all permutations are also valid functional relationships.

Data Set Y XY (continuous)

Chicago

Pickup Census Tract {Pickup Centroid Latitude,Pickup Centroid Longitude}
Dropoff Census Tract {Dropoff Centroid Latitude,Dropoff Centroid Longitude}
Pickup Community Area {Pickup Centroid Latitude,Pickup Centroid Longitude}
Dropoff Community Area {Dropoff Centroid Latitude,Dropoff Centroid Longitude}

Trip Total⇤ Fare+ Tips+ Tolls+ Extras

NYPD

ADDR PCT CD
{Latitude,Longitude}
{X COORD CD,Y COORD CD}

PATROL BORO
{Latitude,Longitude}
{X COORD CD,Y COORD CD}

BORO NM
{Latitude,Longitude}
{X COORD CD,Y COORD CD}

Phase D⇤ A+ B+ C
Balance class left distance⇥ left weight� right distance⇥ right weight

A.3 Training

For all experiments a default embedding size k = 64 is
used with a maximum pruned domain size of D = 50 for
AimNet. We always train AimNet with 20 epochs (although
we observe in almost all data sets AimNet converges in
fewer than 3), and each mini-batch consists of 1 sample if
|D|  2000 or 32 samples if |D| > 2000. Since AimNet
uses a mini-batch approach, samples that have a smaller
domain than D have negative values randomly sampled into
its softmax loss since the softmax arguments are padded
anyways to size D for mini-batch training.

A.4 Chicago Deep-Dive

In Figure 6 we plot the latitude-longitude coordinates for a
region of Chicago from the Chicago data set and all sam-
ples in that region. We label each point on the plane with
its Pickup Census Tract label. Note that since these
are centroid Latitudes and Longitudes there are mul-
tiple samples per coordinate point. We display both the
coordinates of the observed samples (which a model can
train on) and the missing samples (which have coordinates
but have missing census tracts). There is an apparent gap
between missing and observed samples for a particular cen-
sus tract. We demarcate the true boundaries of the census
tracts in Figure 7 and notice that the observed and missing
samples do indeed within their corresponding census tract
boundaries. Upon further inspection, the systematic sepa-
ration between observed and missing samples arise from
different taxi companies utilizing different centroid coor-
dinates for census tracts while having inconsistent census
tract reporting standards.

A.5 MAR/MNAR Injection on Real Data Sets

Suppose the error percentage is x and e.g. x = 20%. In
either cases, let A be the target attribute in which we inject
missing values. We uniform-randomly choose one if its
continuous dependent attribute B. We then inject missing
values into A according to its type:

Continuous Target (MAR injection)

1. Sort all tuples in ascending or descending order (ran-
domly chosen) with respect to values of t[B].

2. Uniform-randomly choose a contiguous interval IA|B
in t[B] equivalent to x of all tuples. IA|B cannot start
nor end at the endpoints of t[B].

3. Inject missing into all t[A] cells whose co-occurring
values in t[B] is within IA|B .

Discrete Target (MNAR injection)

1. Group tuples by the values of t[A]

2. For a given group gi (for some value vi 2 dom(A)),
randomly choose a cut-off value c. c will either be the
x-th largest or smallest (randomly chosen) among all
the co-occurring values in B (i.e. gi[B]).

3. Inject missing into all gi[A] = vi cells whose co-
occurring values in attribute B is beyon the cut-off
c. That is if c is the x-th largest then inject missing if
gi[B] > c or if c is the x-th smallest then inject missing
if gi[B] < c.

A.6 Detailed Ablation Study Results

We perform an ablation study by removing the attention
layer while imputing on both synthetic and MAR and
MNAR injected data sets. We plot the results of removing
the attention layer on the kernel data sets from Section 5.5
in Figure 8. For |Y | = 1 (each synthetic data set consists of
only one set of Y and X ) in the top row the attention mecha-
nism contributes nothing to the performance. However, once
we introduce |Y | = 5 sets of X , Y we observe that as the
number of classes increases, the attention mechanism even-
tually accounts for > 50% of the prediction accuracy. For
sufficiently difficult imputation problems where the num-
ber of classes is large, and where there are other irrelevant
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Figure 6: Observed vs missing Pickup Census Tract samples in
the Chicago data set.

Figure 7: Approximate bounding polygons of attribute Pickup Census
Tract for the Chicago data set.
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Figure 8: Accuracy on synthetic data sets of AimNet with/without attention layer with |Dsynth| = 5000, |Y| = 1, 5 varying
number of dependent attributes |XY | over different class sizes c = 5, 50, 200.

Figure 9: Imputation Accuracy and NRMS error on real data sets under MNAR/MAR injections of AimNet with and without
attention layer.

attributes to the functional relationship in the data set, the
attention mechanism helps identify the correct inputs XY

for a given Y attribute.

We perform the same ablation study on the real-world MAR
and MNAR injected data sets and plot the results in Figure 9.
We find that for discrete attributes, the attention mechanism
accounts for 5 � 10% of the imputation accuracy on the
NYPD and Chicago attributes, all of which exhibit the kernel
functional relationship for k = 2. Interestingly for the
class attribute in the Balance data set the attention layer
has a non-trivial negative impact on imputation accuracy. In
fact, without the attention layer AimNet would outperform
all other baselines on Balance in Table 4 after accounting for
noise. For continuous attributes, the attention layer has no
effect except on the Chicago attributes with the functional
relationships in Equation 5.

A.7 Sensitivity Analysis

We vary the hyperparameters of AimNet to assess the sensi-
tivity of the model to hyperparameter perturbations, specifi-
cally dropout rate, max domain size and the embedding size
k. The sensitivity analysis is performed on the NYPD data
set with MCAR-injected missing values where p = 0.2 and
the results are shown in Table 8. We observe that for discrete
predictions and the corresponding imputation accuracy, the
model can perform about the same regardless of the dropout
rate, max domain size, and embedding size. In fact a smaller
domain size and embedding size would improve run time
and make AimNet even more competitive in a practical set-
ting. We do observe that for continuous target attributes,
dropout has a negative impact on NRMS. On the other hand,
the embedding size has a negligible effect. It is therefore
recommended to not use dropout for imputing continuous
attributes: one may choose to train a separate AimNet with
just the continuous target attributes.
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Table 8: Sensitivity analysis of AimNet’s hyperparameters.

Accuracy on discrete attributes for the NYPD data set

dropout max domain size embedding size AimNet

base 0.25 50 64 0.921

(dropout rate) 0.0 0.918

0.5 0.920

(max domain size) 10 0.917

100 0.921

(embedding size) 16 0.920

32 0.921

128 0.922

NRMS on continuous attributes for the NYPD data set

dropout rate max domain size embedding size AimNet

base 0.0 50 64 0.150

(dropout rate) 0.25 0.281

0.5 0.509

(embedding size)
16 0.159

32 0.150
128 0.153

A.8 Error Percentage Analysis

We additionally vary the percentage of missing values for
p = 0.4, 0.6 for MCAR-injected errors (in addition to
p = 0.2 in the main experiments). The results for p = 0.4

and p = 0.6 are tabulated in Table 9 and Table 10, re-
spectively. Unsurprisingly the accuracy and NRMS of all
methods deteriorate with more missing values. We observe
however that AimNet maintains its lead compared to the
other baselines and in fact marginally outperforms XGB
and MF on continuous imputation on the CASP data set
when p = 0.6. This suggests that not only is AimNet com-
petitive regardless of the missingness proportion but it in
fact outpaces the baselines empirically when missingness
increases.
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Table 9: Imputation accuracy and NRMS error on the test set under MCAR error injections with p = 0.4 missingness across
our AimNet model and the other baselines.The means of 10 trials per data set/method with different pseudo-random seeds
are reported. Results for each method are after cross-validation on a holdout set. The best results for each data set are
bolded as well as any results that overlap within the confidence interval (± 1 standard deviation).

Data Set Accuracy on discrete attributes (ACC ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Tic-Tac-Toc 0.53± 0.01 0.5± 0.01 0.52± 0.01 0.44± 0.02 0.35± 0.01 0.5± 0.01 0.46± 0.01

Hospital 0.95± 0.0 0.95± 0.0 0.91± 0.01 0.24± 0.01 0.14± 0.02 0.94± 0.01 0.7± 0.01

Mammogram 0.73± 0.02 0.72± 0.01 0.72± 0.02 0.71± 0.02 0.35± 0.01 0.66± 0.02 0.63± 0.02

Thoracic 0.85± 0.01 0.84± 0.01 0.84± 0.01 0.83± 0.02 0.52± 0.15 0.85± 0.01 0.75± 0.03

Contraceptive 0.63± 0.01 0.63± 0.01 0.62± 0.01 0.62± 0.01 0.43± 0.01 0.62± 0.01 0.55± 0.01

Solar Flare 0.76± 0.01 0.75± 0.01 0.75± 0.01 0.66± 0.01 0.46± 0.02 0.74± 0.01 0.65± 0.01

NYPD 0.87± 0.0 0.85± 0.0 0.88± 0.0 0.75± 0.0 0.15± 0.01 0.88± 0.0 0.58± 0.0

Credit 0.73± 0.01 0.7± 0.01 0.73± 0.01 0.6± 0.01 0.39± 0.01 0.73± 0.01 0.63± 0.01

Australian 0.7± 0.01 0.66± 0.01 0.68± 0.01 0.6± 0.01 0.46± 0.01 0.69± 0.01 0.59± 0.01

Balance 0.73± 0.03 0.72± 0.03 0.71± 0.03 0.64± 0.03 0.45± 0.05 0.63± 0.05 0.64± 0.04

Eye EEG 0.67± 0.01 0.62± 0.01 0.73± 0.01 0.55± 0.01 0.52± 0.03 0.78± 0.01 0.53± 0.01

Data Set NRMS on continuous attributes (NRMS ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Hospital 0.81± 0.04 1.1± 0.08 0.92± 0.07 440.63± 61.35 2.26± 1.18 0.89± 0.04 1.23± 0.09

Mammogram 0.92± 0.02 1.02± 0.04 0.98± 0.05 1.12± 0.08 1.05± 0.06 1.01± 0.03 1.25± 0.07

Thoracic 0.94± 0.01 1.09± 0.05 1.03± 0.11 5.64± 7.16 1.23± 0.22 0.99± 0.06 1.32± 0.12

Contraceptive 0.9± 0.02 1.12± 0.04 0.94± 0.02 1.11± 0.02 1.17± 0.05 0.99± 0.02 1.23± 0.06

Solar Flare 0.93± 0.09 0.98± 0.09 1.0± 0.1 10772.7± 4057.37 1.0± 0.09 1.04± 0.11 1.16± 0.07

NYPD 0.32± 0.01 0.44± 0.13 0.28± 0.0 0.69± 0.03 3.63± 0.17 0.22± 0.01 0.62± 0.01

Credit 0.97± 0.03 1.24± 0.03 1.26± 0.41 1.15± 0.07 1.2± 0.08 1.12± 0.18 1.34± 0.11

Australian 0.96± 0.02 1.23± 0.03 1.19± 0.2 1.14± 0.12 1.27± 0.16 1.07± 0.13 1.6± 0.7

Eye EEG 0.48± 0.0 0.71± 0.03 0.47± 0.0 0.91± 0.01 1.0± 0.28 0.44± 0.0 0.67± 0.01

Phase 0.52± 0.01 0.58± 0.0 0.53± 0.01 0.97± 0.01 1.14± 0.26 0.58± 0.01 0.73± 0.01

CASP 0.5± 0.01 1.5± 0.26 0.49± 0.01 0.88± 0.01 0.83± 0.09 0.48± 0.01 0.73± 0.03

Table 10: Imputation accuracy and NRMS error on the test set under MCAR error injections with p = 0.6 missingness
across our AimNet model and the other baselines. The means of 10 trials per data set/method with different pseudo-random
seeds are reported. Results for each method are after cross-validation on a holdout set. The best results for each data set are
bolded as well as any results that overlap within the confidence interval (± 1 standard deviation).

Data Set Accuracy on discrete attributes (ACC ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Tic-Tac-Toc 0.48± 0.01 0.48± 0.0 0.47± 0.01 0.43± 0.01 0.39± 0.01 0.44± 0.01 0.4± 0.01

Hospital 0.86± 0.01 0.86± 0.01 0.68± 0.01 0.24± 0.0 0.11± 0.01 0.79± 0.01 0.37± 0.01

Mammogram 0.69± 0.01 0.69± 0.01 0.68± 0.01 0.68± 0.01 0.34± 0.02 0.62± 0.02 0.58± 0.02

Thoracic 0.85± 0.01 0.84± 0.01 0.83± 0.0 0.84± 0.01 0.51± 0.13 0.84± 0.01 0.72± 0.04

Contraceptive 0.62± 0.01 0.62± 0.01 0.61± 0.01 0.61± 0.01 0.42± 0.02 0.6± 0.01 0.53± 0.01

Solar Flare 0.72± 0.01 0.72± 0.01 0.71± 0.01 0.66± 0.01 0.45± 0.03 0.7± 0.01 0.61± 0.01

NYPD 0.77± 0.0 0.76± 0.0 0.79± 0.0 0.67± 0.0 0.15± 0.0 0.78± 0.0 0.45± 0.0

Credit 0.69± 0.01 0.66± 0.01 0.68± 0.01 0.6± 0.01 0.38± 0.02 0.68± 0.01 0.57± 0.01

Australian 0.67± 0.01 0.65± 0.01 0.65± 0.01 0.59± 0.01 0.45± 0.02 0.65± 0.01 0.54± 0.02

Balance 0.67± 0.03 0.64± 0.04 0.63± 0.03 0.51± 0.06 0.46± 0.04 0.54± 0.03 0.55± 0.04

Eye EEG 0.63± 0.01 0.6± 0.01 0.66± 0.01 0.54± 0.01 0.52± 0.03 0.67± 0.01 0.52± 0.01

Data Set NRMS on continuous attributes (NRMS ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Hospital 0.9± 0.04 1.16± 0.12 1.01± 0.08 139.97± 24.15 3.79± 0.36 0.95± 0.05 1.27± 0.09

Mammogram 0.94± 0.02 1.05± 0.06 1.0± 0.05 1.13± 0.06 1.1± 0.11 1.01± 0.04 1.28± 0.08

Thoracic 0.99± 0.02 1.13± 0.05 1.17± 0.11 3.54± 5.28 1.18± 0.09 1.07± 0.04 1.43± 0.2

Contraceptive 0.94± 0.01 1.15± 0.04 1.01± 0.02 1.12± 0.02 1.31± 0.14 1.14± 0.04 1.29± 0.05

Solar Flare 0.98± 0.06 1.01± 0.06 1.05± 0.09 4454.64± 1610.59 1.07± 0.17 1.13± 0.14 1.24± 0.19

NYPD 0.56± 0.0 0.58± 0.04 0.45± 0.0 0.8± 0.01 3.51± 0.14 0.42± 0.01 0.98± 0.0

Credit 0.99± 0.01 1.33± 0.19 1.23± 0.25 1.14± 0.11 1.24± 0.11 1.13± 0.13 1.43± 0.26

Australian 0.98± 0.01 1.37± 0.26 1.29± 0.42 1.1± 0.04 1.25± 0.12 1.13± 0.19 1.38± 0.09

Eye EEG 0.59± 0.0 0.82± 0.04 0.57± 0.0 0.97± 0.01 1.61± 0.24 0.57± 0.0 0.79± 0.0

Phase 0.64± 0.0 0.71± 0.01 0.65± 0.0 1.0± 0.0 1.45± 0.51 0.71± 0.01 0.91± 0.01

CASP 0.58± 0.01 2.06± 0.51 0.59± 0.01 0.94± 0.01 1.2± 0.22 0.62± 0.0 0.88± 0.03


