
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

SUPPLEMENTARY MATERIAL FOR AG: STAGED PROGRAMMING FOR
EASIER GRAPHS

1 DYNAMIC RNN IMPLEMENTATION

Below is the hand-written graph implementation of the
tf.dynamic_rnn cell.

def dynamic_rnn(rnn_cell, input_data,
initial_state, sequence_len=None):
input_data = tf.transpose(input_data,
(1, 0, 2))

outputs = tf.TensorArray(
tf.float32, input_data.shape[0])

if sequence_length is None:
max_len = input_data.shape[0]

else:
max_len = tf.reduce_max(sequence_len)

def while_body(i, state, outputs):
prev_state = state
output, state = rnn_cell(

input_data[i], state)
state = tf.where(

i < sequence_len,
state,
prev_state)

outputs = outputs.write(i, output)
return i + 1, state, outputs

def while_cond(i, state, outputs):
return i < max_len

_, state, outputs = tf.while_loop(
while_cond,
while_body,
loop_vars=(tf.constant(0),

initial_state,
outputs))

outputs = outputs.stack()
outputs = tf.transpose(outputs, (1, 0, 2))
return outputs, state

2 ERROR HANDLING

In AG, there are three distinct steps of execution, in addition
to the usual syntax verifications performed by the Python
runtime:

• Conversion

• Staging (e.g. TensorFlow graph construction)

• Runtime (e.g. TensorFlow graph execution)

The latter two steps can be associated with the two stages
in the multi-stage programming model that platforms like
TensorFlow and PyTorch’s JIT model implement. Each of

these steps has distinct requirements for error handling, but
principally make use of these two technologies:

• Source map construction. Each node in the AST, even
after several passes of SCT, is associated to an original
line of the user’s Python code.

• Error rewriting. Several frames in the stack trace
of TensorFlow code, especailly AG-generated Tensor-
Flow code, points to lines of code written by the AG
compiler system, and not the user. We are able to reas-
sociate temporary files (used when generating code in
AG) to the user’s original source files.

Conversion Errors Conversion errors may occur due to
code that is otherwise legal Python, but is unsupported by
AG. These errors usually originate inside AG internal code.

For usability, such errors must indicate the location in the
converted code of the idiom that caused the error. In addi-
tion, the error message must provide sufficient information
to allow the developer to remedy the error. Lastly, the error
stack trace should avoid references to internal code, as they
are typically uninformative to the user.

For example, the code snippet below will result in a con-
version error indicating that the unary + operator is not
supported:

def f(y):
return +y

Currently, we facilitate this requirement by generating a
stack-trace-like message that indicates the location of the
unary plus operator, and including the message that the
operator is not supported. In the future, we plan to further
improve the conciseness of error messages of this type.

Staging Errors Staging errors can occur in successfully
converted code and are typically raised because of disal-
lowed or invalid argument types, shapes, hyperparameter
values, or other conditions that are only detectable at run-
time. Errors in auto-generated code at this stage are also
intermingled with all other errors that occur at Python run-
time.

For example, the converted code snippet below will result
in a staging error indicating that the mean argument is of

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Supplementary Material for AG: Staged Programming For Easier Graphs

an invalid type:

def f(x):
return tf.random_normal(

(2,),
mean=0.0, # tf.float32
dtype=tf.int32)

Naively generated errors raised from inside of auto-
generated code at staging time are difficult to interpret. To
address this, we generate a stack-trace-like message that
frames from the original code that the intermediate code
was generated from, and excludes frames from internal code
like AG. This is facilitated by the AST source map that we
maintain between each node in the generated AST and the
user’s original source code.

Another challenge is that error messages may refer to gen-
erated symbols or to contexts specific to generated code.
Addressing this shortcoming is a subject of future work.

Runtime Errors The name of these errors refers to the
staged IR runtime.

For example, integer division by zero errors in TensorFlow:

def f(n):
return tf.constant(10, dtype=tf.int32) / n

The IR execution environment typically includes facilities
to trace the source of the error to user code, however, in
the case of AG that will be generated code. To remedy this,
we offer the possibility to intercept these errors and attach
information that helps the user further trace the source of
error to original, pre-conversion code.

The main challenge with intercepting runtime errors is that
staged programs are executed at an unknown time and un-
known place in the user code. For example, TensorFlow
AG returns one or mode Operation or Tensor objects
that the user can execute later. We offer a separate API,
AG.improved_errors that the user can call when run-

ning staged computations, and which will make the neces-
sary rewrites on any errors that may encounter.

The API for TensorFlow is used as a context manager that
wraps the calls to sess.run :

converted_f = AG.to_graph(f)
tensor_result = converted_f(inputs)

with tf.Session() as sess:
with sn.improved_errors(graph_f):
sess.run(result)

We plan to further refine the error messages that this mecha-
nism offers. We also plan a more seamless error handling

process in TensorFlow Eager.

3 USEFUL UTILITIES

In order to build the system as described, we created a large
library of source code transformation tools that we anticipate
will be useful to the broader Python community.

Easy Code Quoting and Unquoting A few of the utility
functions are listed below:

• parser.parse_entity(fn_or_class) takes a
Python class or function and returns the corresponding
AST node, wrapped in a containing Module node.

• parser.parse_str(code_string) is dentical to
parse_entity , except takes a string of Python code

as input. The string may contain any valid Python code.

• pretty_printer.fmt(ast_node) returns a
pretty-printable string representing the AST.

• compiler.ast_to_source(ast_node) un-
parses an AST into the equivalent Python code,
returned as a string.

• compiler.ast_to_object(ast_node) com-
piles an AST into an equivalent Python entity, returned
as a module.

For example:

node = parse_str('a = b')
print(fmt(node))

Output:
Module:
| body=[
| | Assign:
| | | targets=[
| | | | Name:
| | | | | id="a"
| | | | | ctx=Store()
| | | | | annotation=None
| | |]
| | | value=Name:
| | | | id="b"
| | | | ctx=Load()
| | | | annotation=None
|]

These utilities make it easy to make small modifications to
the AST.

node = parse_str('a = b')
node.body[0].value.id = 'c'
print(ast_to_source(node))

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Supplementary Material for AG: Staged Programming For Easier Graphs

Output:
a = c

Templated Code Rewriting Example:

code_quote = '''
def fn(args):

body
'''
new_body = textwrap.dedent('''

a = x
b = y
return a + b

''')
node = templates.replace(

code_quote,
fn='my_function',
args=('x', 'y'),
body=parser.parse_str(new_body).body

)
print(compiler.ast_to_source(node))

Output:
def my_function(x, y):
a = x
b = y
return a + b

The function inserts string symbols or AST nodes into the
quoted code template, and performs additional integrity
checks. This allows for the easy construction of complicated
code blocks, especially with respect to building the AST
manually.

4 EXTENDED DETAILS ON SIDE EFFECT
GUARDS

Based on the heuristics for detecting and converting side
effect guards described in the main text, lone function calls
generate control dependencies.

Before conversion
def f():
print(1)
print(2)
return x + 1

x = f()
print(3)
x = x + 1

After conversion (simplified)
def f():
with ag.control_deps([ag.print_(1)]):
with ag.control_deps([ag.print_(2)]):

return x + 1
with ag.control_deps([ag.print_(3)]):

x = x + 1

Note that control dependencies only affect the statements
inside the block that contains them. In the example above,
print(3) is not gated by the completion of f , and may

execute in parallel. Improving this behavior is also a topic
for future work.

Another special case arises when a function with side effects
is called last in its block. In this case, we insert a dummy
computation at the end of the block. This ensures the block
itself matches the heuristic for ”function with side effects”.

Before conversion
def f():

print(1)

After conversion (simplified)
def f():

with ag.control_deps([ag.print_(1)]):
return tf.constant(1) # dummy value

If the block does have return values, then we wrap any
returned Tensor with an tf.identity op.

Before conversion
def f():

print(1)
return x

After conversion (simplified)
def f():

with ag.control_deps([ag.print_(1)]):
return tf.identity(x)

3

