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ABSTRACT
There is a perceived trade-off between machine learning code that is easy to write, and machine learning code
that is scalable or fast to execute. In machine learning, imperative style libraries like Autograd and PyTorch are
easy to write, but suffer from high interpretive overhead and are not easily deployable in production or mobile
settings. Graph-based libraries like TensorFlow and Theano benefit from whole-program optimization and can be
deployed broadly, but make expressing complex models more cumbersome. We describe how the use of staged
programming in Python, via source code transformation, offers a midpoint between these two library design
patterns, capturing the benefits of both. A key insight is to delay all type-dependent decisions until runtime,
similar to dynamic dispatch. We instantiate these principles in AutoGraph, a software system that improves the
programming experience of the TensorFlow library, and demonstrate usability improvements with no loss in
performance compared to native TensorFlow graphs. We also show that our system is backend agnostic, targeting
an alternate IR with characteristics not found in TensorFlow graphs.

1 PROGRAMMING PARADIGMS FOR
MACHINE LEARNING

Programming platforms specialized for machine learning
(ML) are undergoing widespread adoption, as ML mod-
els such as neural networks demonstrate state-of-the-art
performance on many important industrial problems like
translation and image recognition. In order to support this
proliferation of use, there has been rapid development of
platforms for building new ML models. These platforms
follow two main paradigms, graph-based programming and
imperative programming. These have also been labeled
Define-and-run and Define-by-run (Tokui et al., 2015b).

Graph-based systems like TensorFlow and Theano use a
high-level language (typically Python) to metaprogram a
lower-level intermediate representation (IR) of computation
(Abadi et al., 2016; Al-Rfou et al., 2016). In TensorFlow’s
case, this IR provides a representation that can then be au-
tomatically distributed across a datacenter, executed on ac-
celerator hardware like GPUs or TPUs, deployed to mobile
devices or web servers, and can benefit from whole-program
optimization. The computational gains are significant, but
come at the cost of additional cognitive load for developers.

Imperative programming systems like PyTorch and Auto-
grad (Paszke et al., 2017; Maclaurin et al., 2015) run user
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code directly, building up a representation of the user’s pro-
gram incrementally for either automatic differentiation or
compilation. TensorFlow also supports imperative-style cod-
ing via “eager execution”, where user-written Python code
immediately executes TensorFlow kernels, without a graph
being built. Such systems allow the user to enjoy the benefit
of traditional imperative coding, but have reduced opportu-
nities for program optimization, scalable computation and
portability.

The differences between these approaches are especially ap-
parent for models that require data-dependent control flow,
such as conditionals or loops, which are important for state
of the art methods in Reinforcement Learning, sequence-
based models, and many other emerging research areas.
Imperative platforms allow a user to write idiomatic and
native Python control flow, using traditional syntax for data-
dependent control flow operations such as conditionals and
loops. However, this approach reduces opportunities for
whole-program optimization and requires retracing on every
execution for automatic differentiation. Graph-based plat-
forms avoid this issue, but do not allow traditional Python
syntax for data-dependent control flown, and instead re-
quire any data-dependent control flow to be expressed in a
functional form. This is required because Python does not
natively support deferring the execution of control flow.

While graph-based and imperative programming are of-
ten presented as orthogonal and independent programming
paradigms, we provide an approach that offers the best of
both, retaining imperative usability benefits while still yield-
ing graph-based performance and portability benefits. We



AutoGraph: Imperative-style Coding with Graph-based Performance

note that this approach assumes the ability to transform
code into a specialized IR, and that this IR confers real
benefits to the programmer such as speed, memory and nu-
merical stability optimizations, as well as deployability to
a variety of platforms. However, like many IRs, we also
assume that it is cumbersome to program directly. Due to its
widespread usage and robust IR, we focus much of our dis-
cussion on TensorFlow graphs, but show in our evaluation
(Section 9.1) that this approach is completely independent
of any back-end, and indeed, we can represent programs
not easily expressible in TensorFlow’s IR by selecting a
different back-end for our code generation engine to target.

The contributions of this paper are as follows:

• We propose a new methodology that provides users
the expressive power of imperative ML systems, while
retaining the performance and portability of graph-
based systems.

• We demonstrate this methodology in Python using
static analyses and source code transformations (SCT).

• Using these analyses and code transforms, we enable
staged programming in Python dispatching on runtime
type information, in most cases requiring no additional
annotations.

• We use our system, called AutoGraph, to convert id-
iomatic Python into TensorFlow Graph IR. We show
that AutoGraph generalizes to target other back-ends,
and can convert Python code into the Lantern IR, which
supports features absent from the TensorFlow Graph
IR, such as re-entrant function calls.

• We demonstrate that our system allows a user to easily
express complex ML programs that lower to an opti-
mized IR, and run as fast as hand-written alternatives.

2 RELATED WORK

A number of existing systems and approaches also aim to
provide an easy-to-use programming interface for defin-
ing ML models without degrading performance. One such
example is the Open Neural-Network eXchange (ONNX)
format (ONNX Contributors, 2018), which provides an IR
with APIs for many high-level front-ends that can target
a number of popular back-ends focused on optimization
and high-performance computing. This IR is exhibited as a
computation graph, generated through the use of tracing, as
in many imperative systems. ONNX provides insight into
the ability to use an IR as the broker between imperative
and graph-based systems, though extracting graphs via trac-
ing may yield a loss of control flow information due to the
inability to capture data-dependent control flow.

Another recent approach is that of PyTorch’s Torch Script
framework (PyTorch Contributors, 2018). While based on
Python AST translation similar to AutoGraph, there are a

number of important differences, most notably the lack of
staging beyond shape propagation on a dynamically-shaped
graph. A more complete comparison of Torch Script and Au-
toGraph can be found in Section 10. The Myia system (van
Merrienboer et al., 2018) provides a similar facility Torch
Script, where the user expresses numeric code in Python
which is then parsed into a graph-based IR distinct from the
Python AST. JANUS (Jeong et al., 2019) operates like a JIT
compiler from Python bytecode to TensorFlow graph code,
modifying the Python interpreter. In contrast, AutoGraph
works as a stand-alone library performing source-to-source
transformations.

Providing easier deferred execution using staged program-
ming or multiple dispatch has a long history. Notable ex-
amples include Lightweight Modular Staging’s type-based
deferred execution model (Rompf & Odersky, 2010), the
paired use of Lua and Terra to stage high-performance nu-
merical code (DeVito et al., 2013), and Julia’s multiple
dispatch system (Bezanson et al., 2012). Libraries imple-
menting or using code rewriting in Python have been in
limited use, including the privacy- and confidentiality-aware
Jeeves system (Yang et al., 2016), which relies on MacroPy
(Haoyi et al.), as well as the Hy system, a Lisp dialect em-
bedded in Python (Hy Contributers, 2018). However, each
of these approaches alone, without substantial modification,
are inappropriate for the Python language.

Other efforts contributed a variety of ML frameworks with
different features. Lantern (Wang & Rompf, 2018; Wang
et al., 2018) applied concepts of programming languages
research (delimited continuations and multi-stage program-
ming) to implement an expressive graph-based ML frame-
work. Tangent (van Merrinboer et al., 2017) performs auto-
matic differentiation using SCT. Dynet (Neubig et al., 2017)
is a define-by-run system with a dynamic batching runtime
for automated batching computations. MXNet (Chen et al.,
2015) offers both options of define-by-run and graph-based
through the use of different syntax. Both chainer (Tokui
et al., 2015a) and torch-autograd, a Lua port of the Auto-
grad library (Torch Autograd Contributors, 2018) are pure
define-by-run systems. Numba (Lam et al., 2015) translates
annotated Python functions to machine code at runtime.

3 PROGRAMMING TENSORFLOW

The TensorFlow software programming system has become
popular for ML practitioners, particularly those focusing
on large-scale training and deployment (Hale, 2018). ML
programs naturally execute in separate stages, as model
architecture and data examples become available at differ-
ent points in a program’s lifecycle, and TensorFlow makes
these stages explicit. A TensorFlow user must first build
up a representation of the computation to be run, and then
later in their program, specify that the computation should
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be executed. Dataflow graphs are used for this represen-
tation, because they can be readily optimized, distributed
and deployed. This programming model is sometimes non-
obvious, leading to difficult usability issues and bugs, and is
particularly acute in the case of specifying control flow. For
example, some control flow constructs should be included
in the lowered IR, while others are meant to specify whether
or not computation should be staged into the IR. A common
coding pattern is to conditionally stage computation using
model hyperparameters:

# Conditional on bool not added to graph
if HParams.nonlin == 'relu':

x = tf.nn.relu(x)
else:

x = tf.nn.tanh(x)

However, other uses of control flow are meant to be executed
in a data-dependent manner:

# Conditional on Tensor added to graph
x = tf.cond(tf.reduce_sum(x) > 0,

lambda: x * x, lambda: x)

In the code above, the conditional statement is expressed in
a functional style so that it can be executed in-graph in a
data-dependent manner. However, this clashes aesthetically
and pragmatically with the imperative style of Python. This
difficulty is exacerbated when the user needs to nest con-
trol flow, or use other Python idioms like continue and
break . We would instead prefer to write

# Conditional on Tensor - staged
if tf.reduce_sum(x) > 0:

x = x * x

and have it be automatically converted into the functional
style. We want this conversion to only occur for expres-
sions using numeric types. Conditionals switching on plain
Python booleans (e.g., the hyperparameter example above)
should be executed imperatively, without staging.

4 EXTENDING OPERATOR OVERLOADING

In the case of TensorFlow, metaprogramming dataflow
graphs can be difficult for complex programs, but it is made
easier via operator overloading. For example, the user does
not need to type out tf.add(a, b) , but instead can sim-
ply use a + b . This is possible due to Python’s ability to
allow the programmer to overload a subset of the language.
Python’s approach to operator overloading allows custom
classes, like the Tensor type in TensorFlow, to override
some default functionality, like their behavior when used in
binary operators (e.g. +,*,-,\%,/,ˆ,˜ ) or item access.1

1See Python Language Reference (https://docs.
python.org/3/reference/), Section 3.3.

# Because Python lets us write this ...
class Tensor(_TensorLike):

def __add__(self, right):
return tf.add(self, right)

# ... we can write this
import tensorflow as tf
a = tf.constant(3)
b = tf.constant(4)
c = a + b

This is a powerful facility in the Python language, but it
unfortunately only extends to methods of objects or classes,
and does not include programming constructs required to
build modern ML models. For example, the behavior of
conditionals cannot be overloaded in Python.

# We can write if statements...
if cond:
ans = true_fn()

else:
ans = false_fn()

# ... but we cannot overload them
def __if__(self, cond, true_fn, false_fn):

if cond:
return true_fn()

else:
return false_fn()

If overloading control flow syntax were possible, imper-
ative programs would be able to generate full representa-
tions of user code, including previously-invisible loop and
conditional statements. Graph-based programs would not
need to require users to write their program control flow
in a cumbersome functional form, because they could pro-
vide non-standard overrides of __if__ , __for__ and
__while__ and other useful parts of the Python language.

To circumvent this limitation, we use SCT on whole func-
tions to enable overloading non-local parts of the Python
language. We describe a specific instantiation of this system,
called AutoGraph which uses SCT to allow users to target a
lower-level IR while still writing idiomatic Python.

5 STAGED PROGRAMMING FOR
REAL-WORLD ML SYSTEMS

Using the ability to overload arbitrary Python syntax, we
built a staged programming system called AutoGraph for im-
proving the performance of imperative-style ML programs
and conversely, the simplicity of graph-based ML programs.

AutoGraph allows users to program using idiomatic and
imperative-style Python, but still benefit from the advan-
tages of TensorFlow graphs, and is exposed to users via a
single-function API, as a Python function decorator as seen
in Listing 1.

3
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import autograph as ag

# AutoGraph converts whole
# functions via a decorator...
@ag.convert()
def f(x):
if x > 0:

x = x * x
return x

# ... into a form where control flow
# and other idioms are overloadable
def new_f(x):
def if_true():
x_1 = x
x_1 = x_1 * x_1
return x_1

def if_false():
return x

x = ag.if_stmt(
ag.gt_(x, 0), if_true, if_false)

return x

Listing 1: AutoGraph automatically converts the code on
the top into the code on the bottom (simplified example).

AutoGraph works with control flow, such as if , for and
while statements, even if they are arbitrarily nested or

contain break and continue statements.

The AutoGraph system can overload conditionals and loops
via SCT, allowing us to deviate from Python’s default behav-
ior. Note that, using the same style of SCT, we may choose
to overload some statements while preserving Python se-
mantics for others. Because of this, we anticipate that this
might be a tool of general interest to Python developers, or
a feature that new language implementations might want to
consider including. In order to transparently support control
flow that is meant to either be staged or unstaged in Tensor-
Flow, as in the conditional examples in Section 3, we must
change the behavior of if statements based on the type of
the boolean predicate.

6 “DYNAMIC DISPATCH” ENABLES
STAGED PROGRAMMING IN PYTHON

Given that we can enable overloadable control flow in
Python, we can redefine its default behavior by writing
a non-default implementation of ag.if_stmt . In the case
that a Python boolean is used as the predicate of a con-
ditional, we would want to execute the conditional with
normal semantics. However, if a TensorFlow Tensor is sup-
plied, or some other specialized numeric type, we would
want to stage more specialized code. A simplified version
of ag.if_stmt is shown in Listing 2.

We use the term dynamic dispatch to describe this runtime

def if_stmt(cond, body, orelse):
if is_tensor(cond):
return tf.cond(cond, body, orelse)

elif cond:
return body()

else:
return orelse()

Listing 2: Simplified version of AutoGraph’s conditional
statement override.

decision making, as it is analogous to dynamic method
dispatch common in object oriented programming. Dynamic
dispatch critically allows us to seamlessly switch between
two common uses of control flow in ML code – a “macro-
programming” mode that switches or loops on the value of
hyperparameters, and a data-dependent mode, where the
control flow is lowered into the target IR.

The same logic is applied to for and while loops in
the equivalent of ag.for_stmt and ag.while_stmt

functions. We also provide functionality for overriding the
print statement, which is ordinarily incompatible with

TensorFlow graphs, since print would log information
immediately, and we instead want to log values at graph
runtime.

Note that some native Python constructs, like break and
continue statements have no direct representation in

TensorFlow. This requires code transformations which en-
tirely remove these statements without affecting program
semantics. This is achieved by lowering the respective state-
ments into equivalent TensorFlow constructs. For example,
continue is lowered using extra variables and condition-

als.

The dynamic dispatch approach incurs extra runtime over-
head. Indeed, if AutoGraph was used to perform normal
unstaged Python computation, it would be slower. However,
because we target a lower-level IR that can be executed sep-
arately from the Python runtime, this overhead is amortized.

General Approach The conversion of a function pro-
ceeds as follows:

1. Read the source code of the function and obtain its
closure variables, if they are available.

2. Parse the source code into a Python AST, abstracting
away small differences between Python versions.

3. Transform the source code in multiple passes, with
each pass consisting of two major steps:
(a) Static analysis, detailed below. The AST is anno-

tated with additional information that the actual
transformation may use.

(b) AST transformations, where each transform han-
dles a specific Python idiom. The specific trans-
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formations are detailed below.
4. Serialize the final AST into output code.
5. Load the new output code in as a Python function,

and dynamically attach symbols corresponding to the
original function’s closure variables.

Comparison with Static Methods It is possible to ex-
tract computation graphs from Python code statically, but
doing so requires a strict set of constraints. Systems like
Torch Script (PyTorch Contributors, 2018) elect to impose
these constraints in the form of a DSL which is a limited
subset of Python. A major design decision in AutoGraph,
however, is to allow users access to as much of the origi-
nal Python interface as is possible (we discuss limitations
to this in Section 10). Furthermore, due to binding-time
analysis, relying wholly on static methods disallows staged
programming in Python without requiring some form of
an ersatz static type system (e.g., static type annotations).
While enabling staged programming in a dynamic setting for
arbitrary types does require careful consideration (Decker
et al., 2019), our decision to primarily target TensorFlow as
a back-end significantly alleviates some of the implemen-
tation pains due to the central focus of an array-based type
(tensor). We discuss this in detail in Section 7.

7 CODE ANALYSES AND CONVERSION

Only a subset of Python can be trivially converted, and
substantial rewriting of user-provided code is necessary to
enable the overloading required for staged programming.
For example, loops and conditionals need to be rewritten
in functional form; nonlocal control flow statements need
to be lowered. We perform these rewrites with the aid of
dataflow and other analyses of program structure. We also
separate these rewrites into multiple specialized passes.

7.1 Dataflow Analysis

Each specialized pass is preceded by several dataflow analy-
sis passes. These are described below, in the order that they
are run.

Control Flow Graph Construction A standard intra-
procedural control flow graph (CFG) supports several static
analyses.

Qualified Name Resolution We create the abstraction
of qualified names to extend the notion of symbols to
include compound names such as a.b . For example,
the qualified name a.b roughly corresponds to the AST:
Attribute(name=Name('a'), attr='b') .

Activity Analysis Here we annotate AST nodes with the
list of symbols read and modified by the respective state-

ment. Only direct modifications are considered writes. For
example, in the statement a.b = c , a.b is considered
to be modified, but a is not. The activity analysis also
keeps track of lexical scopes, their nesting relationships (e.g.
the parent scope) and the symbols they include.

Reaching Definitions Analysis This standard dataflow
analysis annotates help identify the definition that reaches
each name. Additionally, the list of symbols defined on
entry of certain statements is also annotated.

Liveness Analysis This standard dataflow analysis identi-
fies symbols that are live upon entry into or exit from certain
statements, including compound statements like condition-
als.

7.2 Code Conversion Passes

AutoGraph performs code conversion using an extensible
system of multiple, typically independent, AST conversion
passes. For example, one conversion pass rewrites the if
statements into an overloadable functional form. Another
pass lowers the break statements into new loop predicates
and extra conditionals. This mechanism facilitates adding
support for more Python idioms in time.

Currently, the transformations include the following, in or-
der of application:

Directives Identifies calls to specific functions that serve
as AutoGraph compilation directives and annotates the
relevant AST nodes. An example of such a directive is
ag.set_loop_options .

Break, Continue and Return Statements These are ac-
tually three separate passes, but are very similar in nature.
In each case, the corresponding statement is lowered into
conditionals or expanded loop conditions.

# Before conversion
if cond:
return f(x)

return g(x)

# After conversion
if cond:

return_value = f(x)
else:

return_value = g(x)
return return_value

Assert Statements These are converted in-place to over-
loadable functional form.

Lists List idioms, including list literals and the append

and pop function calls are overloaded with custom func-
5



AutoGraph: Imperative-style Coding with Graph-based Performance

tions (e.g. ag.list_append and ag.list_pop ) that
allow staging the respective operation.

Array computations require an additional idiom not present
in the standard Python library: the stack operation. Au-
toGraph provides the ag.stack function which can be
overloaded in a manner consistent with the other overloads.
Note that list access (e.g. l[i] ) and mutation are deferred
to a separate conversion pass which covers slice operators.

Slices Python does allow overloading the slice opera-
tors ( __setitem__ , __getitem__ ) in user classes.
However, the slice write operation has the semantic
of mutating the target. We rewrite slice writes to
use value semantics as currently required by Tensor-
Flow. For instance, x[i] = y is converted in-place to
x = ag.setitem(x, i, y) . Slice read operations are

converted mechanically.

Function Calls All function calls are overloaded. The
overload will either dynamically convert the target function,
call it as-is or replace it with a new function, depending
on the characteristics of the function being called and the
configuration of the conversion. For example, the built-
in function print may be converted to tf.print (see
Appendix E for details).

# Before conversion
def f(a, x):
return a(x)

# After conversion (simplified)
def f(a, x):
return ag.converted_call(a, x)

Control Flow This conversion pass replaces all local con-
trol flow with an overloadable equivalent functional form.

The if statement is stateless, therefore its functional form
can be expressed using niladic functions that return all the
variables modified inside the statement.

# Before conversion
if x > 0:

x = x * x

# After conversion (simplified)
def true_fn():
return x * x

def false_fn():
return x

x = ag.if_stmt(x > 0, true_fn, false_fn)

Note that Python allows to define (i.e., assign for the first
time) symbols inside the body of control flow statements
and use them later. It is possible to write code where sym-
bols may be undefined based on whether the branch of a
conditional executed or not. However, the functional version

of the conditional operators always sets the symbols that
the conditional may modify in either branch. To simulate
the undefined semantics, we use a special value to reify the
“undefined” state of a variable. This currently deviates from
Python semantics, but we plan to remedy this by verifying
and explicitly deleting “undefined” symbols before they are
used.

The while and for loops are stateful, and their func-
tional form requires functions whose arguments and return
values represent the variables modified inside the loop (its
state).

# Before conversion
while x > eps:
x = f(x)

# After conversion (simplified)
def loop_test(x):

return x > eps
def loop_body(x):

return f(x)
x = ag.while_stmt(

loop_test, loop_body, (x,))

The for statement is handled similarly. Similar to if

statements, while and for loops may define symbols
inside their body. If the loop body never executes, those
symbols will remain undefined. This is also handled by
using special “undefined” values for the symbols that are
not defined (as identified by liveness analysis) upon entry
into the loop.

The overloaded control flow uses dynamic dispatch (see
Appendix E).

Ternary Conditional Expressions The ternary operator
x if cond else y is converted inline to the functional

form ag.if_stmt(cond, x, y) .

Logical Expressions Binary and unary logical expres-
sions can be handled using traditional operator overloading
(e.g. __lt__ for the < operator). However, Tensor

does not support all operators for compatibility reasons (for
example, __eq__ is not supported). Therefore we replace
certain binary and unary operators inline with overloadable
functional forms. For example, a and b is replaced with
ag.and_(a, b) .

Function Wrappers This conversion pass wraps the en-
tire block of functions with additional boilerplate code. This
accommodates for examples the necessary calls to create a
TensorFlow name scope, which improves the readability of
the rendered graph. In addition, the function wrappers con-
tain specialized error handlers that intercept certain errors
to improve usability.
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8 BEYOND TENSORFLOW: ALTERNATE
BACK-ENDS

If TensorFlow is the only back-end of this code transfor-
mation, then the limitations of TensorFlow must also ap-
ply to AutoGraph. However, due to the nature of meta-
programming, the SCT in AutoGraph can easily be used
to target a variety of back-ends. As previously discussed,
one shortcoming of TensorFlow is the inability to handle
re-entrant in-graph functions, and by extension, recursive
models. In order to showcase the utility of a general purpose
SCT methodology as implemented by AutoGraph, we elect
to target a new ML framework prototype called Lantern
(Wang & Rompf, 2018; Wang et al., 2018), which is capable
of generating graphs describing recursive models.

The Lantern IR The Lantern back-end converts Lisp-like
S-expressions describing numeric operations into efficient
C++ code. Critically, Lantern supports programming fea-
tures absent in the TensorFlow graph specification, like func-
tion recursion and in-line function definitions, which are
essential in some state-of-the-art ML language models. We
demonstrate the generality of AutoGraph by targeting the
Lantern S-expression IR, which is supported by additional
code conversion passes.

Staging Functions and Recursion In order to deal
with functions in our model, we introduce two new
functions: __def_staging(function, *args) and
__call_staging(function, *args) . These emit a

function definition or call, respectively, in the generated
S-Expression. Due to the deferred API presented by Au-
toGraph, we have the ability to specialize the generated
functions in the S-Expression IR with respect to known pa-
rameters. Note that this specialization in function calls/defi-
nitions requires no additional modifications, as it is handled
using the existing dispatching and overloading mechanisms
present in AutoGraph. With the ability to define and call
functions in the generated computation graph, this provides
the interface necessary for defining and running recursive
models.

To demonstrate this, we provide an end-to-end example of
Python → S-Expr → C++. We first examine a recursive
function in Python, as follows:

@ag.convert()
def tree_prod(base, tree):

if not tree.is_empty:
l = tree_prod(base, tree.left)
r = tree_prod(base, tree.right)
return l * r * tree.value

else:
return base

With the modifications in place which allow us to target
Lantern, this will generate the following Python code (sim-
plified for presentation):

def run(base, tree):
def tree_prod(base, tree):

def true_fn():
return base

def false_fn():
l = __call_staged(tree_prod,

base, tree.left)
r = __call_staged(tree_prod,

base, tree.right)
return l * r * tree.value

ag.if_stmt(tree.is_empty,
true_fn, false_fn)

__def_staged(tree_prod, base, tree)
return __call_staged(tree_prod, base,

tree)

Note that in order to correctly generate the staged function,
__def_staged must be passed the arguments which will

eventually be passed to the function being defined. Running
this generates S-Expression code, which is then fed as input
to Lantern, which performs some internal computations and
eventually generates and executes the following C++ code:

double Snippet(double base, Tree tree) {
auto rec = [&](Tree tree,
function<double(double)> cont,
double base) {
double grad = 0.0;
if (!tree.is_empty) {
auto cont_l = [&](double x1) {
double sub_grad = 0.0;
auto cont_r = [&](double x2) {
double x3 = tree.value;
double x4 = cont(x1 * x2 * x3);
double x5 = x3 * x4;
sub_grad += x2 * x5;
return x1 * x5;

};
grad += rec(tree.R, cont_r, base);
return sub_grad;

};
grad += rec(tree.L, cont_l, base);

} else
grad += cont(base);

return grad;
};
return rec(tree,
[&](auto x){return 1.0;}, base);

}

As shown, staging a recursive function requires that the gen-
erated C++ code also be recursive (as noted by the rec

function). We note that the generated C++ code looks fairly
complicated, due to the handling of back-propagation. Back-
propagation is implemented via callbacks (seen as contin-
uations, noted by cont , cont_l , and cont_r in the
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code), the details of which can be referenced in Wang &
Rompf (2018); Wang et al. (2018).

9 EVALUATION

We tested the utility of AutoGraph on several axes. First,
we asked whether AutoGraph could improve the readability
of ML code that relied on data-dependent control flow with-
out incurring a performance penalty. Second, we tested if
AutoGraph could be used to move computation usually left
outside of the TensorFlow graph, such as the entire train-
ing process of stochastic gradient descent (SGD), inside
the graph IR. Third, we tested if AutoGraph could be used
to produce performant code using features not supported
in the TensorFlow graph by targeting alternative IRs. We
also prepared additional samples of more complex algo-
rithms, including Neural Model Translation with Attention,
Sequence-to-sequence, MAML metalearning and L-BFGS
optimizations. These can be found in Appendix D.

RNN cells The code snippet below is an implementation
of an RNN model that on simple inputs produces results
identical to TensorFlow’s built-in tf.dynamic_rnn func-
tion and runs at similar speed.

def dynamic_rnn(rnn_cell, input_data,
initial_state, sequence_len=None):
input_data = tf.transpose(input_data,
(1, 0, 2))

outputs = []
ag.set_element_type(outputs, tf.float32)
state = initial_state
if sequence_length is None:
max_len = tf.shape(input_data)[0]

else:
max_len = tf.reduce_max(sequence_len)

for i in tf.range(max_len):
prev_state = state
output, state = rnn_cell(input_data[i],

state)
state = tf.where(

i < sequence_len,
state,
prev_state)

outputs.append(output)
outputs = ag.stack(outputs)
outputs = tf.transpose(outputs,
(1, 0, 2))

return outputs, state

Compare this terse and readable implementation to the
equivalent graph version in Appendix A.

We compared TensorFlow’s official implementation of
tf.dynamic_rnn with both a hand-written, graph-based

implementation, and the code snippet above converted into
graphs via AutoGraph. Each run consisted of an execution
of an RNN having hidden size 256, while varying batch

Table 1. RNN Cell Performance (1K examples/sec)
Sequence Size Seq Size: 64 Seq Size: 128

Batch Size 32 64 128 32 64 128

Eager 0.82± 0.08 1.57± 0.13 2.04± 0.14 0.43± 0.03 0.76± 0.05 1.04± 0.06
Official 2.88± 0.11 3.63± 0.13 5.13± 0.15 1.44± 0.04 1.91± 0.06 2.61± 0.05

Handwritten 2.95± 0.13 3.71± 0.15 5.24± 0.11 1.52± 0.06 1.96± 0.07 2.68± 0.03
AutoGraph 2.72± 0.09 3.61± 0.12 5.05± 0.10 1.37± 0.04 1.86± 0.06 2.59± 0.04

sizes and the sequence length. Five warm-up runs were
executed, and the mean and standard deviation of the 100
following runs are reported. For all examples, each run is ex-
ecuted as one tf.Session.run() call. All benchmarks
were run on a dual-threaded 6-core Intel Xeon E5-1650
CPU. The use of AutoGraph improves the readability of the
code and has a very minor effect on performance.

In-Graph Training Typically, a TensorFlow graph rep-
resenting a single training step is executed repeatedly in a
Python training loop outside of TensorFlow. This method is
used because of the difficulty of using control flow operators
within TensorFlow graphs, and incurs additional computa-
tional overhead. Here, we use AutoGraph to demonstrate
a training loop that is implemented entirely as a compu-
tation graph. We trained a single linear layer on MNIST
with stochastic gradient descent (SGD), and compared its
performance with several other implementations. The first
approach was TensorFlow Eager, an imperative execution
mode for TensorFlow similar to NumPy and PyTorch. The
second approach we tested was a traditional TensorFlow
training process. The third approach was an in-graph train-
ing loop implemented using the TensorFlow while_loop

API.

Table 2. Model and Training Loop

SGD Steps / sec

Eager 274.1± 3.6
Model In Graph, Loop In Python 484.1± 7.7

Model And Loop In Graph 646.5± 14.1
Model And Loop In AutoGraph 623.5± 13.5

Each run consisted of 1000 training steps with a batch size of
200. One warm-up run was executed, and the mean and stan-
dard deviation of the 10 following runs are reported. For the
in-graph training loop examples, the entire set of 1000 train-
ing steps is executed in one tf.Session.run() call. For
the other examples, each training step is run as a separate
tf.Session.run() call. Executing a single-training-

step graph repeatedly in a Python loop (the traditional ap-
proach) is faster than the eager-style code by 75%. Moving
the entire training process into a TensorFlow graph further
yielded a roughly 30% speedup.

8
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9.1 AutoGraph + Lantern: TreeLSTM

We evaluated a model of TreeLSTM for Sentiment Classi-
fication running on the dataset of the Stanford Sentiment
(Socher et al., 2013), following the work of (Tai et al., 2015).
The model embeds sentence parse-trees by recursively em-
bedding the left/right sub-trees and combining the embed-
ding vectors via BiLSTM core. The embedding of whole
sentences is then passed to MLP for sentiment prediction.
The model can be easily expressed in PyTorch using recur-
sive functions, or in AutoGraph targeting recursive functions
in Python. The final generated C++ code was compared
against the PyTorch implementation in terms of training
efficiency. To approximate a “real-world” running time,
this experiment was run using a single thread on a laptop
with a dual-core AMD A9-9410 Radeon CPU @ 1.70GHz
and 8GB of SODIMM Synchronous 2400 MHz RAM, with
Ubuntu 16.04.

Our AutoGraph implementation of TreeLSTM targeting
Lantern yielded performance approximately 2.38 times
faster than that of the PyTorch implementation. Our system
achieved approximately 36.75 SGD steps per second, com-
pared with the 15.41 steps per second using the PyTorch
implementation. We note that we used a batch size of 1 for
both systems due to difficulty in batching recursive models.

Table 3. TreeLSTM Targeting Lantern

Moved to separate files. SGD Steps / sec

Loop and Model in PyTorch 15.41
Loop and Model in AutoGraph/Lantern 36.75

10 DISCUSSION

Developing a source code transformation methodology is
far from mechanical. There exist a number of design deci-
sions which may ultimately yield different results in terms
of expressiveness, performance and portability. In this sec-
tion, we discuss some of these decisions and provide insight
regarding how they shaped the current state of AutoGraph,
including its current limitations. We provide a detailed dis-
cussion of error handling in AutoGraph in the Appendix B.

Engineering Practices as a Feature The code conver-
sion passes we implement in AutoGraph are non-local, and
can interact with each other in complicated ways. For in-
stance, converting deeply-nested for loops and if state-
ments exposes dataflow interactions between each level of
nesting. In order to build a reliable system, we made ex-
tensive use of engineering best-practices. For instance, all
static analyses, code transforms, and utility functions are
extensively unit tested (>50% of the 22k LOC in Auto-
Graph is tests). Further, interactions between features are

tested in end-to-end reference tests. Any changes to the
AutoGraph system require that all unit and reference tests
pass, and all code is manually reviewed by at least one en-
gineer for correctness, readability and adherence to style
guidelines. Anecdotally, this test- and review-oriented devel-
opment practice has caught many surprising and subtle bugs,
and allowed a library as complex as AutoGraph to remain
relatively easy to maintain and extend. Further, we built
many useful utilities for manipulating Python source code
that simplified development (described in Appendix C).

Alternative Approaches for Implementing Staged Pro-
gramming An alternative approach to SCT would have
been to build a new Python interpreter with non-standard
execution semantics for Python programs that could map
to TensorFlow graphs, and indeed, an early proposal for
AutoGraph was to do exactly this. However, a non-standard
Python interpreter would require reimplementing all aspects
of the Python language, including those parts that require
no modifications in machine learning code.

We could also parse Python to our own intermediate repre-
sentation, a strategy taken recently by the Myia system (van
Merrienboer et al., 2018). This intermediate representation
could then be either back-converted to Python or executed
in a dedicated VM. Indeed, this strategy is similar to our
ability to work with Lantern; AutoGraph modifies the origi-
nal Python source code such that it generates S-Expressions
as an IR, which are then consumed by Lantern.

Our choice to emit Python code after conversion has several
advantages. Unsupported code idioms are allowed to pass
through conversion if they do not affect the program se-
mantics. This simplifies the support for legacy TensorFlow
code. Further, the generated code can be inspected, and
even modified by the user.

Comparing Torch Script and AutoGraph Similar to
ONNX, PyTorch’s Torch Script framework (PyTorch Con-
tributors, 2018) allows users to save models for later eval-
uation, while providing an even higher-level interface
for programming: nearly native Python with two new
decorators. These decorators, torch.jit.trace and
torch.jit.script , produce Torch Script code (a sub-

set of Python used as an IR for the eventual computation
graph) from idiomatic Python, though they accomplish this
via different methods.

The torch.jit.trace decorator works as the name sug-
gests: it extracts computation graphs through tracing. This
produces fully shape-specialized Torch Script code, which
allows for highly optimized models (and an easy target for
potential compilers). However, tracing in Torch Script has
the same drawback as found in ONNX: as stated clearly by
the Torch Script developers, “Tracing only correctly records

9
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functions and modules which are not data dependent (e.g.,
have conditionals on data in tensors)...”

Torch Script’s torch.jit.script decorator, on the
other hand, will directly translate the decorated Python
function to Torch Script code, which does allow for data-
dependent control flow. While this seems similar to Au-
toGraph’s source code transformation model (detailed in
Section 6), there are a number of important differences
between the two methodologies. Torch Script is inher-
ently bound to the PyTorch runtime, which prevents the
use of Torch Script with any other specialized or acceler-
ated ML back-ends. Furthermore, torch.jit.script

does all of its work at compile time, and thus the only
view of staging available currently is the ability to do shape
propagation on a dynamically-shaped graph (resulting from
torch.jit.script ). This drawback comes as a result

of the decision to target a relatively basic IR (Torch Script),
rather than Python code. One powerful consequence of this
decision, however, is the ability to cleanly implement au-
tobatching on Torch Script, which is otherwise difficult in
systems targeting a broader IR.

Limitations The Python language is large, and Auto-
Graph does not stage all of it. We focus on the subset
that enables machine learning programming, but we are still
missing many useful constructs, such as associative data
structures and try/except blocks. In some cases, there
is no corresponding construct in the TensorFlow or Lantern
IR, but as we build support for more IRs, we anticipate being
able to successfully convert more of the Python language.
Although only a subset of the Python language is converted
to TensorFlow constructs, AutoGraph does allow nearly ev-
ery Python construct, and will simply call it unconverted.
This allows AutoGraph to be compatible with the vast ma-
jority of existing graph code. Appendix E exhaustively
documents Python language support in AutoGraph.

In addition, the data-dependent staging decisions made by
AutoGraph are obscured from the user, much like Python
operator overloading obscures computation made in the
overloaded operators. For instance, if the user accidentally
passes a Python boolean instead of a TensorFlow boolean
to a conditional, it will not be staged into a graph, with
potential performance implications. Currently, the user has
few tools to catch and debug this behavior. We already
provide better error messages than a system like this naively
would (see Appendix B), but further work is required.

Additional challenges arise from the mismatch between
Python and the IRs typing system. For example, TensorFlow
does not support nullable types, so we impose additional
constraints on the Python semantics by requiring that all
code paths initialize a variable when control flow is staged
in TensorFlow. Similarly, because Python types like lists are

generic, element access lacks type information and we may
require additional user annotations when the IR is strongly
typed, which is usually the case. More advanced type in-
ference mechanics that could obviate these annotation is a
subject for future work.

We make a best effort to guarantee that the conversion to IR
is either semantics-preserving, or it explicitly fails. How-
ever, a more rigorous treatment of the correctness of our
system is needed. We plan to treat this both formally and
empirically, using a random code generation fuzzing system.
In the meantime, we provide as evidence of correctness an
expansive test suite for AutoGraph, containing hundreds
of tests. Furthermore, due to AutoGraph being included
in tf.function , the default way to accelerate code in
TensorFlow 2.0, AutoGraph is also subject to all tests cov-
ering the TensorFlow codebase. While this notion of test-
based correctness does not provide a formal guarantee of
correctness, we note that this is consistent with other formal
analyses of Python semantics (Politz et al., 2013).

Lastly, AutoGraph relies on Python introspection and reflec-
tion APIs, such as inspect and imp . While these are
available in the vast majority if use cases, there are instances
when AutoGraph cannot be used, for example when source
code information is not available.

11 CONCLUSIONS AND FUTURE WORK

We have described AutoGraph, a staged programming sys-
tem for automatically rewriting idiomatic Python code
into an equivalent lower-level IR, including TensorFlow
graphs and other, more experimental, back-ends. Auto-
Graph achieves a balance in the design space between im-
perative and graph-based code. These two programming
models – fully-imperative with high runtime overhead, and
fully-staged with high developer mental overhead – are not
binary choices. Using SCT, we can eliminate the distinction
between the two. We believe that this approach is applicable
broadly, and are working to target a wider suite of IRs in
new applications.

The entirety of AutoGraph is open sourced via the
TensorFlow project on GitHub at https://github.
com/tensorflow/tensorflow/tree/master/
tensorflow/python/autograph.
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A DYNAMIC RNN IMPLEMENTATION

Below is the hand-written graph implementation of the
tf.dynamic_rnn cell.

def dynamic_rnn(rnn_cell, input_data,
initial_state, sequence_len=None):
input_data = tf.transpose(input_data,
(1, 0, 2))

outputs = tf.TensorArray(
tf.float32, size=0, dynamic_size=True)

if sequence_length is None:
max_len = input_data.shape[0]

else:
max_len = tf.reduce_max(sequence_len)

def while_body(i, state, outputs):
prev_state = state
output, state = rnn_cell(

input_data[i], state)
state = tf.where(

i < sequence_len,
state,
prev_state)

outputs = outputs.write(i, output)
return i + 1, state, outputs

def while_cond(i, state, outputs):
return i < max_len

_, state, outputs = tf.while_loop(
while_cond,
while_body,
loop_vars=(tf.constant(0),

initial_state,
outputs))

outputs = outputs.stack()
outputs = tf.transpose(outputs, (1, 0, 2))
return outputs, state

B ERROR HANDLING

In AutoGraph, there are three distinct steps of execution in
addition to the usual syntax verification performed by the
Python runtime:

• Conversion
• Staging (e.g., TensorFlow graph construction)
• Runtime (e.g., TensorFlow graph execution)

The latter two steps can be associated with the two stages
in the multi-stage programming model that platforms like
TensorFlow and PyTorch’s JIT model implement. Each of
these steps has distinct requirements for error handling, but
principally make use of these two technologies:

• Source map construction. Each node in the AST, even
after several passes of SCT, is associated to an original
line of the user’s Python code.

• Error rewriting. Several frames in the stack trace
of TensorFlow code, especailly AutoGraph-generated
TensorFlow code, point to lines of code written by
the AutoGraph compiler system rather than the user.
We are able to reassociate temporary files (used when
generating code in AutoGraph) to the user’s original
source files.

Conversion Errors Conversion errors may occur due to
code that is otherwise legal Python, but is unsupported by
AutoGraph. These errors usually originate inside Auto-
Graph internal code.

For usability, such errors must indicate the location in the
converted code of the idiom that caused the error. In addi-
tion, the error message must provide sufficient information
to allow the developer to remedy the error. Lastly, the error
stack trace should avoid references to internal code, as they
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are typically uninformative to the user.

Currently, we facilitate this requirement by generating a
stack-trace-like message that indicates the location of the er-
ror. In the future, we plan to further improve the conciseness
of error messages of this type.

Staging Errors Staging errors can occur in successfully
converted code and are typically raised because of disal-
lowed or invalid argument types, shapes, hyperparameter
values or other conditions that are only detectable at run-
time. To address this, we plan to generate a stack-trace-like
message with frames from the original code from which the
intermediate code was generated. This is facilitated by the
AST source map that we maintain between each node in the
generated AST and the user’s original source code.

Another challenge is that error messages may refer to gen-
erated symbols or to contexts specific to generated code.
Addressing this shortcoming is a subject of future work.

Runtime Errors The name of this class of errors refers
to the staged IR runtime.

For example, integer division by zero errors in TensorFlow:

def f(n):
return tf.constant(10, dtype=tf.int32) / n

The IR execution environment typically includes facilities
to trace the source of the error to user code. However, in
the case of AutoGraph, that will be generated code. To
remedy this, we plan to intercept these errors and attach
information that helps the user further trace the source of the
error to original, pre-conversion code. We plan to enhance
the user experience with the addition of tf.function in
the TensorFlow 2.0 API.

C USEFUL UTILITIES

In order to build the system as described, we created a large
library of source code transformation tools that we anticipate
will be useful to the broader Python community.

Easy Code Quoting and Unquoting A few of the utility
functions are listed below:

• parser.parse_entity(fn_or_class) takes a
Python class or function and returns the corresponding
AST node, wrapped in a containing Module node.

• parser.parse_str(code_string) is dentical to
parse_entity , except takes a string of Python code

as input. The string may contain any valid Python code.
• pretty_printer.fmt(ast_node) returns a

pretty-printable string representing the AST.
• compiler.ast_to_source(ast_node) un-

parses an AST into the equivalent Python code,

returned as a string.
• compiler.ast_to_object(ast_node) com-

piles an AST into an equivalent Python entity, returned
as a module.

For example:

node = parse_str('a = b')
print(fmt(node))

# Output:
Module:
| body=[
| | Assign:
| | | targets=[
| | | | Name:
| | | | | id="a"
| | | | | ctx=Store()
| | | | | annotation=None
| | | ]
| | | value=Name:
| | | | id="b"
| | | | ctx=Load()
| | | | annotation=None
| ]

These utilities make it easy to make small modifications to
the AST.

node = parse_str('a = b')
node.body[0].value.id = 'c'
print(ast_to_source(node))

# Output:
a = c

Templated Code Rewriting Example:

code_quote = '''
def fn(args):

body
'''
new_body = textwrap.dedent('''

a = x
b = y
return a + b

''')
node = templates.replace(

code_quote,
fn='my_function',
args=('x', 'y'),
body=parser.parse_str(new_body).body

)
print(compiler.ast_to_source(node))

# Output:
def my_function(x, y):

a = x
b = y
return a + b

The function inserts string symbols or AST nodes into the
quoted code template, and performs additional integrity

13



AutoGraph: Imperative-style Coding with Graph-based Performance

checks. This allows for the easy construction of complicated
code blocks, especially with respect to building the AST
manually.

D EXPANDED EXAMPLES

We expand on the toy examples in the main paper to illus-
trate AutoGraph’s utility when implementing more realistic
algorithms and models. These were implemented using Ten-
sorFlow’s benchmark utilities2 so that they can more easily
be run. This also allows us to compare the performance of
AutoGraph generated code to other reference implementa-
tions both from AutoGraph’s authors and distributed as part
of TensorFlow. We report some preliminary findings for
each example.

All example code mentioned in this section, as well as the
full runnable code for examples found through the paper, can
be found at https://github.com/tensorflow/
autograph/examples/sysml2019.

D.1 Beam Search

Beam search is an algorithm often used in machine transla-
tion. The algorithm builds candidate sequences by taking
the most-likely steps at each transition, possibly discard-
ing less-likely sequences. This is an interesting use-case
for AutoGraph because beam search consists of complex
computation and decisions at each step, with the number of
steps capped at a the maximum sequence size. The simplest
implementation of beam search is a loop that breaks if all
candidate sequences have terminated. More robust imple-
mentations will separately keep track of living and terminal
candidate sequences, and break if no living candidate has
the potential to outscore a terminal candidate. Breaking out
of the loop is essential to the performance of beam search
since it often can generate sequences that are far shorter
than the maximum allowable size.

We implemented beam search using TensorFlow Eager. Us-
ing AutoGraph, the benchmark runs between 2 and 3.2 times
faster than the same code run using TensorFlow Eager. The
improvement varies as we change the maximum sequence
length and vocabulary size. Longer sequences and smaller
vocabularies typically show more improvement when us-
ing AutoGraph. Longer sequences result in more iterations
of the loop, so embedding these loops in the TensorFlow
graph with AutoGraph shows more relative improvement.
A larger vocabulary results in more expensive vector and
matrix operations, taking longer overall.

2https://www.tensorflow.org/community/
benchmarks

D.2 L-BFGS

The L-BFGS (Limited-Memory BroydenFletcherGoldfarb-
Shannon) algorithm is often used for parameter estimation
in Machine Learning. Our implementation is based on the
TensorFlow Eager implementation written by Yaroslav Bu-
latov3. In our benchmark, AutoGraph is almost 2 times
faster than Eager with a batch size of 10 in approximately
the same amount of code.

D.3 Model-Agnostic Meta-Learning (MAML)

Model-Agnostic Meta-Learning (MAML, Finn et al. (2017))
is an algorithm for meta-learning, especially effective for
few-shot learning. Our benchmark is based on the sinusoidal
example from Finn et al. (2017).4

We implemented our MAML benchmark using code that is
compatible with both TensorFlow Eager AutoGraph. When
training a single meta-parameter, the AutoGraph converted
code ran 1.9 times faster than the identical code run in Eager
mode. AutoGraph converted code was 2.7 times faster when
training 10 meta-parameters.

D.4 seq2seq

The seq2seq (Sequence-to-Sequence) model5 is a general
purpose encoder and decoder that can be used for tasks like
machine translation. We implemented this model and a
benchmark that measures the performance of the model on
random input sequences.

We implemented this benchmark in TensorFlow Eager and
converted that Eager code using AutoGraph. AutoGraph
converted code was 1.18 to 3.05 times faster than the Ea-
ger equivalent. The performance improvement varies with
vocabulary size: AutoGraph performs better on larger vo-
cabularies. Varying sequence length from 64 to 128 had
minimal effect on the performance improvement. We also
implemented optional “teacher forcing”, which almost dou-
bles the improvement gained from AutoGraph. This is
because teacher-forcing reduces the amount of time spent
performing computations, so the overhead of Eager mode
is a larger percentage of the overall time. AutoGraph is
designed to reduce such overhead, in this case by embed-
ding data-dependent control flow in the graph executed by
TensorFlow.

E SUPPORTED FEATURES

Tables 4, 5 and 6 show the features of Python and Tensor-
Flow that are presently supported by AutoGraph.

3https://github.com/yaroslavvb/stuff/
tree/master/eager_lbfgs

4https://github.com/cbfinn/maml
5https://google.github.io/seq2seq/
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