
FIXYNN: EFFICIENT HARDWARE FOR MOBILE COMPUTER VISION
VIA TRANSFER LEARNING

Paul N. Whatmough 1 Chuteng Zhou 1 Patrick Hansen 1 Shreyas Kolala Venkataramanaiah 2 Jae-sun Seo 2

Matthew Mattina 1

ABSTRACT
The computational demands of computer vision tasks based on state-of-the-art Convolutional Neural Network
(CNN) image classification far exceed the energy budgets of mobile devices. This paper proposes FixyNN,
which consists of a fixed-weight feature extractor that generates ubiquitous CNN features, and a conventional
programmable CNN accelerator which processes a dataset-specific CNN. Image classification models for FixyNN
are trained end-to-end via transfer learning, with the common feature extractor representing the transfered part, and
the programmable part being learnt on the target dataset. Experimental results demonstrate FixyNN hardware can
achieve very high energy efficiencies up to 26.6 TOPS/W (4.81× better than iso-area programmable accelerator).
Over a suite of six datasets we trained models via transfer learning with an accuracy loss of < 1% resulting in up
to 11.2 TOPS/W – nearly 2× more efficient than a conventional programmable CNN accelerator of the same area.

1 INTRODUCTION

Real-time computer vision (CV) tasks such as image classifi-
cation, object detection/tracking and semantic segmentation
are key enabling technologies for a diverse range of mobile
computing applications, including augmented reality, mixed
reality, autonomous drones and automotive advanced driver
assistance systems (ADAS). Over the past few years, con-
volutional neural network (CNN) approaches have rapidly
displaced traditional hand-crafted feature extractors, such
as Haar (Viola & Jones, 2004) and HOG (Dalal & Triggs,
2005). This shift in focus is motivated by a marked increase
in accuracy on key CV tasks such as image classification (Si-
monyan & Zisserman, 2014). However, this highly desirable
improvement in accuracy comes at the cost of a vast increase
in computation and storage (Suleiman et al., 2017), which
must be met by the hardware platform. Mobile devices ex-
hibit constraints in the energy and silicon area that can be
allocated to CV tasks, which limits the adoption of CNNs
at high resolution and frame-rate (e.g. 1080p at 30 FPS).
This results in a gap in energy efficiency between the re-
quirements for real-time CV applications and the power
constraints of mobile devices.

Two key trends that have recently emerged are starting to

1Arm ML Research, Boston, MA, U.S.A. 2School of Elec-
trical, Computer and Energy Engineering, Arizona State Uni-
versity, AZ, U.S.A.. Correspondence to: Paul Whatmough
<paul.whatmough@arm.com>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

Fixed
Feature Extractor 

(FFE)

Programmable 
CNN Accelerator

Fully-Parallel 
Fully-Pipelined 
Zero DRAM BW

Weights Stored 
in DRAM

PO
OL

Shared Front-End

Task Specific CNN Back-End

DRAM Memory

SRAM MemorySRAM Memory

Task 1

Weights Hard-Coded 
in Fixed Datapath

Input

Shared

CO
NV

PO
OL FC

Task 2
Task N

FixyNN Hardware

CO
NV

PO
OL

CO
NV

PO
OL “CAT”

Figure 1: FixyNN proposes to split a deep CNN into two
parts, which are implemented in hardware using a (shared)
fixed-weight feature extractor (FFE) hardware accelerator
for the shared front-end and a canonical programmable ac-
celerator for the task-specific back-end.

close this energy efficiency gap: more efficient CNN archi-
tectures and more efficient hardware. The first is the design
of more compact CNN architectures. MobileNetV1 (Howard
et al., 2017) was an early and prominent example of this
trend, where the CNN topology is designed to minimize
both the number of multiply-and-accumulate (MAC) oper-
ations and the number of parameters, which is essentially
the compute and storage required of the hardware platform.



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

MobileNetV1 similar accuracy to VGG (top-5 ImageNet
89.9% vs. 92.7%), with only ∼3% of the total parameters
and MACs. The second trend is the emergence of spe-
cialized hardware accelerators tailored specifically to CNN
workloads. Typical optimizations applied to CPU, GPU and
accelerators include: provision for small floating-point and
fixed-point data types, use of optimized statically-scheduled
scratchpad memories (as opposed to cache memories), and
an emphasis on wide dot-product and matrix multiplication
datapaths.

In this paper we describe FixyNN, which builds upon both
of these trends, by means of a hardware/CNN co-design
approach to CNN inference for CV on mobile devices. Our
approach (Figure 1) divides a CNN into two parts. The first
part of the network implements a set of layers that are com-
mon for all CV tasks, essentially producing a set of universal
low-level CNN features that are shared for multiple different
tasks or datasets. The second part of the network provides a
task-specific CNN back-end. These two CNN parts are then
processed on different customized hardware. The front-end
layers are implemented as a heavily optimized fixed-weight
feature extractor (FFE) hardware accelerator. The second
part of the network is unique for each dataset, and hence
needs to be implemented on a canonical programmable
CNN hardware accelerator (Nvidia; Arm). Following this
system architecture, FixyNN diverts a significant portion
of the computational load from the CNN accelerator to the
highly-efficient FFE, enabling much greater performance
and energy efficiency. The use of highly aggressive hard-
ware specialization in the FFE makes FixyNN a significant
step forward towards closing the energy efficiency gap on
mobile devices. At the same time, by leveraging trans-
fer learning concepts, we are able to exploit aggressively
optimized specialized hardware without sacrificing general-
ization.

This paper describes and evaluates FixyNN; the main con-
tributions are listed below:

• A description of a hardware accelerator architecture
for the fixed-weight feature extractor (FFE), including
a survey of the potential optimizations.

• An open-source tool-flow (DeepFreeze) for automati-
cally generating and optimizing an FFE hardware ac-
celerator from a TensorFlow description.

• Demonstration of the use of transfer learning to gen-
eralize a single common FFE to train a number of
different back-end models for different datasets.

• Present results that compare FixyNN against a conven-
tional baseline at iso-area.

The remainder of the paper is organized as follows. A brief
survey of related work is given in Section 2. Section 3

highlights the performance and power efficiency advantage
of fixed-weight hardware datapaths, and describes our ap-
proach to buffering data in fixed-weight layers and our tool
flow for automatically generated hardware. Section 4 de-
scribes how a fixed feature-extractor can be used with trans-
fer learning principles to train networks for a variety of
CV datasets of varying sizes. Section 5 outlines our exper-
imental methodology, and Section 6 provides results that
combine the hardware and machine learning experiments
to show state-of-the-art performance for benchmark tasks.
Section 7 concludes the paper.

2 RELATED WORK

CNN Hardware Accelerators. There is currently huge
research interest in the design of high-performance and
energy-efficient neural network hardware accelerators, both
in academia and industry (Barry et al., 2015; Arm; Nvidia;
Reagen et al., 2017a). Some of the key topics that have
been studied to date include dataflows (Chen et al., 2016b;
Samajdar et al., 2018), optimized data precision (Reagen
et al., 2016), systolic arrays (Jouppi et al., 2017), sparse
data compression and compute (Han et al., 2016; Albericio
et al., 2016; Parashar et al., 2017; Yu et al., 2017; Ding et al.,
2017; Whatmough et al., 2018), bit-serial arithmetic (Judd
et al., 2016), and analog/mixed-signal hardware (Chen et al.,
2016a; LiKamWa et al., 2016; Shafiee et al., 2016; Chi
et al., 2016; Kim et al., 2016; Song et al., 2017). There is
also published work on hardware accelerators optimized for
image classification for real-time CV (Buckler et al., 2018;
Riera et al., 2018; Zhu et al., 2018), along with simulation
tools (SCALE-Sim).

Image Processing Hardware Accelerators. The hardware
design of the fixed feature extractor in FixyNN is reminis-
cent of image signal processing hardware accelerators. In
particular, the use of native convolution and line-buffering
have been explored in prior works including (Ragan-Kelley
et al., 2013; Hegarty et al., 2016; 2014; Lee & Messer-
schmitt, 1987; Horstmannshoff et al., 1997).

Transfer Learning and Domain Adaptation. In FixyNN,
we use transfer learning techniques to share an optimized
fixed feature extractor amongst multiple different back-end
CNN models. (Yosinski et al., 2014) first established the
transferability of features in a deep CNN, outlining that the
early layers of a CNN learn generic features that can be
transferred to a wide range of related tasks. Fine-tuning the
model on the new task yields better performance (Yosinski
et al., 2014) than training from scratch. Transfer learning
has subsequently found a wide range of applications. For
example, a deep CNN trained on the ImageNet dataset (Rus-
sakovsky et al., 2015) was successfully transferred to detect
pavement distress in roads (Gopalakrishnan et al., 2017).
Interestingly, more recent work demonstrated it is also pos-



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

Carry-
Propagate 

Adder

3 x 3 x C 
Pixels/Cycle

32-bit 8-bit

C Parallel Kernels 
per Channel

C Parallel 
Channels1 Pixel per 

Channel

1 x 1 x C 
Pixels/Cycle

W0 W1 W2

W3 W4 W5

W6 W7 W8

CS Adder Tree

CS Adder Tree

CS

CS
ReLUBN Q

Figure 2: A fully-parallel fixed-weight native convolution hardware datapath stage for a 3× 3 CONV layer. Other CNN
layer shapes are implemented in an identical fashion, but with different dimensions. “CS” denotes carry-save arithmetic
representation. “BN” denotes batch normalization and incorporates the bias term. “Q” denotes a programmable quantization
function that converts from 32-bit to 8-bit. The multiplier symbols actually represent fixed-weight shift-add scalers with a
single input operand. Grey multipliers and signals denote hardware removed due to pruned zero or small non-zero weights.

sible to fix the last fully-connected layer in a CNN as a
Hadamard matrix (Hoffer et al., 2018).

Domain adaptation (Tzeng et al., 2015) is a concept closely
related to transfer learning. It refers to learning adap-
tive models that work on different visual domains (e.g.
hand-written digits versus printed street numbers). The
residual adapter architecture (Rebuffi et al., 2017; 2018)
marks the recent progress in this field to efficiently learn
parametrized models for several tasks and domains simul-
taneously. FixyNN can benefit from future advances in
transfer learning and domain adaptation techniques.

Hardware Generators for CNN Accelerators. A number
of previous works have proposed solutions to automatically
generate optimized hardware accelerator designs (Venieris
et al., 2018; Mahajan et al., 2016; Sharma et al., 2016;
Hernández-Lobato et al., 2016; Reagen et al., 2017b). There
are also some relevant contributions from the image process-
ing domain (Ragan-Kelley et al., 2013; Hegarty et al., 2014)
that similarly generate high-performance convolution hard-
ware. The DeepFreeze tool we developed in this work was
a necessity in order to explore fixed-weight feature extrac-
tors, as hand-written Verilog modules containing millions
of parameters would have been impractical otherwise. We
did not explore applying FixyNN on FPGAs (Umuroglu
et al., 2017) in this paper, but plan to look at this in future
work. We are also planning to explore heavily-constrained
Internet-of-Things (IoT) applications (Kodali et al., 2017)
in future work.

3 FIXED-WEIGHT FEATURE EXTRACTOR
HARDWARE DESIGN

FixyNN combines two specialized hardware accelerators:
a heavily-optimized fixed-weight feature extractor (FFE),
and a more conventional programmable CNN accelerator.

This combination provides very high energy efficiency with-
out sacrificing generalization across a range of datasets.
Fixing the weights of a convolution (CONV) layer in a fully-
parallel, fully-pipelined FFE accelerator enables a number
of aggressive hardware optimizations in the FFE, and there-
fore results in significantly improved throughput and energy
efficiency, which cannot be matched by a programmable ac-
celerator. We emphasize five major optimizations stemming
from fixing weights in the hardware.

• Fixed Shift-Add Scalers. Hardware weight multipli-
ers, which ordinarily have two input operands, are trans-
formed into simple fixed scalers with a single input
operand. Fixed scalers are formed by simply adding a
series of hard-coded bit-wise shifts of the input operands
and are very cheap in hardware. The number of bit-shifts
and additions required per fixed multiplier is determined
by the number of non-zero bits in the binary representa-
tion of the weight (i.e. Hamming weight). This represents
a very significant strength reduction and results in sub-
stantial reduction in power consumption, logic delay and
silicon area (Cooper et al., 2001).

• Zero-Overhead Weight Pruning. Weights with a zero
or small non-zero value are redundant and can be ex-
plicitly removed from the datapath hardware. This re-
sults in a reduction in datapath area and power, linearly
proportional to the weight sparsity for the layer. In a
programmable CNN accelerator, there is overhead in ex-
ploiting sparsity, due to the requirement to encode the
position in the matrix of non-zero weights (Parashar et al.,
2017).

• Optimized Intermediate Precision The precision used
for multipliers and accumulators are typically set to the
worst-case values in a programmable accelerator. How-
ever, in the FFE, we know the weights and their magni-
tude a-priori, and can therefore perform static analysis to



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

3 x 3 x C 
Pixels/Cycle

1 x 1 x C 
Pixels/Cycle

1 x 3 x C 
Pixels/Cycle

Line Buffer
(Single-Ported SRAM)

Shift Reg.
(Flip-Flops)

CONV_2D 
Datapath

CONV_2D 
Datapath

4 x W x C
3 x 3 x C1Wr

3Rd

Figure 3: Overview of the fully-pipelined feature map buffering micro-architecture between consecutive layers of fixed-
weight fully-parallel CNN layers. This example illustrates the case for two consecutive CNN layers with 3×3 kernels.

optimize the product and accumulator bit-widths, which
further reduces the hardware cost.

• Zero DRAM Bandwidth. The weights for the CONV
layers implemented in the FFE are hard-coded in the
datapath logic and do not need to be stored in memory.
Hence, unlike a programmable accelerator, there is no
need to access expensive off-chip DRAM when using the
FFE.

• Minimal Activation Storage. By using native convolu-
tion that does not incur storage overheads for IM2COL
expansion (Warden, 2015), and also implementing fully-
pipelined hardware, we can reduce storage of activation
feature maps to a minimum. This is in contrast to pro-
grammable accelerators, which typically process layers in
a serial fashion, to maximize weight reuse, and therefore
must buffer the entire output feature map for each layer
at once.

In the remainder of this section, we describe the hardware
design of the FFE. We first describe the arithmeric datapath
stage, followed by the buffering stage, and finally the tool
flow to automatically implement and optimize the FFE from
a high-level model description.

3.1 Fully-Parallel Fixed-Weight CNN Datapath

The computation for each CONV layer is implemented as
a flat, fully-parallel, pruned fixed-weight arithmetic logic
stage (Figure 2). The fixed scalars that replace the multi-
pliers are generated by the synthesis tool, as the weights
are embedded as literals in the Verilog hardware description
language (HDL). These fixed scalars are also subsequently
optimized by the synthesis tool to reduce gate-count, using
techniques such as Booth recoding (Booth, 1951), canon-
ical signed-digit encoding and other well-known datapath
optimizations (Zimmermann, 2009). The adder trees fol-
lowing the multipliers are combined by the synthesis tool
into a wide carry-save (CS) addition tree with a single carry-
propagate adder (Zimmermann, 2009). Following the con-
volutions, there are operations in each layer for batch nor-
malization (BN) 1, which scale and shift activations (and

1A widely-adopted technique to improve performance and sta-
bility by ensuring layer outputs have zero mean and unit vari-

integrates the bias term), rectified linear unit (ReLU) acti-
vation function and a quantization step to convert from the
wider precision of the accumulator node back to the narrow
representation for activation data. As we will describe in
Section 6.2, the BN parameters are important for transfer
learning, so we keep these programmable, using dedicated
registers. This is not a big overhead as there are a very small
number of BN parameters. Simple max pooling layers are
also supported.

3.2 Fully-Pipelined CNN Buffering

In contrast to programmable CNN accelerators that typi-
cally convert convolution into Generic Matrix Multiplication
(GEMM), computing the CNN in a serial fashion, the FFE
implements native convolution with fully-pipelined CONV
layers. However, buffering is required between consecutive
datapath stages, because a typical 3× 3× C CONV kernel,
where C is the number of channels, consumes a 3× 3× C
input pixel tensor per cycle, but generates only a single
small 1 × 1 × C output tensor, where C is the number of
output channels. Hence, we must buffer several 1× 1× C
outputs into a larger 3× 3× C input for the next layer.

This buffering function is achieved using the common ap-
proach of a line buffer, which stores activations of each
layer row by row until the required tensor size has been
built up. Figure 3 gives an overview of the arrangement
for a simple CNN layer with a 3× 3 kernel shape. In this
case, due to the discrepancy in input/output tensor dimen-
sions, we need to buffer three full rows before we can start
to generate the larger tensors we need for the following
layer. We implement the line buffer using simple single-port
SRAMs, and therefore actually require four independent
SRAM banks, such that we can write a single-row patch to
one bank per cycle, and read the three-row patch from three
banks per cycle, concurrently. After reading/writing the last
pixel in a row, the four banks are rotated to overwrite the
data associated with the oldest row (double-buffer). This
arrangement can be further optimized (Hegarty et al., 2014;
2016; Ragan-Kelley et al., 2013), for example, by using
dual-port SRAMs, which were not available to us in our

ance (Ioffe & Szegedy, 2015).



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

PPA Report

Datapath RTL

High-Level 
API

Buffer RTLLine Buffer & Shift 
Reg. Template

Testbench

PPA Estimate

DeepFreeze

16nm Characterization 
Data 

Simulation 
Verification

TensorFlow
Protobuf

ASIC/FPGA 
Implementation

Figure 4: The DeepFreeze tool flow automatically generates
Verilog HDL for optimized fixed feature extractors from a
high-level description of the model in a software framework
such as TensorFlow.

process technology.

Following the SRAM line buffer, a flip-flop based shift-
register is implemented such that the convolution window
moves efficiently over the feature map, without re-reading
data. The shift-register consumes 1×3×C pixels per cycle
from the SRAM line buffer and outputs a 3× 3× C pixel
volume per cycle. The advantage of the shift-register stage is
an SRAM bandwidth reduction of 3×. Larger CNN kernels,
such as 5× 5× C and 7× 7× C are arranged in a similar
fashion, with dimensions scaled appropriately. Strides of
more than one are also supported. We also make a provision
to allow the activation data to be optionally streamed from
any intermediate buffer stage, to allow a smaller number of
fixed layers to be utilized for models that are more difficult
to train via transfer learning.

3.3 DeepFreeze Tool Flow

To facilitate implementing FFE accelerators with possibly
millions of hard-coded weights, we developed an open-
source tool called DeepFreeze. DeepFreeze generates fixed
CNN hardware accelerator designs for a specified set of lay-
ers from a model described in a standard machine learning
software framework, such as TensorFlow.

DeepFreeze first parses the network from a given framework
into an internal representation of that model. It then gen-
erates a fixed datapath from the model description using a
direct code generation step, which reads the model weights
and emits Verilog source code with the weights embedded
as immediate values. Zero weights are automatically re-
moved entirely from the hardware (pruning is assumed to
be performed outside of the DeepFreeze tool-flow). During
the datapath generation, the bit-widths of the fixed scalars
are optimized individually based on the scalar value. The
precision for the intermediate activations is specified as
a hardware parameter, along with the accumulator width.
The final Verilog is constructed by connecting consecutive
combinational datapath stages with buffer stages, which are
instantiated from a parameterized Verilog template. The
generated Verilog can be directly read in by any synthesis

tool for ASIC or FPGA implementation. DeepFreeze also
generates a validation suite with testbench for simulation.
Finally, the tool generates an estimate of power, perfor-
mance and area (PPA) for the high-level model provided.
This estimate uses simple extrapolations from data derived
from implementation experiments, and is useful for rapid
design space exploration.

4 TRANSFER LEARNING WITH A FIXED
FEATURE EXTRACTOR

In the previous section, we described the hardware design
of a fixed feature extractor accelerator that offers substan-
tially better throughput/latency and energy compared to pro-
grammable CNN accelerators. However, we do not propose
to fix the whole network for two reasons. Firstly, for large
models, the silicon area of the fixed hardware accelerator
would be prohibitive in most applications. Secondly, fix-
ing the whole network would make it impossible to change
the task or dataset; it would essentially result in a single-
function hardware accelerator. Therefore, in FixyNN we
propose to fix only a portion of the front-end of the network,
and use a canonical programmable accelerator to process
the remainder (Figure 1). The fixed portion provides a set
of more universal CNN features specific to the application
domain of vision tasks, whereas the programmable portion
of the network specific to a given a dataset. In this section,
we briefly outline how to train arbitrary CNN vision mod-
els that incorporate a fixed feature extractor implemented
a-priori.

Transfer learning is a concept that we introduced in Sec-
tion 2. Here, we highlight transfer learning as a concept that
suggests it is perfectly feasible to train a new model that in-
corporates a fixed feature extractor, at least within the same
application domain of CV. As previously motivated, the cen-
tral advantage is that the performance and power efficiency
of the fixed feature extractor are significantly superior. In
addition, there are a number of auxiliary advantages, such as
a significantly smaller model to store, maintain and update.

The CNN model architecture we use in this work is Mo-
bileNetV1 (Howard et al., 2017), which is an efficient model
designed for mobile computer vision. MobileNet exploits
the efficient depth-wise separable convolution layer, which
is composed of M 3× 3× 1 depth-wise convolution filters
(M is the number of input channels) and N 1 × 1 ×M
point-wise convolution filters (N is the number of output
channels). A depth-wise separable convolution layer costs
between 8× to 9× less computation than a traditional 3× 3
kernel. Additionally, MobileNet is a suitable architecture
for FixyNN because the FFE can directly concatenate the
depth-wise and point-wise kernels without any buffering, as
the output dimensions of the depth-wise layer are the same
as the input dimensions of the point-wise layer. MobileNet



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

has 13 CONV layers in total, with a fully connected layer
for final classification. The first CONV layer is a traditional
convolution layer and the remaining 13 CONV layers are
depth-wise separable layers. A width multiplication factor
α (Howard et al., 2017) is introduced to explore different
size models with the same basic architecture. For a given
layer in the baseline MobileNet that has M input channels
and N output channels, the same layer in MobileNet-α has
αM input channels and αN output channels. The width
multiplier value of α reduces the computational cost and
parameters by roughly α2.

The procedure for training an image classification model
on a given dataset is as follows. We start by assuming the
fixed feature extractor has already been defined, using the
MobileNet architecture trained on the ImageNet data. The
early-layer weights are fixed for the feature extractor, while
the remainder of the network is fine-tuned on the target
dataset. Further details of the training procedure can be
found in Section 5.2.

As discussed in Section 3, fixing the weights in the feature
extractor leads to a number of optimizations that cannot
be as easily exploited in a programmable accelerator. We
may gain further benefits in latency, energy and silicon area
through more aggressive optimization of the CNN layers
for the fixed feature extractor by forcing more sparsity and
Hamming weight reduction during training and fine-tuning.

5 EXPERIMENTAL METHODOLOGY

To evaluate FixyNN, we conduct experiments in both hard-
ware modeling and transfer learning. The hardware model-
ing experiments compare FixyNN against state-of-the-art
hardware accelerator designs. The transfer learning exper-
iments evaluate generalization of a fixed feature extractor
across a set of tasks.

5.1 Hardware Modeling

FixyNN consists of two hardware components: the FFE,
and a programmable CNN accelerator. The FFE is gen-
erated using our DeepFreeze tool (Section 3.3). We use
8-bit precision for weights and activation data, and 32-bit
for accumulators. For ASIC implementation experiments,
we use Synopsys Design Compiler with TSMC 16nm Fin-
FET process technology to characterize silicon area. Timing
analysis for throughput/latency is performed with Synposys
PrimeTime. All simulations use a clock frequency of 810
MHz. Power characterization is performed using Synop-
sys PrimeTime PX with switching activity annotated from
simulation trace data.

The programmable accelerator is based on published
results for the NVIDIA Deep Learning Accelerator
(NVDLA) (Nvidia). NVDLA is a state-of-the-art open-

source neural network accelerator, with Verilog RTL for
hardware implementation and a TLM SystemC simulation
model that can be used for software development, system
integration, and testing. NVDLA is configurable in terms
of hardware resources. Table 1 summarizes the published
performance of NVDLA in six nominal configurations.

Config. #MACs Buffer (KB) 16nm Area (mm2) TOPS TOPS/W
A 64 128 0.55 0.056 2.0
B 128 256 0.84 0.156 3.8
C 256 256 1.00 0.358 5.6
D 512 256 1.40 0.728 6.8
E 1024 256 1.80 1.166 6.3
F 2048 512 3.30 2.095 5.4

Table 1: Published NVDLA configurations, reproduced
from (Nvidia).

To explore the final FixyNN design space (Section 6.1), we
combine PPA models of an FFE containing the first N layers
of the network, along with the NVDLA programmable accel-
erator drawn from the published configurations. DeepFreeze
is used to model the PPA of the fixed feature extractor. Since
the hardware performance of the FFE is heavily dependent
on the sparsity of the network, we assume a cautious 50%
sparsity across the model for simplicity. Prior work has
demonstrated that 50% of weights can be pruned from Mo-
bileNet with minimal accuracy loss (Zhu & Gupta, 2017).
The hardware modeling of NVDLA is from published data.
Because the latency of the FFE is much lower than that of
the programmable NVDLA in the configurations we tested,
we assume perfect clock gating in FixyNN to eliminate FFE
power when idle. Finally, we do not model FC layers as
they are heavily memory bound and we would never be able
to fix them anyway due to the huge number of parameters.

5.2 Transfer Learning

The fixed feature extractor is constrained not only by silicon
area considerations, but also by the achievable model accu-
racy. The foundational work on transfer learning showed
that as more layers are transfered, the accuracy becomes
limited due to change in representational power and the later
layers are more task specific than the early layers (Yosinski
et al., 2014). In previous work, transfer learning is typi-
cally applied on big models such as AlexNet, which is pro-
hibitively expensive from a hardware implementation point
of view. Furthermore, it is arguably easier to perform trans-
fer learning when the model capacity is very high as more
parameters are available to fit the new dataset. In this paper,
we perform a set of transfer learning experiments showing
good performance with fixed weights on MobileNet, a much
more constrained model.

Inspired by the visual decathlon challenge (Rebuffi et al.,
2017) introduced to explore multiple-domain learning for
image recognition, we choose seven different image recog-



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

nition tasks to design our experiments: ImageNet (Rus-
sakovsky et al., 2015), CIFAR-100 (Krizhevsky & Hinton,
2009), CIFAR-10 (Krizhevsky & Hinton, 2009), Street
View House Numbers (SVHN) (Netzer et al., 2011), Flow-
ers102 (Flwr) (Nilsback & Zisserman, 2008), FGVC-
Aircraft (Airc) Benchmark (Maji et al., 2013), and
The German Traffic Sign Recognition (GTSR) Bench-
mark (Stallkamp et al., 2012). These datasets vary in
number of images, resolution and granularity. For exam-
ple, ImageNet and CIFAR-100 are diverse datasets with a
wide range of objects, while Flwr and Airc are fine-grained
recognition tasks for specific vision domains of flowers and
aircrafts respectively.

For the first set of experiments, we use MobileNet-0.25, an
efficient model with only 41 million MACs and 0.47 million
parameters. The model is first trained on ImageNet to an
accuracy of 49.8% (state-of-the-art for this small MobileNet
model) and then transfered to the other six vision tasks. The
baseline results are obtained by performing full-fledged fine-
tuning, where all the parameters of the model are updated
during fine-tuning on the new dataset. This is used as the
baseline case for a model running on a programmable DLA.
Six different FixyNN topologies are explored in these exper-
iments, with different number of layers being fixed. In some
topologies, all batch normalization layer scaling and bias
parameters in the model are retrained on the new dataset.
We call this configuration Adaptive Batch-Normalization
(BN).

Stochastic gradient descent with an initial learning rate of
0.01 and momentum of 0.9 is used to perform fine-tuning
(except for GTSR dataset, where an initial learning rate of
0.001 is used for better convergence). The learning rate is
decayed 10× every 100 epochs (200 epochs for GTSR). A
batch size of 128 is used. The seven datasets come with
different resolutions. For the purpose of standardization, all
images are resized to 224× 224 using bilinear interpolation.
Data augmentation preproccessing is applied to all datasets.
Random color distortion, flipping and cropping are applied.
Horizontal left-right flipping is turned off for SVHN and
GTSR, cropping ratio is also increased as these two datasets
are street number and traffic sign photos. MobileNet-0.25 is
a limited capacity model so little regularization is required.
Weight decay of 4× 10−5 is used in fine-tuning (4× 10−4

for GTSR).

To demonstrate generalization of this approach, a second
set of experiments are carried out using MobileNet-1.0.
MobileNet-1.0 has 569 million MACs and 4.24 million pa-
rameters, which is about 10× bigger than MobileNet-0.25.
It is trained on ImageNet to an accuracy of 70.9%. We only
transfer this model to CIFAR100 to showcase the similar
trend of transfer learning performance for a bigger model.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 avg
Layer

0

2

4

6

8

10

TO
PS

Fixed
PROG

(a) Throughput

0 1 2 3 4 5 6 7 8 9 10 11 12 13 avg
Layer

101

102

103

TO
PS

/W

Fixed
PROG

(b) Energy Efficiency

Figure 5: Per-layer throughput and energy efficiency of a
fixed-weight feature extractor vs programmable NVDLA
on MobileNet-0.25.

6 EXPERIMENTAL RESULTS

In this section, we first describe the hardware performance
of FixyNN, then explore the CNN generalization perfor-
mance and finally draw the two together with a discussion.

6.1 Hardware

To demonstrate the advantages of incorporating a FFE into a
system, we begin by comparing the two hardware com-
ponents of FixyNN. Figure 5 compares the throughput
(TOPS) and energy efficiency (TOPS/W) for the FFE and
programmable NVDLA accelerators over each of the 13 lay-
ers of MobileNet-0.25. Clearly, FFE outperforms NVDLA
in all regards, showing an average improvement in TOPS
and TOPS/W of 8.3× and 68.5×, respectively. This healthy
improvement is essentially the motivation for exploring the
fixed feature extractor. However, the silicon area required by
the FFE is a practical limitation on the number of layers we
can reasonably fix in the FFE. Figure 6 demonstrates how
the area of the FFE scales with the number of fixed layers
for several different size MobileNet networks. In FixyNN,
we want to balance the distribution of layers between the
FFE and the programmable accelerators to maximize energy
efficiency and generalization (Section 6.2), given silicon
area constraints.

Having demonstrated the advantages of the fixed feature
extractor on single individual layers, we now demonstrate



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

Design Parameters FixyNN Baseline Improvement
Priority Area budget (mm2) Fixed layers NVDLA Config. Total Area (mm2) TOPS TOPS/W TOPS TOPS/W TOPS TOPS/W

Throughput
2 None E 1.80 1.17 6.30 1.17 6.30 1.00× 1.00×
3 7 E 2.59 2.14 11.20 1.66 5.83 1.29× 1.92×
4 11 E 3.48 5.64 25.01 2.21 5.29 2.55× 4.73×

Efficiency
2 7 C 1.79 0.66 9.99 1.15 6.31 0.57× 1.58×
3 11 C 2.68 1.73 22.69 1.71 5.77 1.01× 3.93×
4 11 D 3.08 3.52 26.62 1.96 5.53 1.80× 4.81×

Table 2: Pareto-optimal FixyNN configurations for a given area budget, with throughput and efficiency priority. “Improve-
ment” is relative to an NVDLA configuration of comparable silicon area. All results shown are modeled in 16nm CMOS
technology.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of fixed layers

10 1

100

101

16
nm

 A
re

a 
(m

m
2 )

MobileNet-0.125
MobileNet-0.25
MobileNet-0.50
MobileNet-1.00

Figure 6: Cumulative area of a fixed feature extractor for
MobileNets of varying width.

a practical FixyNN system. We define a search space of
potential FixyNN systems by combining a fixed feature
extractor of a given size, and a programmable DLA of a
given configuration (Table 1). The design space is given in
Figure 7 for throughput and energy efficiency. Each line
in these plots is a different number of fixed layers, while
each marker on each line is a different configuration of
the programmable accelerator (Table 1). Our baseline for
comparison is a fully programmable NVDLA accelerator
with no fixed layers, which represents the current state-of-
the-art.

In terms of throughput (Figure 7a), all configurations scale
approximately linearly with area. At small area budgets,
the fully programmable baseline outperforms FixyNN, be-
cause the FFE is heavily bottlenecked by the programmable
NVDLA, resulting in little benefit from the extra area con-
sumed by the FFE. However at higher area budgets, FixyNN
can afford to fix more layers, resulting in reduced load on
the programmable DLA and large gains in throughput. In
terms of energy efficiency (Figure 7b), the baseline NVDLA
scales well with area initially, due to an increase in data
re-use and other amortizations, however it saturates (and
even falls off) as limitations on utilization or memory band-
width prohibit further gains. Due to the exceptional energy
efficiency of the FFE, as the load diverted from the NVDLA
to the FFE increases, so too does the energy efficiency. This
becomes significant at area budgets greater than 1mm2, at

which point it becomes more efficient to utilize silicon area
to fix more layers of the network than it is to scaling up the
programmable accelerator.

An additional advantage of the FFE is the fact that it does
not require access to expensive off-chip DRAM memory for
either weights or activations, since weights are fixed in the
datapath and activations are minimally pipelined in efficient
and compact line buffers on-chip. This saves power, and
also sidesteps an important system-level constraint; NVDLA
rapidly becomes bottlenecked on DRAM bandwidth as the
accelerator is scaled up.

Table 2 gives pareto-optimal FixyNN configurations from
the design space in Figure 7, given different design con-
straints. In general, this table shows it is more effective
to implement a larger FFE at higher area budgets (above
1mm2), as scaling the programmable NVDLA provides di-
minishing benefits beyond ∼1mm2. With an area budget of
4mm2, FixyNN provides up to 2.55× and 5.84× improve-
ment in TOPS and TOPS/W respectively, at iso-area for
MobileNet-0.25.

We chose to investigate the optimal configuration for energy
efficiency at an area budget of 2-3mm2 (11 fixed layers with
NVDLA configuration C). Figure 8 shows a breakdown of
the PPA between the FFE and the programmable DLA. This
figure demonstrates how even though the fixed datapath
performs a large majority of the operations in the network,
it only takes a small fraction of the energy and latency that
the programmable NVDLA requires.

The optimal configurations of FixyNN are dependent on
the size of the model. We repeated the experiment above,
but using the larger MobileNet-1.00. FixyNN now provides
benfits at area budgets greater than 3mm2, compared to the
1mm2 break-even point for MobileNet-0.25. At an area
budget of 4mm2, fixing the first 4 layers of the network
provides a 1.28× improvement in energy efficiency. This
improvement is even greater at larger areas. The published
results for NVDLA do not include any configuration larger
than 3.3mm2, and therefore it is difficult to make a fair eval-
uation at larger area budgets. Nonetheless, we expect that
as NVDLA scales up, memory bandwidth will bottleneck



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
16nm Area (mm2)

0

1

2

3

4

5

TO
PS

Baseline
4 fixed layers
7 fixed layers
11 fixed layers

(a) Throughput

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
16nm Area (mm2)

5

10

15

20

25

TO
PS

/W

Baseline
4 fixed layers
7 fixed layers
11 fixed layers

(b) Energy Efficiency

Figure 7: Performance and energy efficiency of different FixyNN topologies. Each line corresponds to a single size feature
extractor being used with different sized programmable accelerators.

Fixed62.7%PROG 37.3%

(a) Area

Fixed77.0%PROG 23.0%

(b) Operations

Fixed3.3%

PROG
16.8%

DRAM
79.9%

(c) Energy

Fixed2.8%PROG 97.2%

(d) Latency

Figure 8: PPA breakdown of FixyNN for MobileNet-0.25
with 7 fixed layers and a 1.00mm2 NVDLA.

the system, resulting in reduced throughput and energy ben-
efit. FixyNN solves this problem by reducing the load on
DRAM.

6.2 Model Accuracy

Table 3 summarizes the accuracies for the first set of trans-
fer learning experiments with MobileNet-0.25, where the
first row shows the baseline accuracy. As we go down the
table, a higher percentage of the network is fixed, hence a
bigger FFE is used. Adaptive Batch Normalization helps a
transferred model to achieve better accuracy with a relatively
small hardware cost. Images in different datasets come from

different visual domains and have therefore very different
statistical distributions, adaptive BN helps the model better
adapt to the new domain.

Our experiments show that for datasets CIFAR-100,
CIFAR-10, SVHN and Flwr, we can fix 77% of the net-
work while suffering less than 2% loss in model accuracy.
For datasets Airc and GTSR, similar accuracy performance
relative to the baseline requires fixing a smaller percentage
of the network in FFE (between 27% and 44%).

Transfer learning models are trained in floating-point
datatype without forcing sparsity. Pruning and quantization
are orthogonal to transfer learning and will affect model
accuracy equally regardless of being transferred or not. Our
observation for accuracy loss will hold even after further
pruning and quantization of the model.

In Table 4, we report transfer learning accuracies for
MobileNet-1.0. Only results on CIFAR-100 are shown
here. Similar trend in transfer learning accuracy loss is ob-
served. Overall accuracies are improved as MobileNet-1.0
has a bigger model capacity. Fixing the first 11 convolu-
tion layers of the network with adaptive BN results in 1.6%
accuracy drop.

6.3 Discussion

Having presented the experimental results, we finally draw
together some conclusions regarding the design of FixyNN
systems. Summarizing Section 6.1, we found that the hard-
ware throughput and energy-efficiency gains of FixyNN
outpaces the baseline of an iso-area programmable NVDLA
accelerator at the same silicon area cost when we fix 7 or
more layers of Mobilenet-0.25. The hardware throughput
and energy efficiency of FixyNN reach as high as 5.64
TOPS (2.55× better than the iso-area NVDLA baseline)



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

Model Accuracy on datasets (%)
Fixed layers Adaptive BN Fixed Ops (%) ImageNet CIFAR100 CIFAR10 SVHN Flwr Airc GTSR

0 N 0.0 49.8 72.8 93.5 95.8 88.1 67.7 97.7
4 Y 27.1 49.8 72.5 93.3 95.7 88.3 66.7 97.8
7 Y 44.3 49.8 72.0 92.7 95.8 87.5 64.0 95.0
7 N 46.6 49.8 69.4 91.7 94.7 85.2 63.2 93.5
11 Y 77.0 49.8 71.1 91.7 94.6 86.9 56.7 89.2
14 Y 97.0 49.8 68.5 85.3 91.0 82.8 41.9 59.3
14 N 100.0 49.8 54.5 77.0 48.0 77.8 30.5 46.1

Table 3: Transfer learning results for MobileNet-0.25 with fixed feature extractor, the model is trained on ImageNet and
transferred to six different vision tasks.

Model Accuracy (%)
Fixed layers Adaptive BN Fixed Ops(%) ImageNet CIFAR100

0 N 0.0 70.9 81.7
4 Y 21.4 70.9 81.2
7 Y 39.9 70.9 80.7
7 N 40.6 70.9 80.2
11 Y 76.4 70.9 80.1
14 Y 99.1 70.9 76.7
14 N 100 70.9 61.6

Table 4: Transfer learning results for MobileNet-1.0 with
fixed feature extractor. The model is trained on ImageNet
and transferred to CIFAR-100.

and 26.62 TOPS/W (4.81× better than the iso-area NVDLA
baseline) respectively, at an area budget of < 4mm2. On
the other hand, Section 6.2 demonstrates experimentally
that as we fix more layers in the FFE, the task of training a
new network incorporating the FFE on a different dataset
becomes more challenging, and will generally incur an ac-
curacy loss which depends on the dataset. Therefore, in
practice, the system designer must balance the requirements
of throughput/energy-efficiency and accuracy across a vari-
ety of datasets. While this is obviously a nuanced trade-off,
we offer a straightforward analysis to help emphasize the
potential benefit of the FixyNN.

We consider an arbitrary constraint that the maximum tol-
erable degradation in accuracy is no greater than 2% on
the suite of six transfered datasets we examined in Sec-
tion 6.2. We also specify a <3mm2 silicon area budget for
accelerating CV workloads. A FixyNN system that fixes
4 layers (27.1% Ops) with adaptive BN, a 0.38mm2 FFE
and NVDLA config. E, can meet this specification, with a
total area of 2.18mm2. Over all six datasets we studied, this
FixyNN configuration achieves a maximum accuracy degra-
dation of no more than 1.0%, with the most challenging
being Airc. If we compare this design to a baseline consist-
ing of a larger NVDLA of the same silicon area as the total
FixyNN design (2.18mm2, we achieve an improvement in
throughput of 1.15× and in energy efficiency of 1.42×.

As discussed in Section 6.2, two of the six datasets are
significantly less tolerant to a large number of fixed lay-
ers, which limits the improvement we demonstrate in the
previous scenario. Therefore, to prioritize average perfor-
mance across all datasets while otherwise still meeting the
same constraints, we modify the FixyNN design so that
the datasets with high accuracy degradation only use a por-
tion of a larger FFE. This allows us to define a FixyNN
system that fixes 7 layers with adaptive BN (44.3% Ops
/ 0.79mm2 FFE) and uses NVDLA config. E, for a total
area of 2.59mm2. With this configuration, four of the six
datasets utilize the entire FFE as before, resulting in an
improvement in throughput of 1.29× (2.14 TOPS) and in
energy-efficiency of 1.92× (11.19 TOPS/W) over a baseline
design of the same area. The two datasets with high accu-
racy degradation may opt to use only 4 layers of the FFE,
resulting in 0.98× and 1.48× in throughput and energy-
efficiency, respectively.

7 CONCLUSION

Real-time computer vision workloads on mobile devices
demand extremely high energy-efficiency for CNN compu-
tations, which can only be achieved with specialized hard-
ware. This paper evaluates FixyNN as a solution derived
from closer integration of computer systems and machine
learning. FixyNN achieves an optimal balance of energy-
efficiency from processing part of the network with heavily
customized hardware for CNN feature extraction, and gener-
alization to different CV tasks by means of a programmable
portion that is trained using transfer learning. Our experi-
mental evaluation demonstrates that FixyNN hardware can
achieve very high energy efficiency of up to 26.6 TOPS/W
(4.81× better than iso-area programmable accelerator). We
considered a suite of six image classification problems, and
found we can train models using transfer learning with an
accuracy loss of < 1%, and achieving up to 11.2 TOPS/W,
which is nearly 2× more efficient than a conventional pro-
grammable CNN accelerator of the same area.



FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

REFERENCES

Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger,
N. E., and Moshovos, A. Cnvlutin: Ineffectual-neuron-
free Deep Neural Network Computing. In Proc. of ISCA,
2016.

Arm. Arm Machine Learning Processor. URL
https://developer.arm.com/products/
processors/machine-learning/arm-ml-
processor.

Barry, B., Brick, C., Connor, F., Donohoe, D., Moloney, D.,
Richmond, R., O’Riordan, M., and Toma, V. Always-on
Vision Processing Unit for Mobile Applications. IEEE
Micro, 2015.

Booth, A. A Signed Binary Multiplication Technique. Quar-
terly Journal of Mechanics and Applied Mathematics, 4
(2):236–240, June 1951.

Buckler, M., Bedoukian, P., Jayasuriya, S., and Sampson, A.
Eva2: Exploiting temporal redundancy in live computer
vision. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA ’18, pp. 533–
546, Piscataway, NJ, USA, 2018. IEEE Press. ISBN
978-1-5386-5984-7. doi: 10.1109/ISCA.2018.00051.
URL https://doi.org/10.1109/ISCA.2018.
00051.

Chen, H. G., Jayasuriya, S., Yang, J., Stephen, J., Sivara-
makrishnan, S., Veeraraghavan, A., and Molnar, A. C.
ASP vision: Optically computing the first layer of con-
volutional neural networks using angle sensitive pixels.
CoRR, abs/1605.03621, 2016a. URL http://arxiv.
org/abs/1605.03621.

Chen, Y.-H., Emer, J., and Sze, V. Eyeriss: A Spatial Archi-
tecture for Energy-efficient Dataflow for Convolutional
Neural Networks. In Proc. of ISCA, 2016b.

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y.,
and Xie, Y. PRIME: A Novel Processing-in-Memory Ar-
chitecture for Neural Network Computation in ReRAM-
Based Main Memory. In Proc. of ISCA, 2016.

Cooper, K. D., Simpson, L. T., and Vick, C. A. Operator
strength reduction. ACM Trans. Program. Lang. Syst., 23
(5):603–625, September 2001. ISSN 0164-0925. doi: 10.
1145/504709.504710. URL http://doi.acm.org/
10.1145/504709.504710.

Dalal, N. and Triggs, B. Histograms of Oriented Gradients
for Human Detection. In Proc. of CVPR, 2005.

DeepFreeze. RTL generation tool for CNNs. URL https:
//github.com/ARM-software/DeepFreeze.

Ding, C., Liao, S., Wang, Y., Li, Z., Liu, N., Zhuo, Y., Wang,
C., Qian, X., Bai, Y., Yuan, G., et al. CirCNN: Accel-
erating and Compressing Deep Neural Networks Using
Block-Circulant Weight Matrices. In Proc. of MICRO,
2017.

Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., and
Agrawal, A. Deep convolutional neural networks with
transfer learning for computer vision-based data-driven
pavement distress detection. Construction and Building
Materials, 157:322–330, 2017.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M., and Dally, W. EIE: Efficient Inference Engine on
Compressed Deep Neural Network. In Proc. of ISCA,
2016.

Hegarty, J., Brunhaver, J., DeVito, Z., Ragan-Kelley, J.,
Cohen, N., Bell, S., Vasilyev, A., Horowitz, M., and
Hanrahan, P. Darkroom: Compiling High-Level Image
Processing Code into Hardware Pipelines. In Proc. of
SIGGRAPH, 2014.

Hegarty, J., Daly, R., DeVito, Z., Ragan-Kelley, J., Horowitz,
M., and Hanrahan, P. Rigel: Flexible Multi-Rate Image
Processing Hardware. In Proc. of SIGGRAPH, 2016.

Hernández-Lobato, J. M., Gelbart, M. A., Reagen, B., Adolf,
R., Hernández-Lobato, D., Whatmough, P. N., Brooks, D.,
Wei, G.-Y., and Adams, R. P. Designing neural network
hardware accelerators with decoupled objective evalu-
ations. In NIPS workshop on Bayesian Optimization,
2016.

Hoffer, E., Hubara, I., and Soudry, D. Fix your classifier: the
marginal value of training the last weight layer. CoRR,
abs/1801.04540, 2018. URL http://arxiv.org/
abs/1801.04540.

Horstmannshoff, J., Grotker, T., and Meyr, H. Mapping
multirate dataflow to complex rt level hardware mod-
els. In Proceedings IEEE International Conference on
Application-Specific Systems, Architectures and Proces-
sors, pp. 283–292, July 1997. doi: 10.1109/ASAP.1997.
606834.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017. URL http:
//arxiv.org/abs/1704.04861.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015. URL http://arxiv.
org/abs/1502.03167.

https://developer.arm.com/products/processors/machine-learning/arm-ml-processor
https://developer.arm.com/products/processors/machine-learning/arm-ml-processor
https://developer.arm.com/products/processors/machine-learning/arm-ml-processor
https://doi.org/10.1109/ISCA.2018.00051
https://doi.org/10.1109/ISCA.2018.00051
http://arxiv.org/abs/1605.03621
http://arxiv.org/abs/1605.03621
http://doi.acm.org/10.1145/504709.504710
http://doi.acm.org/10.1145/504709.504710
https://github.com/ARM-software/DeepFreeze
https://github.com/ARM-software/DeepFreeze
http://arxiv.org/abs/1801.04540
http://arxiv.org/abs/1801.04540
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167


FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J.,
Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami,
T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, R. C.,
Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaf-
fey, A., Jaworski, A., Kaplan, A., Khaitan, H., Koch,
A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D.,
Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G.,
Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omer-
nick, M., Penukonda, N., Phelps, A., Ross, J., Salek,
A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M.,
Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson,
G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter,
R., Wang, W., Wilcox, E., and Yoon, D. H. In-Datacenter
Performance Analysis of a Tensor Processing Unit. In
Proc. of ISCA, 2017.

Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M., and
Moshovos, A. Stripes: Bit-serial Deep Neural Network
Computing. In Proc. of MICRO, 2016.

Kim, D., Kung, J., Chai, S., Yalamanchili, S., and
Mukhopadhyay, S. Neurocube: A Programmable Dig-
ital Neuromorphic Architecture with High-Density 3D
Memory. In Proc. of ISCA, 2016.

Kodali, S., Hansen, P., Mulholland, N., Whatmough, P.,
Brooks, D., and Wei, G. Applications of deep neural net-
works for ultra low power iot. In 2017 IEEE International
Conference on Computer Design (ICCD), pp. 589–592,
Nov 2017. doi: 10.1109/ICCD.2017.102.

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Lee, E. A. and Messerschmitt, D. G. Static scheduling of
synchronous data flow programs for digital signal pro-
cessing. IEEE Transactions on Computers, C-36(1):24–
35, Jan 1987. ISSN 0018-9340. doi: 10.1109/TC.1987.
5009446.

LiKamWa, R., Hou, Y., Gao, J., Polansky, M., and Zhong,
L. RedEye: Analog ConvNet Image Sensor Architecture
for Continuous Mobile Vision. In Proc. of ISCA, 2016.

Mahajan, D., Park, J., Amaro, E., Sharma, H., Yazdan-
bakhsh, A., Kim, J. K., and Esmaeilzadeh, H. TABLA:
A Unified Template-based Framework for Accelerating
Statistical Machine Learning. In Proc. of HPCA, 2016.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi,
A. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151, 2013.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on
deep learning and unsupervised feature learning, volume
2011, pp. 5, 2011.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Computer
Vision, Graphics & Image Processing, 2008. ICVGIP’08.
Sixth Indian Conference on, pp. 722–729. IEEE, 2008.

Nvidia. Nvidia Deep Learning Accelerator (NVDLA). URL
http://nvdla.org/primer.html.

Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkate-
san, R., Khailany, B., Emer, J., Keckler, S. W., and Dally,
W. J. SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks. In Proc. of ISCA, 2017.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Du-
rand, F., and Amarasinghe, S. Halide: A Language and
Compiler for Optimizing Parallelism, Locality, and Re-
computation in Image Processing Pipelines. In Proc. of
PLDI, 2013.

Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee,
H., Lee, S. K., Hernández-Lobato, J. M., Wei, G.-Y.,
and Brooks, D. Minerva: Enabling Low-Power, Highly-
Accurate Deep Neural Network Accelerators. In Proc. of
ISCA, 2016.

Reagen, B., Adolf, R., and Whatmough, P. Deep Learning
for Computer Architects. Morgan & Claypool Publishers,
2017a. ISBN 1627057285, 9781627057288.

Reagen, B., Hernndez-Lobato, J. M., Adolf, R., Gelbart, M.,
Whatmough, P., Wei, G., and Brooks, D. A case for ef-
ficient accelerator design space exploration via bayesian
optimization. In 2017 IEEE/ACM International Sympo-
sium on Low Power Electronics and Design (ISLPED), pp.
1–6, July 2017b. doi: 10.1109/ISLPED.2017.8009208.

Rebuffi, S., Bilen, H., and Vedaldi, A. Learning mul-
tiple visual domains with residual adapters. CoRR,
abs/1705.08045, 2017. URL http://arxiv.org/
abs/1705.08045.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. Efficient
parametrization of multi-domain deep neural networks.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8119–8127, 2018.

Riera, M., Arnau, J., and Gonzalez, A. Computation
reuse in dnns by exploiting input similarity. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pp. 57–68, June 2018.
doi: 10.1109/ISCA.2018.00016.

http://nvdla.org/primer.html
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045


FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115(3):
211–252, 2015.

Samajdar, A., Zhu, Y., Whatmough, P. N., Mattina, M., and
Krishna, T. Scale-sim: Systolic CNN accelerator. CoRR,
abs/1811.02883, 2018. URL http://arxiv.org/
abs/1811.02883.

SCALE-Sim. Arm CNN accelerator simula-
tor. URL https://github.com/ARM-
software/SCALE-Sim.

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian,
R., Strachan, J., Hu, M., Williams, R. S., and Srikumar,
V. ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars. In Proc. of
ISCA, 2016.

Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J. K.,
Shao, C., Mishra, A., and Esmaeilzadeh, H. From High-
Level Deep Neural Models to FPGAs. In Proc. of MICRO,
2016.

Simonyan, K. and Zisserman, A. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In Proc.
of ICLR, 2014.

Song, L., Qian, X., Li, H., and Chen, Y. Pipelayer: A
pipelined reram-based accelerator for deep learning. In
Proc. of HPCA, 2017.

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. Man
vs. computer: Benchmarking machine learning algo-
rithms for traffic sign recognition. Neural networks, 32:
323–332, 2012.

Suleiman, A., Chen, Y.-H., Emer, J., and Sze, V. Towards
Closing the Energy Gap Between HOG and CNN Fea-
tures for Embedded Vision. In Proc. of ISCAS, 2017.

Tzeng, E., Hoffman, J., Darrell, T., and Saenko, K. Si-
multaneous deep transfer across domains and tasks. In
Proceedings of the IEEE International Conference on
Computer Vision, pp. 4068–4076, 2015.

Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M.,
Leong, P., Jahre, M., and Vissers, K. Finn: A frame-
work for fast, scalable binarized neural network infer-
ence. In Proceedings of the 2017 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Ar-
rays, FPGA ’17, pp. 65–74, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-4354-1. doi: 10.1145/3020078.
3021744. URL http://doi.acm.org/10.1145/
3020078.3021744.

Venieris, S. I., Kouris, A., and Bouganis, C.-S. Toolflows
for mapping convolutional neural networks on fpgas: A
survey and future directions. ACM Comput. Surv., 51(3):
56:1–56:39, June 2018. ISSN 0360-0300. doi: 10.1145/
3186332. URL http://doi.acm.org/10.1145/
3186332.

Viola, P. and Jones, M. J. Robust Real-time Object Detec-
tion. IJCV, 2004.

Warden, P. Why GEMM is at the heard of
deep learning, April 2015. URL https:
//petewarden.com/2015/04/20/why-gemm-
is-at-the-heart-of-deep-learning/.

Whatmough, P. N., Lee, S. K., Brooks, D., and Wei, G. Dnn
engine: A 28-nm timing-error tolerant sparse deep neural
network processor for iot applications. IEEE Journal of
Solid-State Circuits, 53(9):2722–2731, Sep. 2018. ISSN
0018-9200. doi: 10.1109/JSSC.2018.2841824.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? In
Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’14, pp. 3320–3328, Cambridge, MA, USA, 2014.
MIT Press. URL http://dl.acm.org/citation.
cfm?id=2969033.2969197.

Yu, J., Lukefahr, A., Palframan, D., Dasika, G., Das, R.,
and Mahlke, S. Scalpel: Customizing DNN Pruning to
the Underlying Hardware Parallelism. In Proc. of ISCA,
2017.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. ArXiv
e-prints, October 2017.

Zhu, Y., Samajdar, A., Mattina, M., and Whatmough, P. Eu-
phrates: Algorithm-soc co-design for low-power mobile
continuous vision. In Proceedings of the 45th Annual In-
ternational Symposium on Computer Architecture, ISCA
’18, pp. 547–560, Piscataway, NJ, USA, 2018. IEEE
Press. ISBN 978-1-5386-5984-7. doi: 10.1109/ISCA.
2018.00052. URL https://doi.org/10.1109/
ISCA.2018.00052.

Zimmermann, R. Datapath synthesis for standard-cell de-
sign. In 2009 19th IEEE Symposium on Computer Arith-
metic, pp. 207–211, June 2009. doi: 10.1109/ARITH.
2009.28.

http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1811.02883
https://github.com/ARM-software/SCALE-Sim
https://github.com/ARM-software/SCALE-Sim
http://doi.acm.org/10.1145/3020078.3021744
http://doi.acm.org/10.1145/3020078.3021744
http://doi.acm.org/10.1145/3186332
http://doi.acm.org/10.1145/3186332
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
http://dl.acm.org/citation.cfm?id=2969033.2969197
http://dl.acm.org/citation.cfm?id=2969033.2969197
https://doi.org/10.1109/ISCA.2018.00052
https://doi.org/10.1109/ISCA.2018.00052

