
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

BANDANA: USING NON-VOLATILE MEMORY FOR STORING DEEP
LEARNING MODELS

ABSTRACT
Typical large-scale recommender systems use deep learning models that are stored on a large amount of DRAM.
These models often rely on embeddings, which consume most of the required memory. We present Bandana, a
storage system that reduces the DRAM footprint of embeddings, by using Non-volatile Memory (NVM) as the
primary storage medium, with a small amount of DRAM as cache. The main challenge in storing embeddings
on NVM is its limited read bandwidth compared to DRAM. Bandana uses two primary techniques to address
this limitation: first, it stores embedding vectors that are likely to be read together in the same physical location,
using hypergraph partitioning, and second, it decides the number of embedding vectors to cache in DRAM by
simulating dozens of small caches. These techniques allow Bandana to increase the effective read bandwidth of
NVM by 2-3× and thereby significantly reduce the total cost of ownership.

1 INTRODUCTION

An increasing number of web-scale applications are relying
on deep learning models, including online search (Clark,
2015), online ads (Zhou et al., 2018) and content recom-
mendation systems (Covington et al., 2016). Typically, the
precision of deep learning algorithms increases as a function
of the model size and the number of features. Therefore,
application providers are dedicating ever more compute and
storage resources to training, storing and accessing deep
learning models.

For example, at Acme1, thousands of servers are dedicated
to storing deep learning models to recommend relevant posts
or content to users. The deep learning features are often
represented by vectors called embeddings, which encode the
meaning of each feature, such that similar vectors are closer
in the embedding Euclidean space. To compute the most
relevant posts to serve each user, Acme uses two types of
embeddings: user and post embeddings. Post embeddings
represent the features of the post themselves (e.g., the main
words), while the user embeddings represent features unique
to each user, which represent their topics of interest and past
activity. At Acme, both types of embeddings are fully stored
in DRAM, in order to enable real-time access for computing
the most relevant content for each user.

However, DRAM is a relatively expensive storage medium,
and in fact has gotten even more expensive recently, due to
shortages in global supply (Wu, 2018; Bary, 2018). In this
work, our goal is to minimize the amount of DRAM used to
store embeddings, and therefore the total cost of ownership
(TCO). Since post embeddings need to go through more
ranking and processing, they have a much longer pipeline

1Large web company, name anonymized for double-blind sub-
mission.

than user embeddings. Therefore, user embeddings can be
read early in the process from a slower but cheaper storage
medium than DRAM.

Non-volatile Memory (NVM), also termed Non-volatile
Main Memory or persistent memory, offers an attractive
storage medium for user embeddings, since it costs about an
order of magnitude less per bit than DRAM, and its latency
and throughput can satisfy the requirements of computing
user embeddings. However, even though NVM provides
sufficient latency to meet the system’s requirements, its
bandwidth is significantly lower than DRAM. Exarcerbating
the problem, NVM devices offer maximum bandwidth only
if the size of reads is 4 KB or more, while user embedding
vectors are only 64-128 B. Therefore, naı̈vely substituting
DRAM for NVM results in underutilized bandwidth, and
causes both its latency to increase and the application’s
throughput to drop significantly.

We present Bandana, an NVM-based storage system for
embeddings of recommender systems, which optimizes the
read bandwidth of NVM for accessing deep learning em-
beddings. Bandana uses two primary mechanisms to op-
timize bandwidth: storing embedding vectors that can be
prefetched together to DRAM, and deciding which vectors
to cache in DRAM to maximize NVM bandwidth.

Prefetching embedding vectors. Our NVM device
benchmarks show that to optimize bandwidth, NVM needs
to be read at the granularity of a 4 KB block or more. There-
fore, Bandana stores multiple embedding vectors that are
likely to be accessed together in the same 4 KB NVM block,
and when one of the objects needs to be read, it has the
option of prefetching the entire block to DRAM. We evalu-
ate two techniques for partitioning the vectors into blocks:
Social Hash Partitioner (SHP) (Kabiljo et al., 2017), a su-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

pervised hypergraph partitioning algorithm that maximizes
the number of vectors in each block that were accessed
in the same query, and K-means (Lloyd, 1982; Arthur &
Vassilvitskii, 2007), an unsupervised algorithm that is run
recursively in two stages. We found that SHP doubled the
effective bandwidth compared to K-means for some work-
loads.

Caching vectors in DRAM. Even after storing related
vectors together, some blocks contain vectors that will not
be read and can be discarded. Therefore, Bandana decides
which vectors to keep in DRAM, by using a Least Recently
Used (LRU) queue, and only inserting objects from pre-
fetched blocks to the queue that have been accessed t times
in the past. We find that the performance varies widely
across different embedding tables based on the value of t
and the cache size. Therefore, inspired by recent research in
key-value caches (Waldspurger et al., 2017), Bandana runs
dozens of “miniature caches” that simulate the hit rate curve
of different values of t for each embedding table, with a
very low overhead. Based on the results of the simulations,
Bandana picks the optimal threshold for each embedding
table.

We demonstrate that Bandana significantly improved the
effective bandwidth of NVM, enabling it to be used as a
primary storage medium for embeddings. To summarize
our contributions:

1. To our knowledge, Bandana is the first system that
leverages NVM to store deep learning models. It is
also one of the first published systems to use NVM in
large-scale production workloads.

2. Using the past access patterns of embedding vectors,
Bandana applies hypergraph partitioning to determine
which vectors are likely to be accessed together in the
future.

3. Applies recent techniques from key-value caching
to run lightweight simulations of dozens of minia-
ture caches to determine how aggressively to cache
prefetched vectors for different cache sizes.

2 BACKGROUND

In this section we provide background on two topics: deep
learning embedding vectors and how they are used at Acme
for recommending posts, as well as NVM.

2.1 Embedding Vectors

The goal of Acme’s post recommendation system is to rec-
ommend relevant content to users. A straightforward way to
train a ranking system for this purpose, would be to encode
the post and user features and use them for predicting the

Figure 1. A deep learning recommendation model.

likelyhood of a click. For example, we can represent users
based on the pages they liked. In this case, each page would
correspond to a unique ID, and IDs would be mapped to
an element index in a binary vector. For instance, if a user
liked pages with the IDs 2 and 4, out of a total number of 5
pages, the user feature vector would be (0,0,1,0,1).

On the other hand, we could represent posts based on the
words used to describe them. In this scenario, each word
would correspond to a unique ID, and once again IDs would
be mapped to an element index in a binary vector. For
example, if the post’s text is “red car” out of word dictionary
“bicycle, mototrcycle, car, blue, red, green”, the post feature
vector would be (0, 0, 1, 0, 1, 0).

Since the total number of words in different languages is
on the order of millions, while the number of pages is on
the order of billions, such binary vectors would be very
large and sparse (i.e., will contain mostly zeros). Moreover,
such a naı̈ve representation would not apply any contextual
information of one page to another. In other words, very
similar pages would still be encoded as separate IDs.

However, instead of representing each word or page by a
single binary digit, if we represent them by a short vector, we
could represent the similarity between words or pages. The
mapping of items into a vector space is called an embedding.
Embeddings are learned and created in such a way that
sparse IDs with similar meaning (in terms of semantics,
engagement, etc.) will also be located closer in terms of
distance. The distance is often measured in Euclidian space.
Recommending posts is a specific use case of recommender
systems (Covington et al., 2016; Cheng et al., 2016; Wang
et al., 2017), in which the goal is to recommend the most
relevant content based on past user behavior.

At Acme, embedding vectors are stored in dedicated tables,
where each column represents an embedding vector, and
its column ID corresponds to its ID. Acme maintains two
types of embeddings: user and post embeddings. Each
user embedding table can typically represents some kind
of user behavior, such as clicks, likes, and page views, and
each embedding vector is a specific action taken by the
user. The post tables can represent the actual content of

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 4 8

La
te
nc
y
(µ
s)

Queue Depth

P99
Mean

(a)

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8

B
an
dw
id
th

(G
B
/s
)

Queue Depth

(b)

Figure 2. The latency and bandwidth for a 4KB random-read work-
load with variable queue depths.

the post, such as the specific phrases appearing in the post.
The recommendation model receives input IDs, extracts the
corresponding embeddings, and processes them with deep
neural networks (NNs), as shown on Figure 1.

The typical vector dimension in our models is between 32
to 64, where each element occupies 1-4 bytes. Embedding
tables can contain tens of millions of embedding vectors,
requiring on the order of GBs per table. Due to their latency
requirements, these tables are usually stored in DRAM.

The embedding vectors are computed during training, where
for each data sample (e.g. user and post pair) only the
columns accessed by the corresponding IDs are modified.
Therefore, as the training proceeds through the dataset most
(if not all) columns are updated, many of which are updated
multiple times. The embeddings are then used without any
adjustments or modifications during inference. The vectors
may be retrained every few hours.

2.2 NVM

Non-volatile Memory (NVM), is a new memory technology
that provides much lower latency and higher throughput
than flash, but lower performance than DRAM, for a much
lower cost than DRAM. NVM can be used in two form
factors: the DIMM form factor, which is byte-addressable,
or alternatively as a block device. The DIMM form factor is
currently not supported by Intel processors (Mellor, 2018),
and is much more expensive than using NVM as a block
device. Therefore, for our use case, we focus on the block
device form factor.

To understand how to use NVM, we explored its perfor-
mance characteristics. For this purpose, we ran a widely
used I/O workload generator, Fio 2.19 (fio), on an NVM
device. We ran the Fio workloads with 4 concurrent jobs us-
ing the Libaio I/O engine with different queue depths. The
queue depth represents the number of outstanding I/O re-
quests to the device, which is a proxy for how many threads
we run in parallel. We measured the latency and bandwidth
of an NVM device with a capacity of 375 GB.

Figure 2 presents the average latency, P99 latency, and band-

width for a read-only workload with random accesses of
4 KB. The results show that there is a trade-off between la-
tency and bandwidth: a higher queue depth provides higher
read bandwidth, at the expense of higher latency. Note
that even at a high queue depth, NVM’s read bandwidth
(2.3 GB/s) is still > 30× lower than DRAM (e.g., 75 GB/s).

Note that unlike DRAM, NVM’s endurance deteriorates as
a function of the number of writes over its lifetime. Typical
NVM devices can be re-written 30 times a day, or they will
start exhibiting errors. Fortunately, the rate of updating the
vectors at Acme is often between 10-20 times a day, which
is below the rate that would affect the endurance of the
NVM devices.

3 WORKLOAD CHARACTERIZATION

This section presents a workload characterization of the user
embeddings at Acme. We analyze a production workload
containing 1 billion embedding vector lookups, representing
traffic of over one hour for a single model. Currently, the
number of models per server and the size of each model are
bounded by the DRAM capacity of the server.

Each user embedding table typically represents a different
class of user behavior. For example, a table might represent
pages liked by the user, where each embedding vector repre-
sents a page. Hence, a request in Bandana usually incorpo-
rates multiple tables and contains multiple vector lookups
inside each table. Because different posts are ranked for
a single user, the post embeddings are read much more
frequently, and post lookups constitute about 95% of the
total embedding reads. On the other hand, user embeddings
contain more features, and consume about 75% of the total
DRAM capacity.

In the model we analyze, embedding vector are 128 bytes
containing 64 elements of type fp16. Table 1 describes
the characteristics of some representative user embedding
tables in the model. Each embedding table is comprised
of 10-20 million vectors (between 1.2 GB to 2.4 GB). The
average number of vectors included in a single request varies
across the tables, with 17.68 vector lookups (on average)
in embedding table 8, and up to 92.8 vector lookups (on
average) in embedding table 2. The table also presents
the vector lookup distribution across the user embedding
tables. The largest part of vector lookups is consumed by
embedding table 2, which serves 25% of the user embedding
lookups. Compulsary misses describe how many of these
lookups were unique (i.e., how many lookups correspond
to vectors that were not read before in the trace). The lower
the percentage of compulsory misses, the more likely the
table can be effectively cached.

To gain more insight on the reuse of the user embedding vec-
tors, we calculate the stack distances (Mattson et al., 1970)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

(a) Table 1 (b) Table 2 (c) Table 6 (d) Table 7

Figure 3. Hit rate curves of the user embedding tables with the top number of lookups.

(a) Table 1 (b) Table 2 (c) Table 6 (d) Table 7

Figure 4. Access histograms of the user embedding tables with the top number of lookups. Red lines represent the average number of
accesses per vector.

Table 1. Characterization of the user embedding tables.

TABLE VECTORS AVG REQUEST % OF TOTAL COMPULSARY
SIZE LOOKUPS MISSES

1 10M 34.83 9.44% 4.16%
2 10M 92.75 25.14% 2.19%
3 20M 26.67 7.23% 24.29%
4 20M 25.14 6.82% 19.46%
5 10M 30.22 8.19% 22.68%
6 10M 53.50 14.5% 26.94%
7 10M 54.35 14.73% 11.36%
8 20M 17.68 4.79% 60.83%

of each embedding table. To compute them, we assume
each table is cached in an infinite LRU queue, where the
stack distance of a vector is its rank in an LRU queue at the
time it is requested, counted from the top of the eviction
queue. For example, if the requested vector is at the second
object in the eviction queue when it is requested, its stack
distance is equal to 2. This allows us to compute the hit rate
curve as a function of the memory allocated to embedding
table. Figure 3 depicts the hit rate curves of the four em-
bedding tables with the top number of lookups, in a trace of
one billion requests. Figure 4 shows the access histogram
of these tables, where each bar depicts how many vectors
(X axis) were read a certain number of times (Y axis). The
histograms show that there is a very high variance in the
access patterns of the tables. For example, table 2 contains
vectors that are read 100,000s of times, while for table 7
there are no vectors that are read more than 1,000 times.

4 DESIGN

This section presents the design choices and trade-offs when
designing an NVM-based storage system for embedding
tables.

4.1 Baseline

A simple approach for using NVM to store recommender
system embedding tables is to cache a single vector that is
read by the application in DRAM, and evict a single old
vector at a time. We refer to this policy throughout the paper
as the baseline policy.

Figure 5 presents the latency as a function of the throughput
of the NVM device for the baseline policy, as well as for a
synthetic workload that issues random 4 KB reads from the
NVM. The reason that latency under the baseline policy as a
function of throughput is much higher than that of a device
where we issue 4 KB reads, is due to the fact that NVM
reads in the block device form factor are in the granularity of
4 KB blocks, while the size of an embedding vector is only
128 B. Therefore, the baseline policy is not utilizing more
than 96% of the read bandwidth of the NVM device. We
use the term effective bandwidth to denote the percentage
of NVM read bandwidth that is read by the application.
In the case of the baseline policy, the effective bandwidth
is only 4% of the total bandwidth of the NVM, and the
rest is discarded. Therefore, under a high load, when the
effective bandwidth is so low, the latency of NVM spikes
(and throughput drops).

Instead of reading a single vector to DRAM when it is

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0

 50

 100

 150

 200

 250

 300

 350

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

 4500
 5000

M
ea
n
La
te
nc
y
(µ
s)

Application Request Throughput (MB/s)

Baseline
100% Effective BW

(a)

 0

 100

 200

 300

 400

 500

 600

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

 4500
 5000

P
99

La
te
nc
y
(µ
s)

Application Request Throughput (MB/s)

Baseline
100% Effective BW

(b)

Figure 5. Mean and P99 latencies as a function of the throughput
of a 375 GB NVM device. The baseline policy represents the
scenario where the application issues a 128 B NVM read for each
embedding vector. The 100% effective bandwidth line represents
the performance of the NVM device with random 4 KB reads.

accessed, an alternative approach would be to read all 32
vectors stored in its physical 4 KB block. However, when we
use a limited cache size, the policy of caching all 32 vectors
that belong to a block, performs even worse than fetching
one vector at a time, and reduces the effective bandwidth
by more than 90% compared to the baseline policy. This is
due to the fact that the vectors stored in the same physical
block as the requested vector are not read before they are
evicted, since they have no relationship with the vector that
had just been read. Therefore, fetching them together with
the requested vector offers no benefit (in §4.3 we further
analyze the performance of caching the prefetched vectors
without ordering them).

In summary, the limited effective bandwidth is the main
bottleneck to adopting NVM as an alternative for DRAM
for storing embeddings. Therefore, the main objective of
Bandana is to maximize the effective bandwidth increase
over the baseline policy.

4.2 Storing Related Vectors Together

If vectors that are accessed at short intervals from each
other are also stored physically in the same blocks, Bandana
would be able to read fewer NVM blocks while fetching
the same amount of data. We explore two directions for
physically placing the embedding vectors.

Semantic partitioning assumes that two vectors that are
close in the Euclidian space may also share a semantic
similarity, and thus should be stored together. We use an
unsupervised K-means clustering algorithm to evaluate this
direction. Supervised partitioning uses the history of past
accesses to decide which vectors should be stored together.

In order to evaluate the benefits of physically storing related
embedding vectors compared to the baseline policy, we start
by experimenting with an unlimited cache (i.e. a DRAM
cache with no evictions), in which all blocks that are read

 0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

1 2 4 8 16 32 64 128
256

512
1024

2048
4096

8192

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Number of Clusters

1
2
3
4
5
6
7
8

Figure 6. Effective bandwidth increase when ordering embedding
vectors according to their K-means clusters. The lines represent
different embedding tables.

are cached. We calculate the effective bandwidth increase
by comparing the number of block reads from the NVM
using a production workload of 1 billion requests.

4.2.1 Semantic Partitioning with K-Means

Our first hypothesis for deciding where to place vectors is
that vectors that are close in the Euclidian space are also
accessed at close temporal intervals. The intuition is that if
vectors are close to each other, they might represent similar
types of content (e.g., similar pages), and would be accessed
at similar times.

We can formalize the problem by expressing the embedding
table E as a m× n matrix

E = [v1, ..., vn] (1)

Suppose that n embedding vectors are semantically mean-
ingful, in other words, two vectors vi and vj that are close
to each other in Euclidian distance ||vi−vj ||2 sense are also
more likely to be accessed at close temporal intervals. Then,
we would like to find a column reordering p, such that

min
p

n∑
i=0

||vp(i) − vp(i+1)||2 (2)

We can approximate the solution to this problem by using
K-means to cluster the vectors based on Euclidian distance,
and sort them so that vectors in the same cluster are ordered
next to each other in memory.

Figure 6 shows the effective bandwidth increase for differ-
ent number of clusters. The results show that for certain
tables (e.g., tables 1 and 2), the effective bandwidth is in-
creased significantly, while for others it is not. Note that
for example, table 8, which does not experience a large ef-
fective bandwidth increase, suffers from a high compulsory
miss rate (see Table 1). Ideally, we would use K-means
with a large number of clusters. Figure 7(a) shows that the
runtime of K-means increases exponentially as a function of

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 4 8 16 32 64 128
256
512
1024
2048
4096
8192

R
un

T
im
e
(M
in
ut
es
)

Number of Clusters

(a)

 6
 8

 10
 12
 14
 16
 18

256
512

1024
2048

4096
8192

16384

32768

65536

R
un

T
im
e
(M
in
ut
es
)

Number of Sub-clusters

(b)

 0
 1
 2
 3
 4
 5
 6
 7

1 2 3 4 5 6 7 8

R
un

T
im
e
(M
in
ut
es
)

Embedding Table

(c)

Figure 7. (a) The runtime of the K-means algorithm on embedding table 4, using the Faiss library with 20 iterations and 24 threads. (b)
The runtime of two-stage K-means algorithm on embedding table 4, using the Faiss library with 20 iterations and 24 threads. (c) The
runtime of the SHP algorithm with 16 iterations and 24 threads per embedding table.

 0%

 20%

 40%

 60%

 80%

 100%

 120%

 140%

 160%

 180%

 200%

256
512

1024
2048

4096
8192

16384

32768

65536

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Number of Sub-clusters

1
2
3
4
5
6
7
8

Figure 8. Effective bandwidth increase when ordering the embed-
ding vectors using recursive K-means. The lines represent different
embedding tables.

the number of clusters. Therefore, K-means does not scale
to a large number of clusters (e.g., 625,000).

In order to reduce the runtime, we also experiment running
an appromixation of K-means by running the algorithm
recursively. We first run K-means to cluster the embeddings
into 256 clusters, then recursively run it again on each of
the clusters, creating “sub-clusters”. Figure 8 depicts the
effective bandwidth increase for different number of sub-
clusters, and Figure 7(b) shows the corresponding runtime
as measured on table 4. The results show that using recursive
K-means does not reduce the effective bandwidth, and there
is no benefit increasing the number of clusters beyond 8,192.

4.2.2 Supervised Partitioning with SHP

In general, a small Euclidean distance of vectors in embed-
ding tables does not always guarantee they are going to be
accessed together in time. Another problem of relying on
the Euclidean distance, especially in the context of Acme,
is that if vectors are frequently updated due to re-training
(e.g., every hour), their Euclidean distance can change, and
therefore K-Means would need to be re-run at every update.
Therefore, we also experiment with an approach that does

not rely on Euclidean distances, but rather on the past access
patterns of each vector. This approach would not require re-
computing the classifier each time the vectors get re-trained,
since the identity of the vectors remains the same, even if
their values get updated.

To do so, we are inspired by techniques introduced in the
context of partitioning hypergraphs for optimizing data
placement for databases (Devine et al., 2006; Kabiljo et al.,
2017). Suppose that we have a representative sequence of
accesses to the embedding table, which are represented as
sparse IDs. Let these accesses be organized into lookup
queries Qj , each corresponding to a particular user. Then,
we would like to find a column reordering p such that
columns accessed together by the same user are stored in
the same block.

We can find a solution to this problem by mapping it to a
hypergraph. Let H = (D, E) be a hypergraph with a set
of vertices D corresponding to sequence of accesses and a
set of hyperedges E corresponding to lookup queries Qj .
Also, let p be a partitiong of the vertices D =

⋃
Di into

disjoint blocks Di for i = 1, ..., k. Then, notice that the
spatial locality of accesses can be expressed as minimizing
the average fanout:

min
p

1

n

n∑
j=1

(
k∑

i=1

intersect(Qj ,Di)

)
(3)

where fanout in parenthesis is the number of blocks that
need to be read to satisfy the query, with

intersect(Qj ,Di) =

{
1 if Qj

⋂
Di 6= ∅

0 otherwise
(4)

Notice that the average fanout measures the number of
blocks accessed by each query, rather than the general prox-
imity of accesses. Therefore, we temporally approximate
vectors that are accessed in the same query. We can start
with two blocks and apply the algorithm recursively on
them (Kabiljo et al., 2017).

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0%

100%

200%

300%

400%

500%

600%

1 2 3 4 5 6 7 8

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Embedding Table

200M
1B
5B

Figure 9. Effective bandwidth increase when ordering the embed-
ding vectors using SHP with an unlimited DRAM cache, as a
function of the number of requests used to train SHP.

We configure the SHP algorithm blocks to contain 32 em-
beddings. We first run the algorithm on a set of up to 5
billion requests, then measure the bandwidth reduction on a
separate trace of 1 billion requests.

Figure 9 depicts the effective bandwidth increase per table,
when running the SHP algorithm with different number of re-
quests. Overall, SHP exeeds the bandwidth savings achieved
with K-means for all tables. Utilizing larger datasets for
running the algorithm improves its accuracy and the corre-
sponding effective bandwidth (we did not see a significant
bandwidth improvement for using datasets larger than 5
billion requests). Figure 7(c) shows the SHP runtime per
table, running with 16 iterations and 24 threads.

4.3 Caching the Embedding Tables

So far, we assumed that Bandana uses an infinite cache.
However, as we noted above, the amount of DRAM we
can dedicate to each table is limited. Therefore, Bandana
also needs to implement an eviction policy to decide which
vectors to cache in DRAM. We experiment with using an
eviction policy of Least Recently Used (LRU).

The first question when deciding which vectors to cache in
DRAM, is how to treat the vectors that were pre-fetched
when Bandana reads the whole block. Figure 10 depicts the
effective bandwidth increase when all of the vectors in a
block are cached and treated the same as the actual requested
vector for the original tables and for the partitioned tables.
As the figure shows, simply allocating all 32 vectors in a
block to the cache will trigger 32 evictions of potentially
more useful vectors that are ranked higher in the eviction
queue, reducing the cache hit rate and reducing the effective
bandwidth significantly.

4.3.1 Caching the Prefetched Vectors

Even though our ordering algorithms improve the spatial lo-
cality of blocks, some prefetched vectors are not accessed at

-100%
-90%
-80%
-70%
-60%
-50%
-40%
-30%
-20%
-10%

 0%
10%

80000 120000 160000 200000E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Cache Size (vectors)

Partitioned Tables
Original Tables

Figure 10. Effective bandwidth increase when ordering the embed-
ding vectors using SHP with a limited DRAM cache, with a policy
of treating prefetched vectors the same as vectors that are read by
the application. The figure also depicts the effective bandwidth of
the unsorted original tables.

all. This led us to experiment with inserting them in different
positions in the eviction queue. Inserting prefetched vectors
at a lower position in the queue prevents them from trigger-
ing the eviction of hot vectors, but also may shorten their
lifetime in the cache and make them less likely to get ac-
cessed before they are evicted, thus decreasing the effective
bandwidth. Overall, we noticed that while improving the hit
rate and bandwidth (compared with inserting prefetches at
the top of the queue), this method did not significantly affect
the performance for lower cache sizes, and still provided
low (and sometimes negative) bandwidth benefits. The main
reason for this is that all prefetched vectors are still allo-
cated to the cache, without filtering the less useful vectors.
Figure 11(a) presents the bandwidth reduction in embed-
ding table 2 when inserting prefetched vectors to different
positions in the queue, over a baseline with no prefetches.
The X axis represents the prefetch insertion position relative
to the top of the eviction queue (e.g. 0.5 and 0 mean the
middle and top of the queue, respectively).

Instead of allocating prefetched vectors to a lower point in
the queue, we can use an admission control algorithm that
decides whether prefetched vectors enter the queue at all.
As a first step, we use a separate LRU list, which we term a
shadow cache, which stores only the index of the vectors,
without storing their content. We allocate only vectors that
were explicitly read, thus simulating another cache (that has
no prefetched vectors) without actually caching the value of
the embedding vectors. When a block is read from the NVM,
its vectors are prefetched only if they already appear in the
shadow cache (note that the vector read by the application
is always cached). Figure 11(b) demonstrates the effective
bandwidth increase as a function of the size of the shadow
cache with table 2. The shadow cache size is calculated
using a multiplier over the real cache size. For example, a
mutiplier of 1.5 for a cache of 80,000 vectors means that
the shadow cache size is 120,000 vectors.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

As shown in Figure 11(b), the shadow cache produces a very
small effective bandwidth increase when used as an admis-
sion policy. The existence of a vector in the shadow cache
does not correlate with its usefulness as a prefetched vector.
We try to combine both methods, by using the shadow cache
to decide where to allocate the prefetched vector in queue.
If the prefetched vector hits in the simulated cache, it is
allocated to the top of the queue. Otherwise, it is allocated
to the separate insertion position. Figure 11(c) shows the
effective bandwidth increase in embedding table 2 when
using this method, over a baseline with no prefetches.

4.3.2 Dealing with Rarely Accessed Vectors

We try to improve bandwidth savings further by leveraging
the insight that during SHP run, some vectors are rarely
accessed, as demonstrated in Figure 4. SHP has very limited
information about such vectors and on how to sort them.
However, since SHP performs balanced partitioning, all the
vectors are paritioned to equally-sized blocks, and blocks
may contain vectors that were rarely (or never) accessed
during the SHP run. In such cases SHP will simply assign
them to arbitrary locations in blocks that have free space.

Driven by this insight, Bandana collects statistics on the
number of times each vector was accessed during the SHP
run (i.e, how many queries contained each vector). When
reading a 4 KB block from NVM, vectors will be prefetched
only if they were accessed > t times during the SHP run.
Figure 12 presents the effective bandwidth increase with dif-
ferent threshold values t for table 2, compared to a baseline
of no prefeches. This policy significantly improves effective
bandwidth. The number of vector accesses during an SHP
run correlates with their utility as prefetched vectors, since
SHP has more confidence in assigning a useful location for
vectors that appeared in many queries. For smaller cache
sizes, the price of cache evictions is higher, hence Bandana
should utilize higher thresholds to filter out the more specu-
lative prefetches. For higher cache sizes, Bandana should
use lower thresholds to more aggressively prefetch.

4.3.3 Configuring the Cache Parameters with Simulations

As Figure 12 shows, the optimal threshold varies across
different cache sizes. Picking an a-priori one-size-fits-all
threshold for all the tables would lead to a low effective
bandwidth. Ideally, Bandana should automatically pick the
right threshold for each table and cache size and automati-
cally tune it for each table and cache size.

To do so, we borrow an idea used from key-value caches,
called “miniature caches” (Waldspurger et al., 2017). The
idea behind miniature caches is to simulate the hit rate curve
of multiple different cache configuration, or in our case,
simulate the cache with different thresholds for prefetched
vectors, and pick the one that provides the highest hit rate for

a given cache size. The main problem with this approach
is how to simulate multiple caches in real-time without
incurring a high performance and memory overhead.

Miniature caches uses the insight that hit rate curves can
be estimated efficiently without having to use the entire
access workload, but rather by randomly sampling requests
from the workload and computing the hit rate curve for the
sampled requests. For example, if the total cache is of size
S, and we sample the request stream at a rate of 1

N , the
miniature cache only needs to track S

N vectors. In addition,
the miniature cache does not have to store the value of the
objects, only their IDs.

In our case, we find that in order to accurately simulate a
cache, we can down-sample its requests by a factor of 1000.
Table 2 compares the ideal threshold when running embed-
ding table 2 with different cache sizes, to the thresholds
chosen by the miniature cache simulations with different
sampling rates. The results show that there is not a big differ-
ence in the effective bandwidth between the ideal thresholds
and the ones chosen by the simulations. It also shows that
for larger caches, Bandana can use a more relaxed threshold,
while for smaller caches with less DRAM, Bandana benefits
from using a more aggressive admission control policy for
prefetched vectors.

In fact, the hit rate curves produced by the miniature caches
not only provide the ideal threshold for prefetched vec-
tors, but also allow the datacenter operator to optimize the
amount of DRAM across the different tables to maximize
performance. There are various techniques for maximizing
total hit rate across multiple hit rate curves, including when
the curves are convex (Cidon et al., 2015; 2017), and even
when they are not convex (Beckmann & Sanchez, 2015;
Cidon et al., 2016; Waldspurger et al., 2017). In our case,
we found that the hit rate curves of all the tables are convex
and do not change substantially across runs. Therefore, we
ran Bandana on a trace with 5 billion requests and statically
assigned the amount of DRAM to assign to each table with
the goal of optimizing the total hit rate (Cidon et al., 2015).

5 END-TO-END EVALUATION

In this section we analyze the end-to-end effective band-
width increase of Bandana under different scenarios: (1) as
a function of cache size, (2) as a function of the simulated
cache size, (3) as a function of SHP’s training data size, and
(4) as a function of the embedding vector size. In all the
experiments in this section, unless otherwise specified, we
ran Bandana using SHP trained on 5 billion requests, with
a total cache of 4 million vectors, simulated caches with a
size of 0.1% of the total cache, and a vector size of 128 B.

Figure 13 compares the total effective bandwidth increase
across 8 different tables as a function of cache size. The

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

-40%
-30%
-20%
-10%

 0%
10%
20%
30%
40%

0 0.3 0.5 0.7 0.9E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Prefetch Insertion Position

200
160
120
80

(a)

-4%
-3%
-2%
-1%
 0%
 1%
 2%
 3%
 4%
 5%

1 1.5 2E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Shadow Queue Size Multiplier

80
120
160
200

(b)

-40%
-30%
-20%
-10%

 0%
10%
20%
30%
40%

0 0.3 0.5 0.7 0.9E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Prefetch Insertion Position

200
160
120
80

(c)

Figure 11. (a) Effective bandwidth increase when inserting prefetches to a different position in the queue, compared with no prefetching.
(b) Effective bandwidth increase when filtering prefetches based on the shadow queue, compared with no prefetching. (c) Effective
bandwidth increase when combining both methods, compared with no prefetching. The lines in all figures represent different cache sizes
(vectors×103).

Table 2. Measuring the effectiveness of using miniature caches with different sampling rates with embedding table 2. On the left, the
results show the ideal admission control threshold for the full cache, for different cache sizes. The results to the right show the chosen
threshold when running miniature caches, using different sampling ratios. Even at 0.1% sampling, miniature caches provides a relatively
similar bandwidth gain compared to the ideal threshold.

SIZE FULL CACHE 10% SAMPLING 1% SAMPLING 0.1% SAMPLING

THRESHOLD BW GAIN THRESHOLD BW GAIN THRESHOLD BW GAIN THRESHOLD BW GAIN
80,000 20 27.6% 20 27.6% 15 21.4% 15 21.4%
120,000 10 43.0% 15 36.3% 10 43.0% 15 36.3%
160,000 5 80.3% 5 80.3% 5 80.3% 10 61.0%
200,000 5 129.9% 5 129.9% 5 129.9% 5 129.9%

 0%

20%

40%

60%

80%

100%

120%

140%

5 10 15 20E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Access Threshold

200
160
120
80

Figure 12. Effective bandwidth increase when filtering prefetched
vectors based on the number of accesses during SHP run. The
lines represent different cache sizes (vectors×103).

graph shows that for certain tables, the effective bandwidth
significantly increases as a function of the cache size, up
to almost 5× for table 2. For some tables however, the
effective bandwidth remains relatively stable and low. The
reason for this is that the access patterns of some tables
are simply more random, and harder to effectively partition
and cache. At the extreme, an application that accesses
embedding vectors completely uniformly would not see any
effective bandwidth increase.

We also analyze the impact of the size of the miniature
caches in Figure 14. The figure shows that the effective
bandwidth is almost the same with an oracle policy that
selects the ideal prefetched vector threshold, compared to

 0%

50%

100%

150%

200%

250%

300%

350%

400%

1M 2M 3M 4M 5M

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Total Cache Size (vectors)

2
1
4
3
7
5
8
6

Figure 13. Effective bandwidth increase as a function of total cache
size. The lines represent different embedding tables.

a miniature cache simulation that is scaled down to a thou-
sandth of the size of the cache.

Figure 15 varies the number of training samples. It shows
that as we increase the training time, the effective bandwidth
increases. This is due to the fact that SHP’s effectiveness
in placing related vectors physically together improves as a
function of the amount of training data.

While our model currently uses a vector size of 128 bytes,
we also compare the effective bandwidth increase for dif-
ferent vector sizes in figure 16, using a total cache of 4
million vectors (i.e. the cache size changes proportionally
with the vector size). When vector sizes are smaller, each
NVM block accomodates more vectors, enabling Bandana

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0%

50%

100%

150%

200%

250%

300%

1 2 3 4 5 6 7 8

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Embedding Table

0.1% Sampling
1% Sampling
10% Sampling

Full Cache

Figure 14. Effective bandwidth increase as a function of the sam-
pling rate of the miniature caches, trained on 5 billion requests.
The full cache policy represents an oracle policy that selects the
ideal threshold for each table.

 0%

50%

100%

150%

200%

250%

300%

1 2 3 4 5 6 7 8

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Embedding Table

200M
1B
5B

Figure 15. Effective bandwidth increase as a function of the num-
ber of requests used to train SHP, evaluated against 1 billion re-
quests.

to achieve higher effective bandwidth increase.

6 RELATED WORK

Bandana uses techniques inspired by prior research in using
NVM as a substitute for DRAM, partitioning and caching.

NVM has been proposed as a low cost substitute for DRAM
in other contexts, including databases and file systems.
MyNVM (Eisenman et al., 2018) is a SQL database based
on MyRocks, which uses block-level NVM as a second
level cache for flash, and a lower cost substitute for DRAM.
Similar to Bandana, one of the main challenges MyNVM
deals with is NVM’s limited bandwidth compared to DRAM.
However, unlike Bandana, MyNVM stores objects in relati-
vely large files (e.g., 4-6 KB). The novel challenge addressed
by Bandana is how to physically place and cache embed-
dings vectors, which are much smaller than NVM blocks.

Other databases simulate NVM in its byte-addressable form,
such as: CDDS (Venkataraman et al., 2011), Echo (Bailey
et al., 2013), FPTree (Oukid et al., 2016), and HiKV (Xia
et al., 2017). There has also been several prior projects
in using NVM in its byte-addressable form for file sys-
tems, including: NOVA-Fortis (Xu & Swanson, 2016),

 0%

50%

100%

150%

200%

250%

300%

1 2 3 4 5 6 7 8

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Embedding Table

256
128
64

Figure 16. Effective bandwidth increase as a function of the em-
bedding vector size (bytes).

LAWN (Wang & Chattopadhyay, 2018), and ByVFS (Wang
et al., 2018). All of these systems use simulations to estimate
how byte-addressable NVM will perform. Unfortunately
since byte-addressable NVM is not commercially available,
its real performance characteristics are unknown.

Bandana’s mechanism for ordering vectors in physical
blocks uses SHP, a hypergraph partitioning algorithm orig-
inally proposed for database query optimization (Shalita
et al., 2016; Kabiljo et al., 2017). The reason we chose
SHP is due to its scalability and ease of implementa-
tion. Another hypergraph partitioning algorithm used for
database query partitioning is SWORD (Kumar et al., 2014).
Zoltan (Devine et al., 2006) and Parkway (Trifunović &
Knottenbelt, 2008) are other distributed hypergraph parti-
tioning algorithms. However, both algorithms do not scale
well for partitioning large workloads in our application (for
more details see SHP (Kabiljo et al., 2017)).

Bandana uses micro-simulations to test different cache ad-
mission thresholds. A similar approach was used in recent
work (Waldspurger et al., 2017) to approximate miss-rate
curves of different caching algorithms, and select the opti-
mal in real-time. Talus (Beckmann & Sanchez, 2015) and
Cliffhanger (Cidon et al., 2016) demonstrate how miss-rate
curves can be estimated by simulating a small cache. Other
recent low cost miss-rate curve approximation techniques in-
clude Counter Stacks (Wires et al., 2014), SHARDS (Wald-
spurger et al., 2015), and AET (Hu et al., 2016).

7 CONCLUSIONS

Bandana is a novel NVM-based storage system for storing
deep learning models. It provides a lower cost alternative to
existing fully DRAM-based storage. Bandana reorders em-
bedding vectors and stores related ones physically together
for efficient prefetching, and dynamically adjusts its caching
policy by simulating miniature caches for each embedding
table. Similar techniques employed by Bandana can be
extended for using NVM to store other types of datasets,
which require granular access to data.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

REFERENCES

Flexible I/O tester. https://github.com/axboe/fio.

Arthur, D. and Vassilvitskii, S. K-means++: The advantages
of careful seeding. Proc. 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1027–1035, 2007.

Bailey, K. A., Hornyack, P., Ceze, L., Gribble, S. D., and
Levy, H. M. Exploring storage class memory with key
value stores. In Proceedings of the 1st Workshop on
Interactions of NVM/FLASH with Operating Systems
and Workloads, INFLOW ’13, pp. 4:1–4:8, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2462-5. doi:
10.1145/2527792.2527799. URL http://doi.acm.
org/10.1145/2527792.2527799.

Bary, E. DRAM supply/demand tightness should
continue in second half of 2018, says Baird, 2018.
https://www.marketwatch.com/story/
dram-supplydemand-tightness-should-
continue-in-second-half-of-2018-says-
baird-2018-06-15.

Beckmann, N. and Sanchez, D. Talus: A simple way to
remove cliffs in cache performance. In 2015 IEEE 21st
International Symposium on High Performance Computer
Architecture (HPCA), pp. 64–75, Feb 2015. doi: 10.1109/
HPCA.2015.7056022.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra,
T., Aradhye, H., Anderson, G., Corrado, G., Chai, W.,
Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X.,
and Shah, H. Wide & deep learning for recommender
systems. In Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, DLRS 2016, pp. 7–
10, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
4795-2. doi: 10.1145/2988450.2988454. URL http:
//doi.acm.org/10.1145/2988450.2988454.

Cidon, A., Eisenman, A., Alizadeh, M., and Katti,
S. Dynacache: Dynamic cloud caching. In
7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 15), Santa Clara, CA,
July 2015. URL https://www.usenix.
org/conference/hotcloud15/workshop-
program/presentation/cidon.

Cidon, A., Eisenman, A., Alizadeh, M., and Katti, S.
Cliffhanger: Scaling performance cliffs in web memory
caches. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pp.
379–392, Santa Clara, CA, March 2016. ISBN 978-
1-931971-29-4. URL https://www.usenix.
org/conference/nsdi16/technical-
sessions/presentation/cidon.

Cidon, A., Rushton, D., Rumble, S. M., and Stutsman,
R. Memshare: a dynamic multi-tenant key-value
cache. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pp. 321–334, Santa
Clara, CA, 2017. USENIX Association. ISBN 978-
1-931971-38-6. URL https://www.usenix.
org/conference/atc17/technical-
sessions/presentation/cidon.

Clark, J. Google turning its lucrative web search over to
AI machines, 2015. https://www.bloomberg.
com/news/articles/2015-10-26/google-
turning-its-lucrative-web-search-
over-to-ai-machines.

Covington, P., Adams, J., and Sargin, E. Deep neural net-
works for YouTube recommendations. In Proceedings
of the 10th ACM Conference on Recommender Systems,
New York, NY, USA, 2016.

Devine, K. D., Boman, E. G., Heaphy, R. T., Bisseling,
R. H., and Catalyurek, U. V. Parallel hypergraph partition-
ing for scientific computing. In Proceedings of the 20th
International Conference on Parallel and Distributed
Processing, IPDPS’06, pp. 124–124, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 1-4244-0054-
6. URL http://dl.acm.org/citation.cfm?
id=1898953.1899056.

Eisenman, A., Gardner, D., AbdelRahman, I., Axboe, J.,
Dong, S., Hazelwood, K., Petersen, C., Cidon, A., and
Katti, S. Reducing DRAM footprint with NVM in Face-
book. In Proceedings of the Thirteenth EuroSys Con-
ference, EuroSys ’18, pp. 42:1–42:13, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5584-1. doi:
10.1145/3190508.3190524. URL http://doi.acm.
org/10.1145/3190508.3190524.

Hawkins, A. J. Inside Waymo’s strategy to grow the
best brains for self-driving cars, 2018. https:
//www.theverge.com/2018/5/9/17307156/
google-waymo-driverless-cars-deep-
learning-neural-net-interview.

Hu, X., Wang, X., Zhou, L., Luo, Y., Ding, C., and Wang,
Z. Kinetic modeling of data eviction in cache. In
2016 USENIX Annual Technical Conference (USENIX
ATC 16), pp. 351–364, Denver, CO, 2016. USENIX
Association. ISBN 978-1-931971-30-0. URL https:
//www.usenix.org/conference/atc16/
technical-sessions/presentation/hu.

Kabiljo, I., Karrer, B., Pundir, M., Pupyrev, S., and
Shalita, A. Social hash partitioner: A scalable dis-
tributed hypergraph partitioner. Proc. VLDB Endow.,
10(11):1418–1429, August 2017. ISSN 2150-8097.

http://doi.acm.org/10.1145/2527792.2527799
http://doi.acm.org/10.1145/2527792.2527799
https://www.marketwatch.com/story/dram-supplydemand-tightness-should-continue-in-second-half-of-2018-says-baird-2018-06-15
https://www.marketwatch.com/story/dram-supplydemand-tightness-should-continue-in-second-half-of-2018-says-baird-2018-06-15
https://www.marketwatch.com/story/dram-supplydemand-tightness-should-continue-in-second-half-of-2018-says-baird-2018-06-15
https://www.marketwatch.com/story/dram-supplydemand-tightness-should-continue-in-second-half-of-2018-says-baird-2018-06-15
http://doi.acm.org/10.1145/2988450.2988454
http://doi.acm.org/10.1145/2988450.2988454
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/cidon
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/cidon
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/cidon
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://www.usenix.org/conference/atc17/technical-sessions/presentation/cidon
https://www.usenix.org/conference/atc17/technical-sessions/presentation/cidon
https://www.usenix.org/conference/atc17/technical-sessions/presentation/cidon
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
http://dl.acm.org/citation.cfm?id=1898953.1899056
http://dl.acm.org/citation.cfm?id=1898953.1899056
http://doi.acm.org/10.1145/3190508.3190524
http://doi.acm.org/10.1145/3190508.3190524
https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-deep-learning-neural-net-interview
https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-deep-learning-neural-net-interview
https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-deep-learning-neural-net-interview
https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-deep-learning-neural-net-interview
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

doi: 10.14778/3137628.3137650. URL https://doi.
org/10.14778/3137628.3137650.

Kumar, K. A., Quamar, A., Deshpande, A., and Khuller, S.
SWORD: Workload-aware data placement and replica
selection for cloud data management systems. The VLDB
Journal, 23(6):845–870, December 2014. ISSN 1066-
8888. doi: 10.1007/s00778-014-0362-1. URL http://
dx.doi.org/10.1007/s00778-014-0362-1.

Lloyd, S. P. Least square quantization in pcm. IEEE Trans.
Information Theory, 28:129–137, 1982.

Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I. L.
Evaluation techniques for storage hierarchies. IBM Sys-
tems journal, 9(2):78–117, 1970.

Mellor, C. Intel hands first Optane DIMM to Google, where
it’ll collect dust until a supporting CPU arrives, 2018.
https://www.theregister.co.uk/2018/
08/10/optane_dimm_ceremonially_ships_
but_lacks_any_xeon_support/.

Oukid, I., Lasperas, J., Nica, A., Willhalm, T., and Lehner,
W. Fptree: A hybrid SCM-DRAM persistent and con-
current B-Tree for storage class memory. In Proceed-
ings of the 2016 International Conference on Manage-
ment of Data, SIGMOD ’16, pp. 371–386, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-3531-7. doi:
10.1145/2882903.2915251. URL http://doi.acm.
org/10.1145/2882903.2915251.

Shalita, A., Karrer, B., Kabiljo, I., Sharma, A., Presta, A.,
Adcock, A., Kllapi, H., and Stumm, M. Social hash:
An assignment framework for optimizing distributed
systems operations on social networks. In 13th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 16), pp. 455–468, Santa Clara, CA, 2016.
USENIX Association. URL https://www.usenix.
org/conference/nsdi16/technical-
sessions/presentation/shalita.

Trifunović, A. and Knottenbelt, W. J. Parallel multilevel
algorithms for hypergraph partitioning. J. Parallel Distrib.
Comput., 68(5):563–581, May 2008. ISSN 0743-7315.
doi: 10.1016/j.jpdc.2007.11.002. URL http://dx.
doi.org/10.1016/j.jpdc.2007.11.002.

Venkataraman, S., Tolia, N., Ranganathan, P., and Camp-
bell, R. H. Consistent and durable data structures for
non-volatile byte-addressable memory. In Proceedings
of the 9th USENIX Conference on File and Stroage
Technologies, FAST’11, pp. 5–5, Berkeley, CA, USA,
2011. USENIX Association. ISBN 978-1-931971-82-
9. URL http://dl.acm.org/citation.cfm?
id=1960475.1960480.

Waldspurger, C., Saemundsson, T., Ahmad, I., and Park,
N. Cache modeling and optimization using miniature
simulations. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pp. 487–498, Santa
Clara, CA, 2017. USENIX Association. ISBN 978-
1-931971-38-6. URL https://www.usenix.
org/conference/atc17/technical-
sessions/presentation/waldspurger.

Waldspurger, C. A., Park, N., Garthwaite, A., and Ah-
mad, I. Efficient MRC construction with SHARDS.
In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15), pp. 95–110, Santa
Clara, CA, 2015. USENIX Association. ISBN 978-
1-931971-201. URL https://www.usenix.
org/conference/fast15/technical-
sessions/presentation/waldspurger.

Wang, C. and Chattopadhyay, S. LAWN: Boosting the
performance of NVMM file system through reducing
write amplification. In Proceedings of the 55th Annual
Design Automation Conference, DAC ’18, pp. 6:1–6:6,
New York, NY, USA, 2018. ACM. ISBN 978-1-4503-
5700-5. doi: 10.1145/3195970.3196066. URL http:
//doi.acm.org/10.1145/3195970.3196066.

Wang, R., Fu, B., Fu, G., and Wang, M. Deep & cross
network for ad click predictions. In Proceedings of
the ADKDD’17, ADKDD’17, pp. 12:1–12:7, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-5194-2. doi:
10.1145/3124749.3124754. URL http://doi.acm.
org/10.1145/3124749.3124754.

Wang, Y., Jiang, D., and Xiong, J. Caching or
not: Rethinking virtual file system for non-volatile
main memory. In 10th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStor-
age 18), Boston, MA, 2018. USENIX Association.
URL https://www.usenix.org/conference/
hotstorage18/presentation/wang.

Wires, J., Ingram, S., Drudi, Z., Harvey, N. J. A., and
Warfield, A. Characterizing storage workloads with
counter stacks. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pp. 335–
349, Broomfield, CO, 2014. USENIX Association. ISBN
978-1-931971-16-4. URL https://www.usenix.
org/conference/osdi14/technical-
sessions/presentation/wires.

Wu, A. DRAM supply to remain tight with its annual
bit growth for 2018 forecast at just 19.6%, according to
Trendforce, 2018. https://www.dramexchange.
com.

Xia, F., Jiang, D., Xiong, J., and Sun, N. HiKV: A hybrid
index key-value store for DRAM-NVM memory systems.

https://doi.org/10.14778/3137628.3137650
https://doi.org/10.14778/3137628.3137650
http://dx.doi.org/10.1007/s00778-014-0362-1
http://dx.doi.org/10.1007/s00778-014-0362-1
https://www.theregister.co.uk/2018/08/10/optane_dimm_ceremonially_ships_but_lacks_any_xeon_support/
https://www.theregister.co.uk/2018/08/10/optane_dimm_ceremonially_ships_but_lacks_any_xeon_support/
https://www.theregister.co.uk/2018/08/10/optane_dimm_ceremonially_ships_but_lacks_any_xeon_support/
http://doi.acm.org/10.1145/2882903.2915251
http://doi.acm.org/10.1145/2882903.2915251
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/shalita
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/shalita
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/shalita
http://dx.doi.org/10.1016/j.jpdc.2007.11.002
http://dx.doi.org/10.1016/j.jpdc.2007.11.002
http://dl.acm.org/citation.cfm?id=1960475.1960480
http://dl.acm.org/citation.cfm?id=1960475.1960480
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
http://doi.acm.org/10.1145/3195970.3196066
http://doi.acm.org/10.1145/3195970.3196066
http://doi.acm.org/10.1145/3124749.3124754
http://doi.acm.org/10.1145/3124749.3124754
https://www.usenix.org/conference/hotstorage18/presentation/wang
https://www.usenix.org/conference/hotstorage18/presentation/wang
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.dramexchange.com
https://www.dramexchange.com

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pp. 349–362, Santa Clara, CA, 2017. USENIX
Association. ISBN 978-1-931971-38-6. URL https:
//www.usenix.org/conference/atc17/
technical-sessions/presentation/xia.

Xu, J. and Swanson, S. NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories. In 14th
USENIX Conference on File and Storage Technologies
(FAST 16), pp. 323–338, Santa Clara, CA, 2016. USENIX
Association. ISBN 978-1-931971-28-7. URL https:
//www.usenix.org/conference/fast16/
technical-sessions/presentation/xu.

Zhou, G., Zhu, X., Song, C., Fan, Y., Zhu, H., Ma, X., Yan,
Y., Jin, J., Li, H., and Gai, K. Deep interest network for
click-through rate prediction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, pp. 1059–1068,
New York, NY, USA, 2018. ACM. ISBN 978-1-4503-
5552-0. doi: 10.1145/3219819.3219823.

https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

