
MINI-BATCH SERIALIZATION:
CNN TRAINING WITH INTER-LAYER DATA REUSE

Sangkug Lym 1 Armand Behroozi 2 Wei Wen 3 Ge Li 1 Yongkee Kwon 1 Mattan Erez 1

ABSTRACT
Training convolutional neural networks (CNNs) requires intense computations and high memory bandwidth. We
find that bandwidth today is over-provisioned because most memory accesses in CNN training can be eliminated
by rearranging computation to better utilize on-chip buffers and avoid traffic resulting from large per-layer memory
footprints. We introduce the MBS CNN training approach that significantly reduces memory traffic by partially
serializing mini-batch processing across groups of layers. This optimizes reuse within on-chip buffers and balances
both intra-layer and inter-layer reuse. We also introduce the WaveCore CNN training accelerator that effectively
trains CNNs in the MBS approach with high functional-unit utilization. Combined, WaveCore and MBS reduce
DRAM traffic by 75%, improve performance by 53%, and save 26% system energy for modern deep CNN training
compared to conventional training mechanisms and accelerators.

1 INTRODUCTION

Convolutional neural networks (CNNs) are the state of the
art for various vision applications. Training CNNs requires
hundreds of thousands of compute- and data-intensive iter-
ations. We observe that CNN training on current systems
requires 3–4 times more off-chip memory bandwidth than
necessary, reducing performance and wasting energy. We
present a new training mechanism that significantly reduces
bandwidth demands for the same arithmetic performance by
better exploiting locality. We then develop a complementary
accelerator that dramatically lowers training cost and time.

Conventional CNN training propagates data in lockstep
across network layers for an entire mini-batch (typically
32–512 samples per processor (Szegedy et al., 2015; 2017;
He et al., 2016)). Large mini-batches have per-layer memory
footprints that exceed typical on-chip buffer capacity, result-
ing in high off-chip memory traffic (Fig. 1a). Directly ap-
plying locality techniques used in CNN inference (Parashar
et al., 2017; Alwani et al., 2016) to training is ineffective
because such techniques do not optimize locality across
large mini-batches, and their design is not compatible with
feature normalization (Ioffe & Szegedy, 2015).

Our mini-batch serialization (MBS) approach reduces mem-
ory traffic specifically for CNN training and exploits data

1The University of Texas at Austin 2University of
Michigan 3Duke University. Correspondence to: Sangkug
Lym <sklym@utexas.edu>, Armand Behroozi <ar-
mandb@umich.edu>, Mattan Erez <mattan.erez@utexas.edu>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

Off-chip memory

4 iterations 2 iterations

O
n-

ch
ip

bu

ffe
r

si
ze

Convolution Pooling Memory accessData Sample

Off-chip memory

O
n-

ch
ip

bu

ffe
r

si
ze

(a) Mini-batch wise sample propagation in conventional CNN training

(b) Serialized sample propagation using MBS

Fig. 1. A toy CNN architecture. MBS restricts per-layer memory
footprint size smaller than the on-chip buffer.

reuse across layers (inter-layer data)—a first for training
and for modern networks that include multi-branch modules
and normalization layers. As illustrated in Fig. 1b, MBS
breaks a mini-batch into sub-batches to reduce the per-layer
memory footprint such that the inter-layer data of an entire
sub-batch fits in on-chip buffers. MBS uses a different num-
ber of samples per sub-batch (sub-batch size) for different
layers because down-sampling layers decrease the size of
each feature and, hence, the total volume of features.

MBS forms groups of layers such that each group has the
same sub-batch size. Each sub-batch is then propagated
with most inter-layer data staying on chip across the layers
of a group; data needed during back propagation is stored
off chip as well. Otherwise, layer output data is only written
and later read from main memory between groups. MBS op-

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

timizes sub-batch sizes and layer grouping to balance data
reuse between layers with reuse of parameters (weights)
within a layer—weights are re-read for every sub-batch.
MBS cuts memory traffic by 4.0× compared to conven-
tional layer-by-layer mini-batch training across a number of
popular deep CNNs.

While MBS optimizes locality and reduces memory traffic,
applying MBS to modern deep CNNs and using it in a
training accelerator introduces two challenges. The first
is normalization as sub-batches prohibit the use of batch
normalization. We therefore adapt group normalization (Wu
& He, 2018) for use in the MBS flow and demonstrate the
effectiveness of MBS training.

The second challenge is that MBS reduces per-layer par-
allelism, which potentially lowers the utilization of arith-
metic units in the accelerator. We address this issue in
two ways. First, we use the im2col (image-to-column) con-
volution algorithm that is commonly used by GPUs. It
casts a convolution operation as a general matrix multiply
(GEMM) (Chetlur et al., 2014). With im2col, the reduced
parallelism from small sub-batches is effectively compen-
sated for by the size of other feature dimensions. Second, we
modify a traditional systolic array processing core, as used
by some commercial accelerators (Jouppi et al., 2017; Lu
et al., 2017), to better execute the tall and skinny GEMMs
needed for im2col.

GEMM is blocked to utilize a systolic array, but idle time
exists between the execution of any two blocks in a con-
ventional design. To avoid this idle time, we augment each
processing element with one additional 16b register that
double buffers inputs and eliminates gaps between blocks.
Our WaveCore accelerator with MBS achieves compute-unit
utilization that is within 3% that of conventional training.

We use three recent deep CNNs to evaluate MBS and
WaveCore: ResNet (He et al., 2016), Inception v3 (Szegedy
et al., 2015), and Inception v4 (Szegedy et al., 2017). We
show that MBS saves DRAM accesses by 78% 71%, 74%,
improves training performance by 66%, 36%, 40%, and
saves 30%, 24%, and 24% energy for ResNet50 and In-
ception v3 and v4, respectively. We also demonstrate that
MBS enables high-performance training accelerators that
use much more affordable but slower off-chip memory (e.g.,
LPDDR)—even with 60% less memory bandwidth, training
performance is still 24% above the baseline design.

We summarize our contributions below:
• We introduce Mini-Batch Serialization (MBS), a

hardware-resource aware CNN training optimization that
significantly reduces off-chip memory traffic and can thus
accelerate CNN training and reduce training cost. MBS
balances intra- and inter-layer locality and cuts DRAM
traffic by 4.0× for modern CNNs.
• We show how MBS exploits locality within multi-branch

Forward Propagation

Backward Propagation

Conv Norm ! Conv Norm !

x2z1 z2 z3w2

Conv Norm ! Conv Norm !

y2 y3

"L
"y2

"L
"x3

"L
"x2

"L
"z1

"L
"z3

w3

x2 z2 x3 z3z1

off-chip
memory

 ←z2� "L
"x3 ← �W3"L

"x3"L
"z2

T T

"L
"z2

"L
"y3

"L
"w3

x3

Fig. 2. Dataflow in forward and backward propagations. Red ar-
rows show the reusable data between layers.

modules to achieve the 4.0× traffic reduction (traffic in-
creases by 20% without this multi-branch optimization).
• We augment a conventional systolic array architecture and

optimize it to effectively accelerate MBS-based training.
Our WaveCore accelerator maintains high processing-
element utilization for modern CNNs and utilizes MBS
to provide high performance with both high-bandwidth
HBM2 DRAM (as used by GPUs and Google’s TPU v2
and v3) and even lower-cost and higher-capacity GDDR5
and LPDDR4 DRAM systems.

2 DATA LOCALITY IN CNN TRAINING

CNN training consists of forward and back propagation
phases. Fig. 2 illustrates the major data elements needed for
training and their reuse patterns with red arrows indicating
opportunities for on-chip buffers to reduce memory band-
width requirements and black arrows indicating accesses
to main memory. In both phases there is direct producer-
consumer locality between layers—inter-layer data that can
be buffered if it is not too large. The outputs of convolution,
normalization, and activation layers in forward propaga-
tion (x, y, and z in the figure) are immediately used by
their following layers. Normalization layers exhibit addi-
tional reuse because they iterate over inputs to first compute
the mean and variance before normalizing the data (Ioffe &
Szegedy, 2015). The convolution outputs and the activations
are stored in off-chip memory for reuse in back propagation,
because their large storage requirements and long data reuse
distance prevent on-chip buffering.

Back propagation exhibits even greater potential for inter-
layer reuse. The loss gradients (with respect to x) are reused
twice by a convolution layer to compute the gradients of
weights and loss (with respect to z). Also, the convolution
output stored in memory is reused multiple times to compute
the gradients of the normalization layer parameters and the
loss gradients (with respect to x). Activations read from
memory are also used twice: z is used for convolution
gradients and the derivative of z for activation gradients.

The Problem with CNN Training Memory Footprint.

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

[M
B]

Layers in ResNet50

Inter-layer data Parameters

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

[M
B]

Layers in ResNet50

Inter-layer data Parameters

Fig. 3. The size of inter-layer data and parameters of each layer in
ResNet50 (sorted by inter-layer data size).

CNN training is typically done with mini-batches of 32–
512 samples (possibly distributed across multiple proces-
sors) (Sutskever et al., 2013). Larger mini-batches reduce
model parameter update frequency and training iterations,
thus reducing training time and energy (Li et al., 2014;
Goyal et al., 2017). An additional benefit is that larger
data parallelism can be used to maintain high compute unit
utilization and help in distributing work across multiple
processors (Das et al., 2016).

However, a larger per-processor mini-batch with many sam-
ples increases the memory footprint of each layer, limiting
the opportunity to reuse data on chip. Fig. 3 shows the
per-layer footprint of ResNet50 with a mini-batch size of
32 and a word size of 16b (in the forward phase). Only
9.3% of inter-layer data can be reused even with 10MiB on-
chip storage, leading to very significant memory bandwidth
waste for storing and refetching data. This problem is even
more severe for larger mini-batch sizes, which are desirable
as per-processor arithmetic performance and main memory
capacity improve.

3 MINI-BATCH SERIALIZATION

The primary goal of MBS is to improve reuse by exploit-
ing inter-layer data locality. The key to MBS is partially
serializing a mini-batch (propagating a small sub-set of a
mini-batch at a time) to control per-layer memory footprint
without impacting training accuracy. MBS is based on our
insight that if the data synchronization points for functional
correctness are maintained and an appropriate normalization
algorithm is adapted, even processing a single sample at a
time through all network layers does not alter the training
result. The trivial serialization of one sample at a time,
however, has two crucial drawbacks.

First, while baseline training reads weights and writes
weight gradients just once per layer, full serialization re-
reads weights and partial gradient sums for each sample and
updates the partial sums once per sample as well. Second,
data parallelism within a single sample can be limited in
some layers, degrading resource utilization and performance
(especially when mapping to a highly-efficient systolic ar-
chitecture).

0

5

10

15

20

0

1

2

3

4

CO
N

V
PO

O
L

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

N
O

RM
PO

O
L FC

Ite
ra

tio
n

co
un

t

D
at

a
si

ze
 /

Sa
m

pl
e

[M
B

] Inter-layer data size MIN iterations Layer grouping

0

5

10

15

20

0

1

2

3

4

CO
NV

PO
O
L

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

NO
RM

/R
EL
U

PO
O
L FC

Ite
ra
tio

n	
co
un

t

Da
ta
	si
ze
	/	
Sa
m
pl
e	
[M

B]

Inter-layer	data	size MIN	iterations Layer	grouping

da
ta

 si
ze

/s
am

pl
e

[M
B

]

Group1

G
ro
up

2 Group4

0

5

10

15

20

0

1

2

3

4

CO
NV

PO
O
L

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

NO
RM

/R
EL
U

PO
O
L FC

Ite
ra
tio

n	
co
un

t

Da
ta
	si
ze
	/	
Sa
m
pl
e	
[M

B]

Inter-layer	data	size MIN	iterations Layer	grouping
Group3

0

5

10

15

20

0

1

2

3

4

CO
NV

PO
O
L

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

RE
S_
BL
K

NO
RM

/R
EL
U

PO
O
L FC

Ite
ra
tio

n	
co
un

t

Da
ta
	si
ze
	/	
Sa
m
pl
e	
[M

B]

Inter-layer	data	size MIN	iterations Layer	grouping

la
ye

r i
te

ra
tio

n
co

un
t

0

5

10

15

20

0

1

2

3

4

CO
N

V
PO

O
L

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

RE
S_

BL
K

N
O

RM
PO

O
L FC

Ite
ra

tio
n

co
un

t

D
at

a
si

ze
 /

Sa
m

pl
e

[M
B

] Inter-layer data size MIN iterations Layer grouping

Fig. 4. Per-block inter-layer data size, required layer iterations, and
MBS layer grouping for ResNet50 with 32 samples.

2 iteration

Size = 2

Data load from off-chip memory

Group1 Group3

Data store to off-chip memory

3 iteration

Group4

Size = 11,11,10 Size = 16

SUMConvolution Normalization Activation

Mini-Batch Serialization

Original CNN graph: Mini-batch / processor = 32

M
B

S

Block

11 iteration

Lo
ss

co

m
pu

ta
tio

n

G2

6

Residual blockResidual block

6,2

Fig. 5. Baseline and MBS ResNet training flow.

An improvement on full serialization is to process multiple
samples at a time (a sub-batch) to provide some intra-layer
weight reuse and extra parallelism, as long as the footprint
at any point in the sub-batch does not exceed the on-chip
buffer capacity. The entire mini-batch is then processed in
several sub-batch iterations. However, the footprints of early
layers are large and only a small sub-batch can be formed
(1–2 samples), limiting the benefits of this approach.

MBS goes much further and balances locality of intra-layer
weight reuse and parallelism with inter-layer locality. We
do this by varying the number of samples per sub-batch
across layers such that layers that can support more samples
require fewer iterations and can benefit from the greater
parallelism and locality. This is possible because down-
sampling (pooling and strided convolution) layers decrease
feature size and volume for deeper layers.

Layer Grouping Optimizes Reuse. Optimizing layer
groups balances intra- and inter-layer locality tradeoffs. The
MBS algorithm forms initial layer groups by grouping ad-
jacent layers that require the same number of sub-batch
iterations. This is shown in Fig. 4 where grey vertical bars
represent the data volume required for the inter-layer data
per layer (or one multi-branch module block) of ResNet50,
and the red line represents the resulting minimal sub-batch
iteration count for each layer. Then, layer groups are merged

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

20

25

30

35

40

45

50

55

60

0 10 20 30 40 50 60 70 80 90

to
p1

 v
al

id
at

io
n

er
ro

r (
%

)

epochs

BN GN+MBS

20

25

30

35

40

45

50

55

60

0 10 20 30 40 50 60 70 80 90

to
p1

 v
al

id
at

io
n

er
ro

r (
%

)

epochs

BN GN+MBS

20

25

30

35

40

45

50

55

60

0 10 20 30 40 50 60 70 80 90

to
p1

 v
al

id
at

io
n

er
ro

r (
%

)

epochs

BN GN+MBS

pr
e-

ac
tiv

at
io

n
m

ea
n

10
0

-10
-20
-30
-40
-50
-60
-70
-80

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
-1.0

-0.5

0.5

1.0

0.0

-1.0

-0.5

0.5

1.0

0.0

(a) Without normalization (b) BN (c) GN+MBS

First normalization layer Last normalization layer

epochs epochs epochs

10
0

-10
-20
-30
-40
-50
-60
-70
-80

10
0

-10
-20
-30
-40
-50
-60
-70
-80

Fig. 6. ResNet50 training with GN + MBS and BN: validation error (left) and pre-activation mean of each normalization layer with BN
and GN zoomed (right). Mini-batch size of 128 distributed across 4 GPUs, an initial learning rate 0.05 (Bottou et al., 2018), and learning
rate decays of 0.1 at epochs 30, 60, and 80. (The code is available at https://bitbucket.org/lph_tools/mini-batch-serialization.)

to improve overall locality: groups are merged by reduc-
ing the sub-batch size of one group to that of an adjacent
group. The first group then requires more iterations (with
more weight and gradient accesses), but inter-layer reuse
increases across the two layers where the groups meet. The
resulting grouping for this optimization for ResNet50 is
shown with the blue line in Fig. 4.1

The mini-batch is then processed in several sub-batch it-
erations (dmini−batch size

sub−batch size e) within each group as shown
in Fig. 5, which emphasizes how locality is increased and
memory traffic reduced across features and weights.

Data Reuse Within Multi-Branch Modules. Fig. 5 also
shows how MBS applies the same sub-batch approach to
a multi-branch residual module of ResNet50. Such multi-
branch modules are common in CNN architectures and offer
additional reuse opportunities. Both the residual and short-
cut branches share an input, and when they merge, their
outputs are summed. Therefore, the module inputs should
stay on chip until both paths have consumed them, and the
output of the shortcut branch should stay on-chip while the
main path output is computed. MBS does this by provi-
sioning buffer space based on the needs of multi-branch
blocks, where a block includes all the branches that share
split and merge points—MBS essentially treats such a block
as a layer for optimizing locality.

Maintaining locality for such shared nodes leads to addi-
tional storage requirements. The per-sample size is calcu-
lated by Eq. 1 where: Din and Dout indicate the sizes of the
main-branch input and output; Dshortcut is the size of the
shortcut path output; L is the number of layers in the main
branch; and b and l represent a specific branch and layer.

Space

Sample
= max

1≤b≤2, 1≤l≤L
Din(b, l) + Dout(b, l) + Dcond(b, l)

Dcond(b, l) = (b=1 & l 6=1)Dblock in + (b 6=1)Dblock out

(1)

Similarly, for inception modules (Szegedy et al., 2015;
2017), the block input is reused between branches, and

1We also experimented with an optimal grouping of layers
using exhaustive search, which improved traffic and performance
by roughly 1% compared to our greedy optimization.

the concatenated block output is eventually reused in the
following layer. Therefore, MBS keeps both the block input
and output on chip while executing the branches. The space
required is shown in Eq. 2, where B indicates the number
of branches in a module and other notation is as above.

Space

Sample
= max

1≤b≤B,1≤l≤L
Din(b, l)+Dout(b, l)+Dcond(l)

Dcond(l)= (l 6=1)Dblock in + (l 6=L)Dblock out

(2)

Back Propagation. In back propagation, MBS optimizes
locality for both newly computed results and for data
reloaded from the forward path. For example, as shown
in Fig. 2, MBS reuses the reloaded gradients more than
once. Furthermore, both convolution and ReLU layers use
activations from the forward path. However, only the gra-
dient of ReLU is needed, which is always exactly 0 (for
negative activations) and exactly 1 (for positive); thus, MBS
uses a single bit per ReLU gradient instead of a 16b number.
We also allocate buffer space for normalization layers to
reuse their inputs to compute their gradient and loss. As in
the forward pass, reuse in back propagation is made possible
by MBS processing one sub-batch at a time.

Data Synchronization. MBS maintains the original syn-
chronization points across the entire mini-batch. Therefore,
MBS accumulates the partial gradients of all learning pa-
rameters across all sub-batches. This requires storing partial
results to memory, which is not needed in the conventional
flow. However, this overhead is dwarfed by the improved
reuse of layer outputs, especially considering that deeper
layers with large weights are iterated over only a few times.

3.1 Feature Normalization in MBS

While batch normalization (BN) is widely used in many
modern CNNs, it is incompatible with MBS because BN
requires many samples to work well and improve accu-
racy (Ioffe & Szegedy, 2015)—MBS cannot serialize com-
putation if data across an entire mini-batch (per processor)
is needed for normalization. Instead of using BN, we adapt
group normalization (GN) (Wu & He, 2018) to MBS. GN
normalizes across features within a subset of channels in a

https://bitbucket.org/lph_tools/mini-batch-serialization

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

single sample, as opposed to across an entire per-processor
mini-batch. Thus, GN can be made compatible with MBS.

To use GN with MBS, the per-channel GN scale and shift
parameters must be re-fetched at every sub-batch iteration
within a layer group. Additionally in backpropagation, the
gradients of these parameters must be accumulated across
all sub-batches just like the weights of convolution layers.
However, since the size of these parameters is only two
times the number of channels per layer, they can easily be
stored in the on-chip buffer and incur no overhead.

We confirm previous results and demonstrate that both GN
and BN provide comparable training effectiveness (valida-
tion accuracy of 76.0% and 76.2% for BN and GN+MBS,
respectively). Fig. 6 compares the validation error curves
with BN and MBS-GN when training ResNet50 on Ima-
geNet (Deng et al., 2009). Fig. 6 also shows that both MBS-
GN and BN provide similar normalization, in that both have
similar pre-activation (output of normalization) distributions
across layers (unlike training without normalization).

4 WAVECORE ACCELERATOR

We explain the WaveCore accelerator operation in two parts.
First, we discuss the core compute engine of WaveCore
and any modifications we make to adapt the conventional
systolic array for MBS. Second, we describe the overall
accelerator architecture, which includes additional compo-
nents for processing normalization, activation, and pooling
layers. We also estimate the area and power of WaveCore.

4.1 Systolic Array Core

WaveCore uses a large systolic array as its main compute
unit. A systolic array is (typically) a two-dimensional mesh
of many simple and efficient processing elements (PEs). At
each cycle of a kernel, each PE applies the same compu-
tation to its inputs and then passes the computed result or
its unmodified inputs to one or more of its neighbors. All
PEs communicate only with adjacent PEs such that there
is minimal data movement and high computational concur-
rency (Kung, 1982). Computation consists of pipelining
inputs from the top and left (for example) edges of the ar-
ray and obtaining results at the bottom. The large compute
throughput required for convolutional and fully-connected
layers, along with the repetitive computation and large data
reuse are a good match for a systolic array, as found in
Google’s TPU ML accelerators (Jouppi et al., 2017; Dean,
2017). Like prior work, our proposed PE has mixed pre-
cision units: 16b inputs are multiplied with accumulation
performed in 32 bits to reduce both computation and data
traffic overheads (Micikevicius et al., 2017). Also like prior
work (Dean, 2017), we use a 128×128 systolic array for high
performance and to circumvent power delivery challenges.

+ + + ++

Gw = Co

A C

B

G
h

=
N

 x
 H

o
x

W
o

K = Ci x R xS

k

n

k

k

n

m= local buffer size
k

m

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Pre-load

Fig. 7. GEMM dimensions , tiling, and mapping of each tile to the
systolic array of a convolution layer in forward propagation.

Tab. 1. GEMM matrix dimensions for im2col convolution for dif-
ferent CNN training phases. N,C,H,W indicate the sub-batch
size, the channel count, and the height/width of each feature (i and
o denote input and output features, respectively), and R,S are the
height and width of each filter.

Convolution Phase Gh dimension Gw dimension K dimension
Forward N ×Ho ×Wo Ci ×R× S Co

Data Gradient N ×Hi ×Wi Ci Co ×R× S
Weight Gradient Ci ×R× S Co N ×Ho ×Wo

A systolic computation is often divided into multiple waves,
where each wave proceeds with inputs flowing toward out-
puts without any stalls or changes to the computational
pattern. Between waves, it is sometimes necessary to let
the pipeline through the array drain and then refill. This
introduces idle time which reduces utilization and hence
hurts performance and efficiency. Convolution and matrix
operations have efficient systolic implementations that have
little idle time if an entire mini-batch is processed together.
However, MBS processes an often small sub-batch, which
significantly reduces the utilization and performance of a
conventional systolic array design. We address this chal-
lenge and maintain high systolic array utilization for MBS
using a combination of two techniques.

Maintaining High Compute Unit Utilization with
im2col. First, instead of directly mapping a convolution
computation to a systolic array, we use a method that trans-
forms a convolution into a matrix multiplication. We do
this because efficient direct convolution on a systolic array
requires tuning for every possible sub-batch size, which
is difficult to do with the MBS approach which optimizes
groupings to arbitrary size. We use the im2col (image-
to-column) general matrix-matrix multiplication (GEMM)
algorithm for convolution, which is commonly used in GPU-
accelerated kernels (Chetlur et al., 2014). Convolution with
im2col rearranges the address pointers to the convolution
inputs in a way that is straightforward to feed into a systolic
array. The GEMM dimensions (Gh, Gw,K) are determined
by the convolution configurations as summarized in Tab. 1.

If the size of Gh, Gw, or K is smaller than the systolic array

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

+

32
b

17
b

17b

×

16b

16
b

?=0

1b

1b

skip computes

REG REG

Systolic
array

Systolic
array

t

t
Next

systolic
wave

Shifting-in weights to
the other register

k cycles idle time

k
cy

cl
esNext

systolic
wave

Shifting-in weights of
next systolic wave

❶

❷

(b) Weight shift-in time w/o ❶ and w/
❷ stationary data double buffering

(a) PE design: Data double
buffering and selection

Fig. 8. Removing inter-wave idle time by weight double buffering
and control signal shift.

size, the compute units are significantly underutilized. How-
ever, with the networks we evaluate, this does not become a
significant limitation: early layers with small sub-batches
have large features and while the feature sizes of later con-
volution layers are small, their large sub-batch size compen-
sates (shown by the red-colored dimensions in Tab. 1).

Systolic Dataflow for im2col GEMM. We block this
im2col GEMM into multiple m×n tiles, which are pro-
cessed in sequence through the array. Each tile corresponds
to a portion of the output matrix (C). The width of each tile
is equal to the width of the systolic array (n). The height
(m) is chosen to maximize the size of a tile, thus minimiz-
ing the number of tiles per layer and improving utilization:
m = Local buffer size

k=systolic array height . This is illustrated in Fig. 7.

Each tile is processed using multiple waves through the
systolic array, where each wave multiplies a block of input
matrix A by a block of input matrix B. A block from B is
first read one row at a time. Each row is shifted down until
the array has one element of B per PE (this takes 5 cycles in
the toy example of Fig. 7). Then, a block of A is pipelined
into the array with results for each element of C eventually
accumulated at the bottom of the array as shown in the right
side of Fig. 7. Notice that in the figure, cycle 6 corresponds
to the first row of the block of A having been multiplied
and then accumulated by the first column of the block of
B. In the following cycle, the second row of the A block
completes its pipeline through the first column, while the
first row of A now completes its dot product with the second
column of the B block (and its output is at the bottom of the
second column of the systolic array).

Once a wave as described above completes, the next blocks
of A and B are processed. As additional blocks are pro-
cessed, their outputs are added to the current values of the
C tile (a reduction across waves), eventually completing a
tile of C in dK/ke waves (K is the dimension of the input
matrices and k is the PE array height).

Gap-less Waves with Weight Double Buffering. The flow
described above has one significant problem. Before every
multiplication of blocks of A and B, the B block is read and
distributed to the PEs, which requires k (PE array height)

C
o

a
le

s
c
e

d
 l
o

a
d

s
16

7G
B/

s

167GB/s

167GB/s

50
1G

B/
s

Systolic array

G
lo

ba
l b

uff
er

 b
an

ks

O
ff-

ch
ip

 M
em

or
y

cr
os

s
ba

r

Memory
CTRLs

Ve
ct

or
 c

om
pu

te
 u

ni
ts

 (a
ct

iva
tio

n) B Local buffers X2B Local buffers X2

A
Lo

ca
l b

uff
er

s
X2

A
Lo

ca
l b

uff
er

s
X2

Accumulation buffer
X3 (activation)

Accumulation buffer
X3 (activation)

Accumulation buffer
X3 (activation)

Fig. 9. Per-core architecture of the WaveCore accelerator.

cycles (for reading and inter-PE shifting). No arithmetic
occurs during these k cycles, which decreases performance
(upper half of Fig. 8b).

To remove this inter-wave idle time, we modify the basic
PE design to double buffer weights (Fig. 8a)—the next
wave’s weights are fetched and distributed into a second
register within each PE while the current wave is still being
processed. As the current wave starts draining from the PE
array, the following wave starts immediately by feeding in
a new block of A and multiplying by the second register
that stores the next set of weights from B. Thus, there are
no gaps between waves and an entire tile of C is computed
without any idle time beyond the initial fill and final drain
of the pipeline. In addition to the extra register in each PE,
a minor further change is that a select signal for choosing
which weight register to use is propagated along with the
inputs of A and B. This optimization significantly boosts
performance at very low cost: the simple 1b local signal
between every two PEs and a 16b register and multiplexer
between the two registers per PE. As in prior work, we also
check for zero inputs and skip arithmetic in such cases to
reduce energy consumption (Parashar et al., 2017).

4.2 Overall Processor Architecture

In addition to the systolic cores, the WaveCore CNN train-
ing accelerator contains several more structures and units.
Fig. 9 illustrates the overall architecture of one core of the
processor. There are two such cores in our proposed design
that are connected by an on-chip network, similar to TPU
v2 (Dean, 2017). We describe these structures and estimate
the area and power requirements of WaveCore below.

Local Buffers. Both A and B local input buffers are double-
buffered. Double buffering enables the overlap of computa-
tion within the PEs with accesses to the global buffer and to
memory and allows for very simple coarse-grain control of
data transfers between buffers and memory. We choose the
minimal size for each buffer, such that PEs never directly
access the global buffer or memory, as this avoids access-

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

related stalls. A half-buffer of B stores a 16b word for each
PE and is thus 32KiB (128×128×16b). Each half-buffer for
A is 64KiB because A blocks need to be twice as large as
B blocks to avoid inter-wave idle time. The output accumu-
lation buffer is triple-buffered because it holds the current
output tile while the previous tile is being written to memory
and the partial gradient sums for the next tile are read. Each
part of this buffer holds an entire tile of C and is 128KiB.
Note that while outputs are summed in 32b precision, the
final write to the output buffer quantizes to 16b precision.

Global Buffers. The baseline global buffer is 10MiB and
has 32 banks. This is sufficient for using MBS with modern
CNNs and avoiding bank access conflicts. The global buffer
is connected to all local buffers via a crossbar. To avoid
duplicated data loads from the global buffer, we have mem-
ory load coalescing units that maintain high effective bus
bandwidth utilization. Our processor operates at a 0.7GHz
clock frequency, and the data bandwidth of local and global
buffers are set to fully support the systolic wave pipelining.

Main Memory. The off-chip memory is connected to mem-
ory controllers, which communicate with the on-chip buffers
via the crossbar switches. Our baseline WaveCore uses a
single HBM2 stack with 4 dice (Joi, 2016), which provides
8GiB off-chip DRAM with 300GiB/s data bandwidth over 8
channels (4 channels per core). We choose HBM2 because
it is used by other modern training accelerators (Dean, 2017;
nvidia, 2017). We later show that cheaper GDDR or even
LPDDR memory can be sufficient for WaveCore.

Vector and Scalar Computing Units. The systolic array
is used for convolutions and fully-connected matrix oper-
ations, but cannot be efficiently utilized by normalization,
pooling, and activation layers, which require a relatively
small number of arithmetic operations. Such layers are
memory bandwidth bound, and we therefore process them
using scalar and simple vector units that are placed close to
the global buffer where their outputs are then stored.

Scalability. We describe and evaluate WaveCore with two
cores, but compute throughput can be easily scaled with
larger mini-batches distributed across multiple accelerators
or additional cores. As each accelerator or core conducts the
same job, we can use MBS within each WaveCore and only
communicate for loss computation and parameter reduction
and update.

Area Estimation. We estimate the die area of WaveCore at

Tab. 2. Accelerator specification and comparison.
V100 TPU v1 TPU v2 WaveCore

Technology (nm) 12 FFN 28 N/A 32
Die Area (mm2) 812 ≤ 331 N/A 534.0
Clock Freq (GHz) 1.53 0.7 0.7 0.7
TOPS / Die 125 (FP16) 92 (INT8) 45 (FP16) 45 (FP16)
Peak Power (W) 250 43 N/A 56
On-chip buffers (MiB) 331 24 N/A 20 (2×10)
1 Sum of L2, shared memory, and registers

Tab. 3. Evaluation configuration description.
Configuration Description
Baseline 2-level GEMM blocking
ArchOpt Baseline + weight double buffering
IL ArchOpt + inter-layer data reuse
MBS-FS IL + serialize all layers using the same sub-batch size
MBS1 IL + greedy layer grouping
MBS2 MBS1 + inter-branch data reuse

Tab. 4. Off-chip memory configuration.
Memory type Per-chip configuration Chip # Total BW
HBM2 300 GiB/s, 8 GiB, 8 channels x1 300 GiB/s
HBM2×2 x2 600 GiB/s
GDDR5 32 GiB/s, 1GiB, 1 channel x12 384 GiB/s
LPDDR4 29.9 GiB/s, 2GiB, 1 channel x8 239.2 GiB/s

45nm technology and scale this estimate to 32nm to compare
with other deep learning accelerators Tab. 2. The estimated
total area of the two-core WaveCore is 534.0 mm2. We
use a 24T flipflop design as reported in (Kim et al., 2014)
and the floating point multiplier and adder designs reported
in (Hickmann et al., 2007). Each PE requires 12,173 um2

and both multiplier and adder take more than 90% of the PE
area. The estimated area of the 128×128 PE array is 199.45
mm2, which accounts for 67% of WaveCore’s area. The
size of the global buffer and the vector compute units per
core are estimated at 18.65 mm2 and 4.33 mm2, respec-
tively. The crossbar has 24 256b-wide ports (32B memory
access granularity). The area occupied by the network and
the crossbar expands the chip width by 0.4mm, following the
approach used to evaluate Dadiannao (Chen et al., 2014b).

Power Modeling. We use a convolution layer that exhibits
100% systolic-array utilization to estimate the peak power
consumption of WaveCore. WaveCore operates at 0.7GHz,
which is < 1/2 compared to V100 (1.53 GHz) and the
same as TPU v2 (Dean, 2017). WaveCore consumes a
maximum of 56W (Tab. 2). Here, we use a HBM2 as the off-
chip memory and model its power using the Rambus power
model (Vogelsang, 2010) in 22nm technology. The SRAM
buffer power is calculated with CACTI (Chen et al., 2012)
configured for 32nm. The power consumed by multipliers
and adders is taken from (Han et al., 2016) and filpflops
from (Fuketa et al., 2013). The link and router power is
calculated with Orion2.0 (Kahng et al., 2009).

5 EVALUATION METHODOLOGY

We evaluate the locality benefits of MBS and the per-
formance and energy of WaveCore on three well-known
modern deep CNNs: ResNet (He et al., 2016), Incep-
tion v3 (Szegedy et al., 2015), and Inception v4 (Szegedy
et al., 2017). We also evaluate a shallower CNN
(AlexNet (Krizhevsky et al., 2012)) with few memory BW
bound layers such as normalization and pooling. We use
mini-batches of 32 samples per core (64 per chip) for the
deep CNNs and 64 samples per core for AlexNet because of

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

0

100

200

300

400

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2

1.0 1.09
1.21

1.60
1.77 1.81

1.0
1.11

1.47
1.62 1.66

1.0 1.11
1.17

1.56
1.75 1.79

1.0 1.05

1.40
1.58 1.61

1.0
1.12 1.17

1.57
1.76 1.81

1.0 1.05

1.40
1.58 1.62

1.0
1.24 1.26 1.30

1.65 1.68

1.0 1.02 1.05
1.33

1.36

1.0
1.20 1.23 1.29

1.60 1.68

1.0 1.02 1.08
1.33

1.40

1.0
1.28 1.29 1.36 1.36

1.0 1.01 1.07
1.07

0

100

200

300

400

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2

1.0 1.09
1.21

1.60
1.77 1.81

1.0
1.11

1.47
1.62 1.66

1.0 1.11
1.17

1.56
1.75 1.79

1.0 1.05

1.40
1.58 1.61

1.0
1.12 1.17

1.57
1.76 1.81

1.0 1.05

1.40
1.58 1.62

1.0
1.24 1.26 1.30

1.65 1.68

1.0 1.02 1.05
1.33

1.36

1.0
1.20 1.23 1.29

1.60 1.68

1.0 1.02 1.08
1.33

1.40

1.0
1.28 1.29 1.36 1.36

1.0 1.01 1.07
1.07

0

100

200

300

400

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2

1.0 1.09
1.21

1.60
1.77 1.81

1.0
1.11

1.47
1.62 1.66

1.0 1.11
1.17

1.56
1.75 1.79

1.0 1.05

1.40
1.58 1.61

1.0
1.12 1.17

1.57
1.76 1.81

1.0 1.05

1.40
1.58 1.62

1.0
1.24 1.26 1.30

1.65 1.68

1.0 1.02 1.05
1.33

1.36

1.0
1.20 1.23 1.29

1.60 1.68

1.0 1.02 1.08
1.33

1.40

1.0
1.28 1.29 1.36 1.36

1.0 1.01 1.07
1.07

0
2
4
6
8
10
12

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2
1.0 0.99

0.92

0.76

0.71
0.70

1.0 0.99 0.96

0.79

0.74
0.73

1.0 0.99 0.96

0.79

0.74
0.73

1.0 0.98
0.96 0.89

0.78
0.76

1.0 0.98
0.97 0.89

0.78
0.76

1.0

0.98
0.98

0.93
0.93

0
2
4
6
8
10
12

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2
1.0 0.99

0.92

0.76

0.71
0.70

1.0 0.99 0.96

0.79

0.74
0.73

1.0 0.99 0.96

0.79

0.74
0.73

1.0 0.98
0.96 0.89

0.78
0.76

1.0 0.98
0.97 0.89

0.78
0.76

1.0

0.98
0.98

0.93
0.93

0
2
4
6
8
10
12

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2
1.0 0.99

0.92

0.76

0.71
0.70

1.0 0.99 0.96

0.79

0.74
0.73

1.0 0.99 0.96

0.79

0.74
0.73

1.0 0.98
0.96 0.89

0.78
0.76

1.0 0.98
0.97 0.89

0.78
0.76

1.0

0.98
0.98

0.93
0.93

0
10
20
30
40
50
60
70

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2
1.00

0.84

0.34 0.25

0.22

1.00 0.93

0.37
0.26

0.23

1.00 0.93

0.37
0.26

0.23

1.00 0.96

0.58
0.33

0.29

1.00 0.96

0.55

0.33

0.26

1.00
0.95

0.60 0.60

0
10
20
30
40
50
60
70

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2
1.00

0.84

0.34 0.25

0.22

1.00 0.93

0.37
0.26

0.23

1.00 0.93

0.37
0.26

0.23

1.00 0.96

0.58
0.33

0.29

1.00 0.96

0.55

0.33

0.26

1.00
0.95

0.60 0.60

0
10
20
30
40
50
60
70

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet

Baseline ArchOpt IL MBS-FS MBS1 MBS2
1.00

0.84

0.34 0.25

0.22

1.00 0.93

0.37
0.26

0.23

1.00 0.93

0.37
0.26

0.23

1.00 0.96

0.58
0.33

0.29

1.00 0.96

0.55

0.33

0.26

1.00
0.95

0.60 0.60

Normalized DRAM traffic reduction

[G
B]

2.60

(c) DRAM traffic per training step. The traffic reduction rate is normalized to ArchOpt

Speedup normalized to baseline Speedup normalized to ArchOpt

(a) Execution time per training step. The speedups are normalized to Baseline and ArchOpt respectively.

0.58
0.46

[m
s]

Normalized energy reduction

(b) Energy consumption per training step. The energy saving rate is normalized to Baseline

[J
]

1.40

Fig. 10. DRAM traffic, performance and energy consumption sensitivity to the proposed network architecture reconfiguration and HW
architecture optimization methods.

its smaller training context. We use 16b floating point for all
CNNs with mixed-precision arithmetic (16b multiplication
and 32b accumulation) (Micikevicius et al., 2017).

For each network, we evaluate several execution configu-
rations as summarized in Tab. 3: Baseline uses two-level
GEMM input matrix blocking for effective data reuse within
each convolution and FC layer (Kurzak et al., 2012); Ar-
chOpt adds weight double buffering for better PE utiliza-
tion (all other configurations use ArchOpt), Inter-Layer
(IL) reuses the shared data between layers but only when
the per-layer memory footprint of the entire mini-batch fits
within the on-chip buffer (i.e., not using the MBS approach),
MBS-FS is naive MBS that fully serializes a mini-batch
such that all layers in the CNN have the same sub-batch
size, MBS1 greedily forms layer groups to simultaneously
optimize both intra- and inter-layer data reuse, and MBS2
additionally reuses the inter-branch data which requires dif-
ferent layer grouping than MBS1. We compare WaveCore
with MBS to an NVIDIA TESLA V100 running Caffe (Jia
et al., 2014) and report values averaged over 10 iterations.

The WaveCore simulator accounts for all memory, buffers,
and on-chip interconnect traffic as well as the arithmetic
operations. The default WaveCore uses a single HBM2 chip
with 4Hi stacks. We also scale memory bandwidth using
two HBM2 chips to launch a larger mini-batch per acceler-
ator (and to more closely match commercial accelerators).
Because MBS significantly reduces memory traffic, we also
evaluate lower-bandwidth main memory options that are
cheaper and offer higher capacity (GDDR5 and LPDDR4).
The off-chip memory configurations of WaveCore are listed
in Tab. 4.

6 EVALUATION RESULTS

Fig. 10 compares the per-training-step execution time, en-
ergy consumption, and DRAM traffic of our proposed tech-
nique. In each of the subfigures, bars show absolute values
and lines show relative ones. We normalize execution time
separately to both Baseline and ArchOpt to isolate the im-
pact of the architectural and algorithmic contributions of
WaveCore and MBS.

Compared to Baseline, ArchOpt improves performance by
9–28% across CNNs by removing the idle time between
systolic waves. The gain is particularly large for AlexNet
because AlexNet has mostly convolution layers with few
memory-BW bound layers. Similarly, while not shown
in the figure, ArchOpt provides more benefit with MBS
because the large reduction in memory traffic increases the
relative impact of idle compute time. ArchOpt has little
energy benefit (∼ 2%) as it conserves only static energy.

Inter-layer (IL), which is similar to prior locality approaches
used for inference, has only a modest impact on perfor-
mance, energy, and traffic because many layers have large
footprints that exceed the buffer size.

MBS-FS, which uses a single sub-batch size (and thus a
single group) substantially reduces DRAM traffic (42–66%)
for the deep CNNs because it utilizes inter-layer locality
well. However, with a small sub-batch size, the time needed
for the extra reads and writes of weight gradients used to ac-
cumulate them across sub-batches cannot be hidden, which
reduces performance. This is evident in the performance
trends of Inception v3 and v4, where MBS-FS is worse than
IL. AlexNet exhibits a much larger performance loss with

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

MBS-FS because it has three FC layers with large weights
and the extra weight reads increase memory traffic by 2.6×.

MBS1 balances inter- and intra-layer reuse and achieves
large improvements in performance (33–62%) and DRAM
traffic (67–75%) for the deep CNN compared to ArchOpt.
AlexNet shows smaller gains as it lacks memory-BW bound
layers. MBS1 also shows 22–29% energy saving for the
deep CNNs compared to Baseline by reducing the DRAM
energy portion from 21.6% to 8.7%. As WaveCore skips
multiplication and addition when one of the inputs to a PE
is zero, the contribution of DRAM traffic reduction to the
overall energy saving is high. It is important to note that
global buffer traffic is increased by a similar amount as
DRAM traffic is decreased. However, there is still a large
net energy saving because a global buffer access energy is
8× lower than that of DRAM.

MBS2 reduces DRAM traffic by an additional 4–10% and
improves training performance by up to 7% compared to
MBS1. MBS2 needs additional global buffer space to store
the data at the shared multi-branch nodes, so the number of
sub-batch iterations is larger than with MBS1. While more
iterations imply a larger overhead for re-reading weights and
gradients, the traffic saved by the reuse between branches is
greater. The gain is slightly bigger for Inception networks
because the Inception modules have more branches and
reuse opportunity scales with the number of branches.

In summary, the highly-optimized MBS2 improves DRAM
traffic by 71–78%, training performance by 36–66%, and
energy consumption by 24–30% for the deep CNNs.

1.
00

0.
93

0.
68

0.
67

1.
00

0.
60

0.
32

0.
30

0.
96

0.
73

0.
66

0.
64

0.
92

0.
38

0.
28

0.
25

0.
87

0.
68

0.
64

0.
62 0.
73

0.
32

0.
26

0.
22

0.
79

0.
66

0.
64

0.
62

0.
59

0.
29

0.
26

0.
22

0.
77

0.
65

0.
64

0.
61

0.
53

0.
28

0.
25

0.
21

0.0

0.5

1.0

1.5

IL MBS-FS MBS1 MBS2 IL MBS-FS MBS1 MBS2

Normalized execution Time Normalized DRAM Traffic

5MB 10MB 20MB 30MB 40MB

1.
00

0.
93

0.
68

0.
67

1.
00

0.
60

0.
32

0.
30

0.
96

0.
73

0.
66

0.
64

0.
92

0.
38

0.
28

0.
25

0.
87

0.
68

0.
64

0.
62 0.
73

0.
32

0.
26

0.
22

0.
79

0.
66

0.
64

0.
62

0.
59

0.
29

0.
26

0.
22

0.
77

0.
65

0.
64

0.
61

0.
53

0.
28

0.
25

0.
21

0.0

0.5

1.0

1.5

IL MBS-FS MBS1 MBS2 IL MBS-FS MBS1 MBS2

Normalized execution Time Normalized DRAM Traffic

5MB 10MB 20MB 30MB 40MB

1.
00

0.
93

0.
68

0.
67

1.
00

0.
60

0.
32

0.
30

0.
96

0.
73

0.
66

0.
64

0.
92

0.
38

0.
28

0.
25

0.
87

0.
68

0.
64

0.
62 0.
73

0.
32

0.
26

0.
22

0.
79

0.
66

0.
64

0.
62

0.
59

0.
29

0.
26

0.
22

0.
77

0.
65

0.
64

0.
61

0.
53

0.
28

0.
25

0.
21

0.0

0.5

1.0

1.5

IL MBS-FS MBS1 MBS2 IL MBS-FS MBS1 MBS2

Normalized execution Time Normalized DRAM Traffic

5MB 10MB 20MB 30MB 40MB

1.
00

0.
93

0.
68

0.
67

1.
00

0.
60

0.
32

0.
30

0.
96

0.
73

0.
66

0.
64

0.
92

0.
38

0.
28

0.
25

0.
87

0.
68

0.
64

0.
62 0.
73

0.
32

0.
26

0.
22

0.
79

0.
66

0.
64

0.
62

0.
59

0.
29

0.
26

0.
22

0.
77

0.
65

0.
64

0.
61

0.
53

0.
28

0.
25

0.
21

0.0

0.5

1.0

1.5

IL MBS-FS MBS1 MBS2 IL MBS-FS MBS1 MBS2

Normalized execution Time Normalized DRAM Traffic

5MB 10MB 20MB 30MB 40MB

Fig. 11. Memory traffic and performance sensitivity of ResNet50
to the global buffer size (Normalized to IL with 5MiB).

Sensitivity to Global Buffer Size. Another benefit of MBS
is its low sensitivity to on-chip storage capacity. To show-
case this, we compare the execution time and DRAM traffic
per training step of ResNet50 for different configurations
with different global buffer sizes (Fig. 11). The per-core
global buffer size is scaled from 5MiB to 40MiB and execu-
tion time and traffic are normalized to IL at 5MiB (ResNet’s
MBS scheduling requirement is smaller than 5MiB). Even
with a 40MiB global buffer, only 47% of DRAM traffic is
saved by IL; MBS2 saves 1.5X the traffic even with a 5MiB
buffer. IL with 40MiB also provides less performance ben-
efit than both MBS1 and MBS2 at just 5MiB. Both MBS1

1.00
0.83

0.61

1.21

0.93

0.65

1.26

0.99

0.70

1.39 1.35 1.24

0.50

0.70

0.90

1.10

1.30

1.50

0

100

200

300

400

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

Baseline ArchOpt IL MBS2

Sum Pool Norm FC Conv Speedup

LP
D

4

G
D

R
5

H
B

M
2 x2

LP
D

4

G
D

R
5

H
B

M
2 x2

LP
D

4

G
D

R
5

H
B

M
2 x2

LP
D

4

G
D

R
5

H
B

M
2 x2

1.00
0.83

0.61

1.21

0.93

0.65

1.26

0.99

0.70

1.39 1.35 1.24

0.50

0.70

0.90

1.10

1.30

1.50

0

100

200

300

400

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

Baseline ArchOpt IL MBS2

Sum Pool Norm FC Conv Speedup

1.00
0.83

0.61

1.21

0.93

0.65

1.26

0.99

0.70

1.39 1.35 1.24

0.50

0.70

0.90

1.10

1.30

1.50

0

100

200

300

400

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

H
BM

2x
2

G
D
D
R5

LP
D
D
R4

Baseline ArchOpt IL MBS2

Sum Pool Norm FC Conv Speedup

[m
s]

Fig. 12. ResNet50 training performance sensitivity to the memory
type and the execution time breakdown by layer type.

and MBS2 show little performance and DRAM traffic varia-
tion for different buffer sizes because they simultaneously
balance both intra- and inter-layer reuse. In contrast to the
optimized MBS1 and MBS2, MBS-FS again suffers from
the impact of reading and writing gradient partial sums.

Sensitivity to DRAM BW. Fig. 12 highlights the ability of
MBS to enable high performance even with lower-cost,
lower-bandwidth memories. The figure compares the per-
step training time of different configurations using vari-
ous memory types (speedup is normalized to Baseline with
2×HBM2). The bandwidth of GDDR5 and LPDDR4 is 64%
and 40% that of HBM2×2, respectively. While all imple-
mentations suffer from decreased bandwidth, the improved
locality with MBS2 makes it far less sensitive with only a
4% performance drop when using off-package GDDR5 and
a <15% drop with low-cost LPDDR4. In this experiment,
the off-chip memory space has been increased to 16GB
to train 64 samples per core (128 per WaveCore) because
off-package memories offer higher capacity.

0
50
100
150
200
250

ResNet50 ResNet101 ResNet152 InceptionV3

V100 HBM2x2 GDDR5 HBM LPDDR4

1.18
1.14

1.10
1.06

1.26
1.22

1.18
1.13

1.27
1.23

1.19
1.14

1.27
1.24

1.20
1.16

0
50
100
150
200
250

ResNet50 ResNet101 ResNet152 InceptionV3

V100 HBM2x2 GDDR5 HBM LPDDR4

1.18
1.14

1.10
1.06

1.26
1.22

1.18
1.13

1.27
1.23

1.19
1.14

1.27
1.24

1.20
1.16

Speedup

0
50
100
150
200
250

ResNet50 ResNet101 ResNet152 InceptionV3

V100 HBM2x2 GDDR5 HBM LPDDR4

1.18
1.14

1.10
1.06

1.26
1.22

1.18
1.13

1.27
1.23

1.19
1.14

1.27
1.24

1.20
1.16

0
50
100
150
200
250

ResNet50 ResNet101 ResNet152 InceptionV3

V100 HBM2x2 GDDR5 HBM LPDDR4

1.18
1.14

1.10
1.06

1.26
1.22

1.18
1.13

1.27
1.23

1.19
1.14

1.27
1.24

1.20
1.16

[m
s]

Fig. 13. NVIDIA V100 GPU performance comparison to
WaveCore + MBS2 with different memory types.

Comparison to GPU. Fig. 13 compares the measured exe-
cution time per training step of an NVIDIA V100 GPU with
our estimates for WaveCore with different DRAM configu-
rations. Although a single WaveCore has 30% the peak com-
pute and 27% the memory bandwidth (LPDDR4) of V100, it
still exhibits better training performance. The performance
gap widens as the network depth increases because many
layers with low data parallelism cannot efficiently utilize
the wide compute resources of the V100.

Systolic Array Utilization. As MBS propagates only a frac-
tion of the mini-batch for each sub-batch iteration, it is
important to observe its impact on the systolic core utiliza-
tion. Fig. 14 compares the utilization of convolution and FC

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

0
0.2
0.4
0.6
0.8
1

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet AVG

Baseline ArchOpt MBS-FS MBS1 MBS2

0
0.2
0.4
0.6
0.8
1

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet AVG

Baseline ArchOpt MBS-FS MBS1 MBS2

0
0.2
0.4
0.6
0.8
1

ResNet50 ResNet101 ResNet152 InceptionV3 InceptionV4 AlexNet AVG

Baseline ArchOpt MBS-FS MBS1 MBS2

Fig. 14. Systolic array utilization of different CNNs.

layers for different CNNs. To isolate the impact of sub-batch
size and the parallelism it makes available on utilization,
this experiment uses unlimited DRAM bandwidth. Baseline
suffers from low core utilization (average of 53.8%) due to
the inter-wave idle time. Double buffering with ArchOpt
increases the average utilization to 81.5%. MBS-FS ex-
hibits lower utilization (66.7%) because the sub-batch size
is determined solely by the large early layers. Optimizing
reuse with different sub-batch sizes across layer groups with
MBS1 and MBS2 regains the lost utilization and brings it
up to 78.6%, within 3% of a full mini-batch. This small
difference is largely a result of a few early layers with small
channel counts, which result in particularly narrow tiles
that do not fully utilize WaveCore’s 128×128 systolic array.
Later layers exhibit almost 100% utilization.

7 RELATED WORK

To our knowledge, no prior work has addressed locality-
optimizations for CNN training. Instead, we discuss meth-
ods proposed for inference accelerators. Most inference
accelerators optimize CNN scheduling to better utilize intra-
layer locality (Gao et al., 2017; Chen et al., 2017; Lu et al.,
2017; Chen et al., 2014a; Du et al., 2015; Jouppi et al., 2017).
They mainly focus on the data flow within a processing ar-
ray, reducing data re-fetches by unrolling, or optimizing
data access patterns within a convolution layer.

SCNN (Parashar et al., 2017) is a scheduling method and
architecture that reuses inter-layer data in CNN inference.
SCNN uses the on-chip buffer to hold both the input and
output features of each layer along with all weights. This
is possible with a reasonable on-chip buffer size because
SCNN relies on the fact that inference uses a single sample
(mini-batch of 1), that features between layers are sparse
because of ReLU, and that weights are even more sparse
because they are pruned once training is complete. Together,
an entire network can fit within an on-chip buffer.

However, the SCNN approach cannot be used for training
because the same conditions do not hold true: mini-batches
are large resulting in layer outputs that exceed buffer size,
convolution layer outputs are not sparse, and weights are
not sparse before pruning (Han et al., 2015).

Fused-Layer CNN (Alwani et al., 2016) is an inference flow
that also utilizes inter-layer data. The approach is to divide
the initial input to the CNN (the input feature map) into

tiles and propagate one tile through multiple layers. Each
convolution layer uses its input tile to produce a smaller
output tile (because output cannot be produced for bands
along the tile edges). The overlap between tiles is exploited
via dedicated caches. While effective for the networks eval-
uated in (Alwani et al., 2016), Fused-Layer CNN can not be
applied to training modern deep CNNs, because: (1) con-
volution layers with small feature maps and large channel
counts and weight data (deeper layers in modern CNNs) do
not exhibit sufficient inter-tile locality; (2) normalization
layers are incompatible with the tiling used for the depth-
first propagation; (3) the inter-layer communication pattern
in multi-branch modules, as well as in back propagation, is
not only a direct communication between one layer to its
following one; and (4) tiles shrink as they are propagated
depth-first through the network, which limits available par-
allelism and likely hurts PE utilization.

8 CONCLUSION

We introduce MBS, a mechanism to reuse the inter-layer
data in CNN training and balance its locality with that of
intra-layer data. MBS reconfigures the CNN computation
graph by partitioning a mini-batch of samples into sub-
batches whose memory footprint fits within on-chip storage.
We show that MBS reduces the volume of DRAM accesses
by up to 74% while providing a high processing-element
utilization of 79%. Additionally, we are the first to demon-
strate and exploit data reuse opportunities between branches
in CNN multi-branch Residual and Inception modules. To
efficiently use MBS CNN training, we introduce WaveCore,
a systolic-array based CNN training accelerator. We de-
sign WaveCore to double-buffer data within its processing
elements to remove idle time between the systolic waves
used to compute the convolution and fully-connected layer
outputs. Our evaluation demonstrates that we expect single
WaveCore with MBS to achieve higher performance than
one V100 GPU despite having the GPU having 3× higher
peak performance and memory bandwidth.

Furthermore, the high locality MBS achieved by balancing
intra- and inter-layer reuse makes WaveCore very robust to
memory design decisions. We demonstrate that both on-chip
buffer capacity and available off-chip bandwidth have far
smaller impact than using a conventional training approach.
For example, even with a low-cost LPDDR4 DRAM system
(the same DRAM used for mobile phones), WaveCore can
outperform a high-end V100 GPU.

9 ACKNOWLEDGMENT

The authors acknowledge Texas Advanced Computing Cen-
ter (TACC) for providing HPC resources.

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

REFERENCES

Alwani, M., Chen, H., Ferdman, M., and Milder, P. Fused-
layer cnn accelerators. In Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium
on, pp. 1–12. IEEE, 2016.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018.

Chen, K., Li, S., Muralimanohar, N., Ahn, J. H., Brockman,
J. B., and Jouppi, N. P. Cacti-3dd: Architecture-level
modeling for 3d die-stacked dram main memory. In
Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 33–38. EDA Consortium, 2012.

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and
Temam, O. Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning. ACM Sig-
plan Notices, 49(4):269–284, 2014a.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J.,
Li, L., Chen, T., Xu, Z., Sun, N., et al. Dadiannao:
A machine-learning supercomputer. In Proceedings of
the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 609–622. IEEE Computer Society,
2014b.

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. Eyeriss:
An energy-efficient reconfigurable accelerator for deep
convolutional neural networks. IEEE Journal of Solid-
State Circuits, 52(1):127–138, 2017.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J.,
Tran, J., Catanzaro, B., and Shelhamer, E. cudnn:
Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Das, D., Avancha, S., Mudigere, D., Vaidynathan, K., Srid-
haran, S., Kalamkar, D., Kaul, B., and Dubey, P. Dis-
tributed deep learning using synchronous stochastic gra-
dient descent. arXiv preprint arXiv:1602.06709, 2016.

Dean, J. Machine learning for systems and systems for
machine learning. 2017.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T.,
Feng, X., Chen, Y., and Temam, O. Shidiannao: Shifting
vision processing closer to the sensor. In ACM SIGARCH
Computer Architecture News, volume 43, pp. 92–104.
ACM, 2015.

Fuketa, H., Hirairi, K., Yasufuku, T., Takamiya, M., No-
mura, M., Shinohara, H., and Sakurai, T. Minimizing
energy of integer unit by higher voltage flip-flop: Vddmin-
aware dual supply voltage technique. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 21(6):
1175–1179, 2013.

Gao, M., Pu, J., Yang, X., Horowitz, M., and Kozyrakis,
C. Tetris: Scalable and efficient neural network accelera-
tion with 3d memory. ACM SIGOPS Operating Systems
Review, 51(2):751–764, 2017.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M. A., and Dally, W. J. Eie: efficient inference engine on
compressed deep neural network. In Computer Architec-
ture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on, pp. 243–254. IEEE, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hickmann, B., Krioukov, A., Schulte, M., and Erle, M. A
parallel ieee p754 decimal floating-point multiplier. In
Computer Design, 2007. ICCD 2007. 25th International
Conference on, pp. 296–303. IEEE, 2007.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference
on Multimedia, pp. 675–678. ACM, 2014.

High Bandwidth Memory (HBM) DRAM, JESD235A. Joint
Electron Device Engineering Council, Jan. 2016.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In Computer Architecture (ISCA), 2017
ACM/IEEE 44th Annual International Symposium on, pp.
1–12. IEEE, 2017.

Mini-batch Serialization: CNN Training with Inter-layer Data Reuse

Kahng, A. B., Li, B., Peh, L.-S., and Samadi, K. Orion 2.0:
A fast and accurate noc power and area model for early-
stage design space exploration. In Proceedings of the
conference on Design, Automation and Test in Europe, pp.
423–428. European Design and Automation Association,
2009.

Kim, Y., Jung, W., Lee, I., Dong, Q., Henry, M., Sylvester,
D., and Blaauw, D. 27.8 a static contention-free single-
phase-clocked 24t flip-flop in 45nm for low-power ap-
plications. In Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International, pp.
466–467. IEEE, 2014.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
pp. 1097–1105, 2012.

Kung, H.-T. Why systolic architectures? IEEE computer,
15(1):37–46, 1982.

Kurzak, J., Tomov, S., and Dongarra, J. Autotuning gemm
kernels for the fermi gpu. IEEE Transactions on Parallel
and Distributed Systems, 23(11):2045–2057, 2012.

Li, M., Zhang, T., Chen, Y., and Smola, A. J. Efficient mini-
batch training for stochastic optimization. In Proceed-
ings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 661–670.
ACM, 2014.

Lu, W., Yan, G., Li, J., Gong, S., Han, Y., and Li, X.
Flexflow: A flexible dataflow accelerator architecture
for convolutional neural networks. In High Performance
Computer Architecture (HPCA), 2017 IEEE International
Symposium on, pp. 553–564. IEEE, 2017.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaev, O.,
Venkatesh, G., et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

nvidia. Nvidia tesla v100 gpu architecture. White paper,
2017.

Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkate-
san, R., Khailany, B., Emer, J., Keckler, S. W., and Dally,
W. J. Scnn: An accelerator for compressed-sparse con-
volutional neural networks. In Proceedings of the 44th
Annual International Symposium on Computer Architec-
ture, pp. 27–40. ACM, 2017.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pp.
1139–1147, 2013.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In AAAI, volume 4, pp. 12,
2017.

Vogelsang, T. Understanding the energy consumption of
dynamic random access memories. In Proceedings of
the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 363–374. IEEE Computer
Society, 2010.

Wu, Y. and He, K. Group normalization. arXiv preprint
arXiv:1803.08494, 2018.

