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ABSTRACT
In vision-enabled autonomous systems such as robots and autonomous cars, video object detection plays a crucial
role, and both its speed and accuracy are important factors to provide reliable operation. The key insight we
show in this paper is that speed and accuracy are not necessarily a trade-off when it comes to image scaling. Our
results show that re-scaling the image to a lower resolution will sometimes produce better accuracy. Based on
this observation, we propose a novel approach, dubbed AdaScale, which adaptively selects the input image scale
that improves both accuracy and speed for video object detection. To this end, our results on ImageNet VID and
mini YouTube-BoundingBoxes datasets demonstrate 1.3 points and 2.7 points mAP improvement with 1.6× and
1.8× speedup, respectively. Additionally, we improve state-of-the-art video acceleration work by an extra 1.25×
speedup with slightly better mAP on ImageNet VID dataset.

1 INTRODUCTION

Video object detection acts as a fundamental building block
for visual cognition in future autonomous agents such as
autonomous cars, drones, and robots. Therefore, to build
systems with reliable performance, it is critical for the de-
tectors to be fast and accurate. Though object detection is
well-studied for static images (Dai et al., 2016; Girshick,
2015; He et al., 2014; Liu et al., 2016; Ren et al., 2015),
there are unique challenges in the case of video object detec-
tion, including motion blur caused by the moving objects,
failure of camera focus (Zhu et al., 2017a), and also real-
time speed constraints when it comes to autonomous agents.
Besides these challenges, however, video object detection
also brings new opportunities to be exploited. Some of the
prior work that focuses on video object detection tries to
improve average precision by leveraging a unique character-
istic of video (Zhu et al., 2017a; Feichtenhofer et al., 2017;
Kang et al., 2017), which is the temporal consistency (con-
secutive frames have similar content). On the other hand,
from a speed perspective, prior work (Zhu et al., 2017b;
2018b; Buckler et al., 2018) counts on the temporal consis-
tency to reduce the computation needed for a standalone
object detector. Similarly, we aim to leverage the temporal
consistency, but to improve both speed and accuracy of the
standalone object detectors with a novel technique called
adaptive-scale testing, or AdaScale.
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The scale of input image affects both the speed and accu-
racy of modern CNN-based object detectors (Huang et al.,
2017). Prior work related to image scaling addresses two
directions: (i) multi-scale testing for better accuracy, and (ii)
down-sampling images for higher speed. Examples from
the first category include re-sizing images to various scales
(image pyramid) and pushing them through the CNN for fea-
ture extraction at various scales (Dai et al., 2016; Girshick,
2015; He et al., 2014), as well as fusing feature maps from
different layers generated by a single-scale input image (Lin
et al., 2017a; Cai et al., 2016; Bell et al., 2016). However,
these approaches introduce extra computational overhead
compared to object detectors with single-scale inputs. Ex-
amples from the second category include Pareto optimal
search by tuning the input image scale (Lin et al., 2017b;
Liu et al., 2016; Redmon & Farhadi, 2017; Huang et al.,
2017) and dynamically re-sizing the image according to the
input image (Chin et al., 2018). However, results for these
approaches demonstrate that higher speed comes at the cost
of lower accuracy when it comes to image scaling.

In contrast with prior work, we find that down-sampling
images is sometimes beneficial in terms of accuracy. Specif-
ically, there are two sources of improvement brought by
image down-sampling: (i) Reducing the number of false
positives that may be introduced by focusing on unneces-
sary details. (ii) Increasing the number of true positives by
scaling the objects that are too large to a size at which the
object detector is more confident. Fig. 1 shows images that
are better when down-sampled in our experiments using
Region-based Fully Convolutional Network (R-FCN) (Dai
et al., 2016) object detector on ImageNet VID dataset.
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Motivated by this, our goal is to re-size the images to their
“best” scale aiming for both higher speed and accuracy. In
this work, we propose AdaScale to boost both the accuracy
and the speed of the standalone object detector. Specifically,
we use the current frame to predict the optimal scale for
the next frame. Our results on ImageNet VID and mini
YouTube-BB datasets demonstrate 1.3 points and 2.7 points
mAP improvement with 1.6× and 1.8× speedup, respec-
tively. Moreover, by combining with the state-of-the-art
video acceleration work (Zhu et al., 2017b), we improve its
speed by an an extra 25% with a slight mAP increase on
ImageNet VID dataset.

2 RELATED WORK

Our work focuses on applying adaptive scaling to video
object detection in order to improve both speed and accuracy
of object detectors. In the sequel we discuss prior work in
scale-related object detection and video object detection.

2.1 Image Scale for Object Detection

We discuss two categories of scale-related object detection
work: (i) single-shot detection by exploiting feature maps
from various layers of the CNN with inherently different
scales, and (ii) multi-shot detection with input images at
multiple scales.

Single-Shot: In this category, object detectors are designed
to take an input image once and detect objects at various
scales. That is, this category of prior work treats deep CNNs
as scale-invariant. Prior work (Bell et al., 2016) uses fea-
tures from different layers in the CNN and merge them with
normalization and scaling. Similar idea is also adopted by
other work (Liu et al., 2016; Cai et al., 2016; Lin et al.,
2017a; Zhou et al., 2017). From a different viewpoint, prior
art (Liu et al., 2017) proposes to use a recurrent network
to approximate feature maps produced by images at dif-
ferent scales. Though single-shot approaches have shown
great promise in better detecting various scales, the scale-
invariant design philosophy generally requires a large model
capacity (Kanazawa et al., 2014; Liu et al., 2017). We note
that, without perfect scale-invariance, different image scales
will result in different accuracy, and prior art often uses a
fixed single scale, e.g. 600 pixels on the smallest side of the
image. Hence, this line of work could be further improved
in terms of speed and accuracy when augmented to adaptive
scaling.

Multi-shot: This refers to scaling a single input image to var-
ious scales, forwarding each scaled image through the object
detector, and merging the obtained results. Some work (He
et al., 2014; Girshick, 2015; Ren et al., 2017; He et al., 2016;
Dai et al., 2016) forwards multiple scales of images to ob-
tain feature maps with various scales. More recently, prior

work (Dai et al., 2018) leverages multiple scales of images
to infer multiple detection results and merge them using
Non-Maximum Suppression. While multi-shot object de-
tection alleviates the problem of imperfect scale-invariance,
it incurs significant extra computation overhead, i.e., up to
4× (Girshick, 2015).

Our work is aiming to alleviate the imperfect scale-
invariance by selecting the best scale for each image, and
hence, improves the accuracy compared to single-shot meth-
ods. Moreover, to improve the speed in the meantime, we
consider down-sampling rather than up sampling. We note
that our method could possibly be extended to multi-shot
version, i.e., adaptively select multiple scales for a given
image, and we leave it for the future work.

2.2 Video Object Detection

We discuss prior work that aims at improving speed and/or
accuracy of video object detection.

Speed: Optical flow was proposed to reduce detection over-
head by prior work (Zhu et al., 2017b). Similar to our idea,
some prior art (Chin et al., 2018) proposes to adaptively
scale the image to improve the detection speed. However,
both works improve speed at the expense of accuracy loss.
Accuracy: Prior work (Kang et al., 2017) proposes to lever-
age contextual and temporal information across the video
while some work (Zhu et al., 2017a) uses the idea from
Deep Feature Flow (DFF) (Zhu et al., 2017b) to incorporate
temporal information across consecutive frames. Another
study (Feichtenhofer et al., 2017) proposes to integrate de-
tection with tracking into an end-to-end trainable deep CNN.
Both: Some prior work (Zhu et al., 2018a) extends (Zhu
et al., 2017a) and (Zhu et al., 2017b) to use both feature
aggregation and propagation. Additionally, they propose to
regress a quality metric of the optical flow to decide when
and how to propagate the features.

Compared to the aforementioned related work, the main con-
tribution that sets our work apart is that our work focuses on
fixing the problem where existing object detectors use fixed
single scale for each of the image while the object detectors
are not scale-invariant, which is different from most of the
prior work that focuses on exploiting the relationship of the
detection results among the neighboring frames (Kang et al.,
2017; Zhu et al., 2017b;a; Feichtenhofer et al., 2017; Zhu
et al., 2018a). Moreover, we show that we are complemen-
tary to state-of-the-art video object detection acceleration
technique (Zhu et al., 2017b).

3 ADAPTIVE SCALING

Fig. 2 provides an overview for AdaScale methodology. It
includes fine-tuning the object detector, using the resulting
detector to generate the optimal scale labels, training the
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(a) 600 (b) 240 (c) 600 (d) 480

Figure 1. Examples where down-sampled images have better detection results. Blue boxes are the detection results, and the numbers are
the confidence. The detector is trained on a single scale (pixels of the shortest side) of 600. Column (a) and (c) are tested at scale 600.
Column (b) is tested at scale 240 and column (d) is tested at scale 480.

scale regressor with the generated labels, and the deploy-
ment of AdaScale in video object detection. We discuss
each component in detail in the following sections.

Figure 2. The AdaScale methodology.

3.1 Optimal Scale

To define the optimal scale (pixels of the shortest side) of
a given image, we need to first define a finite set of scales
S (e.g., in our case S = {600, 480, 360, 240}) and we must
have a metric that evaluates the quality of the detection
results at these different scales. Naively, we can use the
commonly used mean average precision (mAP) to compare
different scales, and define the scale with the largest mAP as
the optimal scale. However, the mAP evaluated for a single
image is sparse due to limited number of ground truths per
image. Hence, we opt to count on the loss function that is
used to train the object detector as the metric to compare
results at different scales. In general, the loss function for an
object detector used in training often includes the bounding
box regression loss and classification loss (Girshick, 2015;
Ren et al., 2015; Dai et al., 2016):

L(p, u, t, t̂) = Lcls(p, u) + λ[u ≥ 1]Lreg(t, t̂), (1)

where p is a vector of predicted probability for each pre-
defined class, u is the ground truth class label (0 means
background), t̂ is a four-dimension vector that indicates
the location information of the bounding box (Girshick,
2015), and t is also a four-dimension vector that represents
the ground truth location of the bounding box. Noted that
[u ≥ 1] indicates that regression loss only applies to the
bounding box whose ground truth label is not background.
Generally (Dai et al., 2016; Lin et al., 2017b), a predicted
bounding box is assigned to foreground when there is at least
one ground truth bounding box that has over 0.5 Jaccard

overlap (intersection over union) (Erhan et al., 2014) with it;
otherwise, it is assigned to background. However, since this
loss function naturally assumes that the regression loss for
background is 0, directly using it to assess different image
scales will favor the image scale with fewer foreground
bounding boxes.

Hence, to deal with this, we devise a new metric that focuses
only on the same number of foreground bounding boxes to
compare different image scales. To explain our proposed
metric, we denote Lm

i,a,m ∈ S as the loss of predicted
bounding box a of image i at scale m using (1), and denote
L̂m
i ,m ∈ S for image i at scale m, as our proposed metric.

To obtain L̂m
i , we first compute the number of predicted

foreground bounding boxes, nm,i, for image i at each scale
m ∈ S, then let nmin,i = minm(nm,i). Concretely, the
proposed metric can be computed as: L̂m

i =
∑

a∈Am,i
Lm
i,a,

where Am,i is a set of predicted foreground bounding boxes
of image i at scale m and |Am,i| = nmin,i. To obtain Am,i,
for each scale, we sort the predicted foreground bounding
boxes of image i with respect to Lm

i,a in ascending order
and pick the first nmin,i predictions into the set Am,i. The
visual illustration of the process is shown in Fig. 3. With the
proposed metric, we define optimal scale mopt,i for image i
as:

mopt,i = argminmL̂m
i . (2)

3.2 Scale Regressor

Now that we understand which scale is better for a given
image, we may be able to predict the optimal scale for the
image. Intuitively, if the object is large or has simple tex-
ture, it is likely that we would down-sample the image to let
the object detector focus on the salient objects rather than
the distracting details. On the other hand, if the object is
small or there are many salient objects, the image should
remain in a large scale. Since R-FCN head (Dai et al., 2016)
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Figure 3. Optimal scale determination. First, the same number of predicted foregrounds
from four scales are selected as Am,i. Then, the scale with the lowest loss L̂m

i is selected
as the optimal scale.

Figure 4. The scale regressor module.

counts on the deep features (i.e., the last convolutional layer
of the backbone feature extractor) to regress bounding box
locations, we think that the channels of the deep features
already contain size information. As a result, we build a
scale regressor using deep features to predict the optimal
scale, as shown in Fig. 4. Specifically, we use a 1x1 convo-
lutional layer to capture the size information from different
feature maps. Additionally, we use a parallel 3x3 convolu-
tional layer to capture the complexity of each 3x3 patch in
the feature maps. After the non-linear unit, we use global
pooling that acts as a voting process. Lastly, we combine
the two streams with a fully connected layer to regress the
output scale. To be precise, we define the deep features as
X ∈ RC×H×W , where C is number of channels, H and W
are height and width of the deep feature maps. We define
our regressor as g : RC×H×W → R. It is important to note
that we do not regress the optimal scale mopt directly since
what matters is the content instead of the image size itself.
Hence, we regress a relative scale so that the module learns
to react (up-sample, down-sample, or stay the same) given
the current content of the image. Specifically, the target of
the regressed scale for image i is defined as:

t(mi,mopt,i) = 2× mopt,i/mi −mmin/mmax

mmax/mmin −mmin/mmax
− 1,

(3)

where mi is the scale of the image i, mmin is the mini-
mum defined scale, e.g., 128, while mmax is the maximum
defined scale, e.g., 600. That is, we are regressing to nor-
malized, i.e., [-1, 1], relative scales. To generate labels for
the regressor, we calculate (2) over the training data to ob-

tain mopt,i ∀i ∈ Dtrain, where Dtrain is the training data.
As commonly used in regression problems, we adopt mean
square error (4) as the loss function to train the regressor:

Lscalereg =
1

|Dtrain|
∑

i∈Dtrain

(g(Xi)− t(mi,mopt,i))
2.

(4)

To incorporate adaptive scaling, or AdaScale, in the video
setting, we impose a temporal consistency assumption.
More precisely, we assume that the optimal scales for the
two consecutive frames are similar; our results empirically
justify this assumption. Algorithm 1 shows an example of
leveraging AdaScale for video object detection, which is
elaborated in section 4.2.

4 EXPERIMENTS

4.1 Setup

All of our experiments are done using Nvidia GTX 1080
Ti. We base our implementation on the code released by
prior work (Zhu et al., 2017b), where MXNet (Chen et al.,
2015) is used as the deep learning framework. We conduct
our experiments mainly on the ImageNet VID dataset (Rus-
sakovsky et al., 2015), which contains 3862 and 555 training
and validation video snippets, respectively. We use a pre-
trained R-FCN model (Zhu et al., 2017b), which is trained
on both ImageNet DET and ImageNet VID training set. For
DET dataset, only the 30 categories that overlap with the
VID dataset are selected for training. The evaluation of Im-
ageNet VID is performed on validation set, which follows
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Algorithm 1 Pseudo-code for using AdaScale in the testing
phase.

Input: detector, video, S: pre-defined scale set
image = video.next frame();
targetScale = 600; // Initialize image scale
while image do

image = resize(image, targetScale);
base size = minimum(image.height, image.width);
// Regress t of Eq. (3)
bboxes, scores, targetScale = detector.detect(image);
// Invert Eq. (3)
targetScale = decode(targetScale, base size, S);
targetScale.clip (min(S), max(S)).round ();
image = video.next frame();

end while

prior work (Zhu et al., 2017b). In addition to ImageNet VID,
we also evaluate our performance on the recently released
YouTube-BB dataset (Real et al., 2017), which contains
23 categories and around 380,000 video segments. Due
to resource and time limitation, we randomly sample 100
segments per category and cut 20 frames per segment to
form our mini training set. We also sample 10 segments per
category for the validation set to form our mini testing set.
To train the model for mini Youtube-BB dataset, we use the
model trained on ImageNet VID and DET as a pre-trained
model to further fine-tune on mini Youtube-BB.

4.2 Training and Testing

Object Detector: First, to avoid the object detector to be
biased toward a single scale, we fine-tune the R-FCN model
pre-trained at scale 600, for four epochs using multi-scale
training (Girshick, 2015). The hyperparameters used fol-
low prior work (Zhu et al., 2017b). Specifically, we use a
learning rate of 0.00025 and divide it by 10 after 1.3 and
2.6 epochs, respectively. We use two GPUs with a single
image per GPU. Therefore, the training batch size is two.
In a addition, we pick the scale (the shortest side of the
image) from the set Strain = {600, 480, 360, 240}, and use
the maximum bound for the longer side as 2000. Our re-
sizing protocol follows Fast R-CNN (Girshick, 2015). In
the following sections, we will refer to the shortest side size
as the image scale. All the detection results in this work use
Non-Maximum Suppression (NMS) with threshold 0.3 (Dai
et al., 2016). For each image, the top-300 confident bound-
ing boxes after NMS are selected as the final output.

Scale Regressor: With the multi-scale trained object de-
tector, we generate the scale label for each frame in the
training data with a set of pre-defined scales using the pro-
posed metric in section 3.1. To enable adaptive scaling, the
regressor needs to learn to scale up or down according to
the current content. To best train the regressor, we should

scale the image to every possible scales for the regressor
to learn the dynamics. That is, when training the regressor,
the input image scale is randomly drawn from a uniform
distribution of the pre-defined scale set Sreg . In practice, we
find Sreg = {600, 480, 360, 240, 128} is enough to cover
the dynamics between 600 and 128. Note that we pick 128
since it is the scale of smallest pre-defined bounding box
or anchor used in the Region Proposal Network (Ren et al.,
2015) inside R-FCN and we want to push the image to an
as small as possible scale for the largest potential speed im-
provement. With the generated label, we then train our scale
regressor using the training data and freeze the weights of
the entire network, except for the scale regressor module.
We train the scale regressor for two epochs with an initial
learning rate of 10−4 and divide by 10 after 1.3 epoch. For
the testing phase, as shown in Algorithm 1, we begin every
video snippet by re-sizing the first frame to 600. Then, we
use the decoded regressed scale for the next frame. As for
decoding the regressed scale, we first count on the inverse
of (3) to obtain a scale in floating point. Then, we round it
to an integer, and clip it to the range [Smin, Smax].

4.3 Evaluation

To evaluate the proposed AdaScale, we progressively com-
pare the three methods: (i) SS/SS - a detector trained and
tested at 600, which is usually adopted by prior art (Ren
et al., 2015; Dai et al., 2016; Zhu et al., 2017b;a; Feichten-
hofer et al., 2017), (ii) MS/SS - a detector trained at Strain

and tested at 600, and (iii) MS/AdaScale - a detector trained
at Strain and tested on an adaptively changing scale be-
tween 128 and 600, given the range of Sreg. Note that the
scale for MS/AdaScale can be any integer value within this
range since it is predicted by the scale regressor. The evalu-
ation results are shown in Table 1. From this point on, for
the sake of simplicity, we base our analysis on ImageNet
VID only. The analysis holds for mini YouTube-BB as well.

Accuracy: Compared to the baseline SS/SS, MS/AdaScale
increases mAP by 1.3 points. For better visualization, blue
numbers in Table 1 indicate ≥ 1 AP improvement while
red numbers represent ≥ 1 AP degradation. Our approach
achieves ≥ 1 AP improvements in half of the categories
with only three categories having ≥ 1 AP degradation. In
general, multi-scale training can enrich the training data
and achieve better generalization of the model. However,
this is not always the case. For categories like red panda
and bear, there is a huge AP degradation for all the multi-
scale training-based approaches. We find that multi-scale
training could potentially lead to some confusion for certain
categories. We leave the in-depth study of this phenomena
to future work.

We further dive into the precision-recall curve to understand
the dynamics of precision and recall for all the methods.
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Table 1. Evaluation of the proposed method. We denote methods by their approach of training and testing, e.g., MS/SS stands for
multi-scale (MS) training and single-scale (SS) testing. Blue text and red text indicate ≥ 1 AP improvement and degradation compared to
SS/SS, respectively.
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Fig. 5 shows that precision-recall curves for three most im-
proved categories (a)-(c), one on-par category (d), and two
most degraded categories (e)-(f). To give a more comprehen-
sive analysis, we add multi-scale training and multi-scale
testing (MS/MS) here for comparison. In addition, we also
compare with multi-scale training and random testing sce-
nario, which selects one of the five scales in Sreg randomly
at test time. Compared to random scaling, MS/AdaScale
clearly learns the dynamics of when and how to scale to
be able to have consistently higher average precision. Ad-
ditionally, we can tell from the figure that irrespective of
getting better or worse compared to SS/SS, MS/AdaScale
follows the curve of MS/MS closely.

Speed: Our scale regressor incurs only 2ms of overhead,
which is 3% of the runtime of R-FCN. To see the speed im-
provement brought by the MS/AdaScale, Fig. 10(a) shows
the size distribution produced by the scale regressor on
ImageNet VID validation dataset and we conduct speed sen-
sitivity analysis on scale set Strain in section 4.7. We note
that, to profile the runtime, we warm up the GPU memory in
order to remove the impact of memory allocation overhead
of MXNet (Chen et al., 2015).

4.4 Higher Precision with AdaScale

We further dig into what our method actually improves -
precision or recall. As mentioned earlier in section 3.2,

(a) Lion (b) Squirrel (c) Horse

(d) Airplane (e) Red panda (f) Bear

Figure 5. Precision-Recall curves for categories that MS/AdaScale
has (a)(b)(c) better performance, (d) on-par performance, and (e)(f)
worse performance compared to SS/SS.

adaptive scaling could possibly increase true positives by
scaling the object into a better scale for the detector or
reduce false positives by not focusing too much on unnec-
essary details. To conduct this analysis, we compute the
number of true positives and false positives across all the im-
ages in the validation set for method SS/SS, MS/SS, MS/MS,
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(a) Lion (b) Squirrel (c) Horse

(d) Airplane (e) Red Panda (f) Bear

Figure 6. Normalized true positives and false positives for different
methods across all the images in validation set for three selected
categories.

MS/AdaScale, as well as MS/Random. Fig. 6 shows the
number of true positives and the number of false positives
normalized to method SS/SS (we present the results for all
categories in Appendix). First, by comparing SS/SS and
MS/SS, we can observe that multi-scale training is able to
lower the number of false positives dramatically. This is
reasonable since multi-scale training reduces the chance that
the classifier counts on scale information as a discriminat-
ing feature. The results of MS/SS and MS/Random show
that simply down-sampling images can also reduce false
positive, but it reduces true positives as well. In addition
to the false positive reduction brought by multi-scale train-
ing and image down-sampling, MS/AdaScale manages to
reduce even more false positives, with true positives compa-
rable to SS/SS. In general, MS/AdaScale is able to increase
precision at a slight cost of recall degradation.

4.5 Qualitative Results

In Fig. 8, we show some example images for the detection
results of both the baseline SS/SS and MS/AdaScale. First,
we observe that the regressor learns to down-sample the
image when there is a large object in the image. On the
other hand, it stays in higher scales if there is a small object
in the image. Also, we notice that the regressor learns
to scale to the right size to avoid false positives and even
correct predictions with false classes.

To understand AdaScale more in terms of the sequential
decisions, Fig. 9 shows the AdaScale dynamics of three
clips. Specifically, it shows that (i) it stably down-samples
images with a large object; (ii) it stably scales the images
into larger scales when the object is small; and (iii) it jitters
when there are multiple objects with varying sizes. The

Figure 7. mAP and speed comparison with prior art on ImageNet
VID dataset. Applying our AdaScale to RFCN (Dai et al., 2016),
DFF (Zhu et al., 2017a) and SeqNMS (Han et al., 2016) can further
improve both speed and accuracy.

scale jittering in the third clip indicates that if there are size-
varying multiple objects in the frame, it is harder to decide
what constitutes a better size, which can also be observed in
the watercraft of Fig. 8. To enhance the current design, it is
possible to apply AdaScale recursively on the attention of
the given image, to obtain results from multiple regressed
scales. We leave improvements of the current design to
future work.

4.6 Comparison with Prior Work

To our best knowledge, our work is the first to exploit the
use of images with smaller scales for improving both speed
and accuracy, rather than treating them as a trade-off (Huang
et al., 2017; Dai et al., 2016; Redmon & Farhadi, 2017; Chin
et al., 2018; Lin et al., 2017b). For video object detection,
our work is complementary to some of the prior work that
tries to benefit from the detection results of multiple frames
to improve accuracy or speed.

In Fig. 7, the baseline object detector is R-FCN (Dai et al.,
2016) with 74.2 mAP and 13.3 frame-per-second (FPS). We
run the prior work approaches (Zhu et al., 2017a;b; Han
et al., 2016; Feichtenhofer et al., 2017) that provide source
code for our experiment setup to profile both speed and mAP.
Additionally, we combine our work with SeqNMS (Han
et al., 2016) and Deep Feature Flow (DFF) (Zhu et al.,
2017b) to further push the Pareto frontier by maintaining
the accuracy while speeding up testing by an additional 61%
and 25%, respectively.

4.7 Ablation Study

Training Scales of Object Detector: To understand how
multi-scale training affects the performance of AdaScale,
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(a) SS/SS (b) MS/AdaScale (c) SS/SS (d) MS/AdaScale

Figure 8. Comparing the results of SS/SS and MS/AdaScale qualitatively. Column (a) and (c) are results produced by SS/SS; column (b)
and (d) are results produced by MS/AdaScale. The scales used in MS/AdaScale are labeled in black rectangle with white text.

Table 2. mAP and runtime for different multi-scale training settings.
Strain {600,480,360,240} {600,480,360} {600,360} {600}

testing method SS Ada. SS Ada. SS Ada. SS Ada.
mAP (%) 73.3 75.5 73.3 74.8 73.4 74.8 74.2 74.2

runtime (ms) 75 47 75 55 75 57 75 68

we try different sets of training scales Strain and the results
are shown in Table 2 and Fig. 10. We find that a larger set
of Strain improves both the mAP and speed of AdaScale.
From Fig. 10(a)-(d), we can also observe higher speed with
smaller training scales. We postulate that it is due to two
reasons: (i) Multi-scale trained object detector is able to
generate more meaningful labels for the regressor to learn
since it is less biased toward some scales. (ii) The object
detector becomes good at multiple scales that could be better
exploited by the scale regressor.

Table 3. mAP and runtime for different regressor architectures.
kernel size 1 1&3 1&3&5
mAP (%) 75.3 75.5 75.5

runtime (ms) 51 47 50

Regressor Architectures: We try using different sizes of filter
for the regressor module and we show the results in Table 3.

Interestingly, since the accuracy of the regressor directly
affects the speed of the object detector, both regressor’s
accuracy and the overhead of the module affect the final
overall speed.

5 CONCLUSION

Given the importance of video object detection, we present
a thorough study of the possibility of improving both speed
and accuracy in video object detection with adaptive scal-
ing. Our contributions are three-fold: (i) to the best of our
knowledge, our work is the first work to demonstrate the
use of down-sampled images for improving both speed and
accuracy for video object detection, (ii) we provide compre-
hensive empirical results that demonstrate improvement in
both ImageNet VID as well as mini YouTube-BB datasets,
and (iii) we combine our technique with state-of-the-art
video object detection acceleration techniques and further
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Figure 9. The investigation of the dynamics of AdaScale. The scales of the images are labeled in bottom-right.

(a) {600,480,360,240} (b) {600,480,360} (c) {600,360} (d) {600}

Figure 10. The regressed scale distribution of AdaScale tested on ImageNet VID validation set. (a)-(d) use different Strain.

improve the speed by an additional 25% with the added
benefit of slightly higher accuracy.
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