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ABSTRACT
TensorFlow.js is a library for building and executing machine learning algorithms in JavaScript. TensorFlow.js
models run in a web browser and in the Node.js environment. The library is part of the TensorFlow ecosystem,
providing a set of APIs that are compatible with those in Python, allowing models to be ported between the Python
and JavaScript ecosystems. TensorFlow.js has empowered a new set of developers from the extensive JavaScript
community to build and deploy machine learning models and enabled new classes of on-device computation. This
paper describes the design, API, and implementation of TensorFlow.js, and highlights some of the impactful use
cases.

1 INTRODUCTION

Machine learning (ML) has become an important tool in
software systems, enhancing existing applications and en-
abling entirely new ones. However, the available software
platforms for ML reflect the academic and industrial roots
of the technology. Production-quality ML libraries are typi-
cally written for Python and C++ developers. Nonetheless,
there is a vast community of both frontend and backend
JavaScript (JS) developers that continues to grow at a high
pace. There were 2.3 million GitHub pull requests in JS
in 2017, compared to 1 million in Python (GitHub.com,
2017). According to the Stack Overflow Developer Sur-
vey in 2018, JS is the most commonly used programming
language (StackOverflow.com, 2018).

This lack of attention matters. The JS environment has the
potential to support a new and distinctive class of appli-
cations. On-device computation has a number of benefits,
including data privacy, accessibility, and low-latency in-
teractive applications. Empowering the community of JS
developers may lead to new classes of applications.

This paper describes the design and development of the Ten-
sorFlow.js library, which was motivated by the importance
of the JS community and web-based applications for ML.
A first-class citizen in the TensorFlow (Abadi et al., 2016)
ecosystem, the platform brings high-performance ML and
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numeric computation capabilities to JS. While several open
source JS platforms for ML have appeared, to our knowl-
edge TensorFlow.js is the first to enable integrated training
and inference on the GPU from the browser, and offer full
Node.js integration for server-side deployment. We have at-
tempted to ensure that TensorFlow.js meets a high standard
of productionization, including high-level libraries, com-
prehensive testing, and explicit extensibility. It has already
seen significant uptake by the JS community.

We discuss three main aspects of our experience building
TensorFlow.js. First, we describe some of the unique chal-
lenges and advantages of the JS environment. Second, we
cover the design details of the library, its APIs, which repre-
sents a balance between standard web development practice
and compatibility with TensorFlow, and the techniques we
used to overcome the limitations of the JS environment. Fi-
nally, we describe a few interesting and new use cases that
have been enabled by TensorFlow.js.

2 BACKGROUND AND RELATED WORK

The design of TensorFlow.js is grounded in specific con-
straints of the JS environment. Here we detail the technical
challenges of ML with JS and related efforts to address
them.

2.1 The JavaScript environment

Different environments. One of the challenges of JS is that
it runs in different environments. Computation can happen
client-side in a browser, server-side, most notably as part of
the Node.js framework, and more recently on the desktop
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via frameworks like Electron. TensorFlow.js is designed to
work in all these settings, although the majority of our work
to date has been tuning it for client-side development in a
web browser.

Performance. A second key challenge, specific to the
browser environment, is performance. JS is an interpreted
language so it does not typically match the speed of a com-
piled language like C++ or Java for numerical computation.
Unlike Python which can bind to C++ libraries, browsers
do not expose this capability. For security reasons, browser
applications don’t have direct access to the GPU, which is
typically where numerical computation happens for modern
deep learning systems.

To address these performance issues, a few new JS standards
are emerging. One notable solution is WebAssembly (Haas
et al., 2017), a method for compiling C++ programs to byte-
code that can be interpreted and executed directly in the
browser. For certain tasks, WebAssembly can outperform
plain JS. Most modern browsers also support WebGL (Kro-
nos, 2011), an API that exposes OpenGL to JS. OpenGL
is a cross-language, cross-platform API for rendering 2D
and 3D vector graphics, enabling games and other high-
performance rendering tasks directly in a webpage. On the
server-side, JS libraries can bind to existing native modules
that are written in C and C++ via Node.js’s N-API interface
(Nodejs.org, 2017).

Cross-browser compatibility. JS is designed to be a cross-
platform language supported by all major browsers with
standardized Web APIs that make it easy to write applica-
tions that run on all platforms. In practice, browsers are built
by several different vendors with slightly different imple-
mentations and priorities. For example, while Chrome and
Firefox support WebGL 2.0 (a significant improvement over
WebGL 1.0), Apple’s Safari has settled on WebGL 1.0 and
shifted focus to future technologies such as WebGPU (Jack-
son, 2017). Web application authors have to work hard to
hide this inconsistency in their applications, often requiring
extensive testing infrastructure to test across large number
of platforms.

Single-threaded execution. One of the other challenges
of the JS environment is its single threaded nature. JS has
a ‘main thread’ (also known as the ‘UI thread’), which
is where webpage layout, JS code, event processing and
more happen. While this greatly simplifies some aspects
of the development model, it also means that application
developers need to be careful not to block the main thread
as it will cause other parts of the page to slow down. A
well-designed JS library therefore requires a careful balance
between the simplicity of synchronous APIs and the non-
blocking benefits of asynchronous APIs.

2.2 Opportunities in a browser-based environment

Shareability. A major motivation behind TensorFlow.js is
the ability to run ML in standard browsers, without any
additional installations. Models and applications written in
TensorFlow.js are easily shared on the web, lowering the
barrier to entry for machine learning. This is particularly
important for educational use cases and for increasing the
diversity of contributors to the field.

Interactivity. From a machine learning perspective, the
interactive nature of web browsers and versatile capabili-
ties of Web APIs open the possibility for a wide range of
novel user-centric ML applications which can serve both
education and research purposes. Visualizations of neural
networks such as (Olah, 2014) and (Smilkov et al., 2016)
have been popular to teach the basic concepts of machine
learning.

On-device computation. Lastly, standardized access to var-
ious components of device hardware such as the web cam-
era, microphone, and the accelerometer in the browser allow
easy integration between ML models and sensor data. An
important result of this integration is that user data can stay
on-device and preserve user-privacy, enabling applications
in the medical, accessibility, and personalized ML domains.
For example, speech-impaired users can use their phones
to collect audio samples to train a personalized model in
the browser. Another technology, called Federated Learning
(McMahan et al., 2016), enables devices to collaboratively
train a centralized model while keeping sensitive data on
device. Browsers are a natural a platform for this type of
application.

2.3 Related work

Given the popularity and the unique benefits of the JS
ecosystem, it is no surprise that many open-source browser-
based ML libraries exist. ConvNetJS (Karpathy, 2014),
Synaptic (Cazala, 2014), Brain.js (Plummer, 2010), Mind
(Miller, 2015) and Neataptic (Wagenaar, 2017) each provide
a simple JS API that allows beginners to build and train neu-
ral networks with only a few lines of code. More specialized
JS ML libraries include Compromise (Kelly, 2014) and Nat-
ural (Umbel, 2011), which focus on NLP applications, and
NeuroJS (Huenermann, 2016) and REINFORCEjs (Karpa-
thy, 2015), which focus on reinforcement learning. ML.js
(Zasso, 2014) provides a more general set of ML utilities,
similar to the Python-based scikit-learn (Pedregosa et al.,
2011).

These libraries do not provide access to hardware accelera-
tion from the browser which we have found to be important
for computational efficiency and minimizing latency for
interactive use cases and state of the art ML models. A
few libraries have attempted to take advantage of hardware
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acceleration, notably TensorFire (Kwok et al., 2017), Propel
(built on top of TensorFlow.js) (Dahl, 2017) and Keras.js
(Chen, 2016), however they are no longer actively main-
tained.

WebDNN (Hidaka et al., 2017) is another deep learning li-
brary in JS that can execute pretrained models developed in
TensorFlow, Keras, PyTorch, Chainer and Caffe. To acceler-
ate computation, WebDNN uses WebGPU (Jackson, 2017),
a technology initially proposed by Apple. WebGPU is in
an early exploratory stage and currently only supported in
Safari Technology Preview, an experimental version of the
Safari browser. As a fallback for other browsers, WebDNN
uses WebAssembly (Haas et al., 2017), which enables exe-
cution of compiled C and C++ code directly in the browser.
While WebAssembly has support across all major browsers,
it lacks SIMD instructions, a crucial component needed to
make it as performant as WebGL and WebGPU.

3 DESIGN AND API
The goals of TensorFlow.js differ from other popular ML
libraries in a few important ways. Most notably, Tensor-
Flow.js was designed to bring ML to the JS ecosystem,
empowering a diverse group of JS developers with limited
or no ML experience (Anonymous, 2018). At the same time,
we wanted to enable experienced ML users and teaching
enthusiasts to easily migrate their work to JS, which neces-
sitated wide functionality and an API that spans multiple
levels of abstraction. These two goals are often in conflict,
requiring a fine balance between ease-of-use and function-
ality. Lastly, as a new library with a growing user base,
missing functionality was prioritized over performance.

These goals differ from popular deep learning libraries
(Abadi et al., 2016; Paszke et al., 2017), where performance
is usually the number one goal, as well as other JS ML li-
braries (see Section 2.3), whose focus is on simplicity over
completeness of functionality. For example, a major differ-
entiator of TensorFlow.js is the ability to author and train
models directly in JS, rather than simply being an execution
environment for models authored in Python.

3.1 Overview

The API of TensorFlow.js is largely modeled after Ten-
sorFlow, with a few exceptions that are specific to the JS
environment. Like TensorFlow, the core data structure is the
Tensor. The TensorFlow.js API provides methods to create
tensors from JS arrays, as well as mathematical functions
that operate on tensors.

Figure 1 shows a high level schematic view of the architec-
ture. TensorFlow.js consists of two sets of APIs: the Ops
API which provides lower-level linear algebra operations
(e.g. matrix multiplication, tensor addition, etc.), and the

Layers API, which provides higher-level model building
blocks and best practices with emphasis on neural networks.
The Layers API is modeled after the tf.keras namespace in
TensorFlow Python, which is based on the widely adopted
Keras API (Chollet et al., 2015).

Figure 1. Overview of the TensorFlow.js architecture

TensorFlow.js is designed to run in-browser and server-side,
as shown in Figure 1. When running inside the browser, it
utilizes the GPU of the device via WebGL to enable fast
parallelized floating point computation. In Node.js, Ten-
sorFlow.js binds to the TensorFlow C library, enabling full
access to TensorFlow. TensorFlow.js also provides a slower
CPU implementation as a fallback (omitted in the figure
for simplicity), implemented in plain JS. This fallback can
run in any execution environment and is automatically used
when the environment has no access to WebGL or the Ten-
sorFlow binary.

3.2 Layers API

Beginners and others who are not interested in the operation-
level details of their model might find the low-level oper-
ations API complex and error prone. The widely adopted
Keras library (Chollet et al., 2015), on the other hand, pro-
vides higher-level building blocks with emphasis on deep
learning. With its carefully thought out API, Keras is pop-
ular among deep learning beginners and applied ML prac-
titioners. At the heart of the API is the concept of a model
and layers. Users can build a model by assembling a set of
pre-defined layers, where each layer has reasonable default
parameters to reduce cognitive load.

For these reasons, TensorFlow.js provides the Layers API,
which mirrors the Keras API as closely as possible, in-
cluding the serialization format. This enables a two-way
door between Keras and TensorFlow.js; users can load a
pretrained Keras model (see Section 5.1) in TensorFlow.js,
modify it, serialize it, and load it back in Keras Python.

Listing 1 shows an example of training a model using the
Layers API.
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// A linear model with 1 dense layer.
const model = tf.sequential();
model.add(tf.layers.dense({
units: 1, inputShape: [1]

}));

// Specify the loss and the optimizer.
model.compile({
loss: ’meanSquaredError’,
optimizer: ’sgd’

});

// Generate synthetic data to train.
const xs =

tf.tensor2d([1, 2, 3, 4], [4, 1]);
const ys =

tf.tensor2d([1, 3, 5, 7], [4, 1]);

// Train the model using the data.
model.fit(xs, ys).then(() => {
// Do inference on an unseen data point
// and print the result.
const x = tf.tensor2d([5], [1, 1]);
model.predict(x).print();

});

Listing 1. An example TensorFlow.js program that shows how to
build a single-layer linear model with the layers API, train it with
synthetic data, and make a prediction on an unseen data point.

3.3 Operations and Kernels

As in TensorFlow, an operation represents an abstract com-
putation (e.g. matrix multiplication) that is independent of
the physical device it runs on. Operations call into kernels,
which are device-specific implementations of mathematical
functions which we go over in Section 4.

3.4 Backends

To support device-specific kernel implementations, Tensor-
Flow.js has a concept of a Backend. A backend implements
kernels as well as methods such as read() and write() which
are used to store the TypedArray that backs the tensor. Ten-
sors are decoupled from the data that backs them, so that
operations like reshape and clone are effectively free. This
is achieved by making shallow copies of tensors that point to
the same data container (the TypedArray). When a tensor is
disposed, we decrease the reference count to the underlying
data container and when there are no remaining references,
we dispose the data container itself.

3.5 Automatic differentiation

Since wide functionality was one of our primary design
goals, TensorFlow.js supports automatic differentiation, pro-
viding an API to train a model and to compute gradients.

The two most common styles of automatic differentiation

are graph-based and eager. Graph-based engines provide an
API to construct a computation graph, and execute it later.
When computing gradients, the engine statically analyzes
the graph to create an additional gradient computation graph.
This approach is better for performance and lends itself
easily to serialization.

Eager differentiation engines, on the other hand, take a dif-
ferent approach (Paszke et al., 2017; Abadi et al., 2016;
Maclaurin et al., 2015). In eager mode, the computation
happens immediately when an operation is called, making
it easier to inspect results by printing or using a debugger.
Another benefit is that all the functionality of the host lan-
guage is available while your model is executing; users can
use native if and while loops instead of specialized control
flow APIs that are hard to use and produce convoluted stack
traces.

Due to these advantages, eager-style differentiation engines,
like TensorFlow Eager (Shankar & Dobson, 2017) and Py-
Torch (Paszke et al., 2017), are rapidly gaining popularity.
Since an important part of our design goals is to prioritize
ease-of-use over performance, TensorFlow.js supports the
eager style of differentiation.

3.6 Asynchronous execution

JS runs in a single thread, shared with tasks like page lay-
out and event handling. This means that long-running JS
functions can cause page slowdowns or delays for handling
events. To mitigate this issue, JS users rely on event call-
backs and promises, essential components of the modern JS
language. A prominent example is Node.js which relies on
asynchronous I/O and event-driven programming, allowing
the development of high-performance, concurrent programs.

However, callbacks and asynchronous functions can lead
to complex code. In service of our design goal to provide
intuitive APIs, TensorFlow.js aims to balance the simplicity
of synchronous functions with the benefits of asynchronous
functions. For example, operations like tf.matMul() are pur-
posefully synchronous and return a tensor whose data might
not be computed yet. This allows users to write regular syn-
chronous code that is easy to debug. When the user needs to
retrieve the data that is backing a tensor, we provide an asyn-
chronous tensor.data() function which returns a promise that
resolves when the operation is finished. Therefore, the use
of asynchronous code can be localized to a single data() call.
Users also have the option to call tensor.dataSync(), which is
a blocking call. Figures 2 and 3 illustrate the timelines in the
browser when calling tensor.dataSync() and tensor.data()
respectively.
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Figure 2. The timeline of a synchronous and blocking ten-
sor.dataSync() in the browser. The main thread blocks until the
GPU is done executing the operations.

Figure 3. The timeline of an asynchronous call to data() in the
browser. The main thread is released while the GPU is executing
the operations and the data() promise resolves when the tensor is
ready and downloaded.

3.7 Memory management

JS provides automatic garbage collection. However, in the
browser WebGL memory is not automatically garbage col-
lected. Because of this, and the lack of finalization, we
expose an API for all backends to explicitly manage mem-
ory.

To dispose the memory allocated by a tensor, users can call
tensor.dispose(). This approach is relatively straightforward,
but the user has to have a reference to all tensor objects so
they can be disposed. Often models are written as chained
blocks of operations, so breaking up the chains for disposal
can be cumbersome. Since tensors are immutable and opera-
tions are functional, a single op call can allocate a significant
number of intermediate tensors. Forgetting to dispose these
intermediate tensor results in memory leaks and slows down
the application significantly.

TensorFlow.js offers an alternative approach. Since func-
tions are first-order citizens in JS, and a large portion of the
native JS API uses functions as arguments, we decided to
provide a scoping mechanism where the user can wrap any
synchronous function f by calling tf.tidy(() ⇒ f()). This
results in calling f immediately, and disposing all inter-
mediate tensors created inside once f finishes, except for
the return result of f . We use this mechanism extensively
in our library. Users of the Layers API do not need ex-
plicit memory management due to model-level APIs such
as model.fit(), model.predict() and model.evaluate() which
internally manage memory.

3.8 Debugging and profiling

TensorFlow.js provides a rich set of debugging tools to help
developers understand common problems with performance
and numerical stability, accessible either via a URL change
or a feature flag. Users can profile every kernel that gets
called, seeing the output shape, memory footprint, as well
as device-specific timing information. In this mode, every
tensor gets downloaded from the GPU and is checked for
NaNs, throwing an exception at the first line a NaN is in-
troduced, showing model developers which operation is the
source of the numerical instability.

TensorFlow.js also provides tf.time(f) for timing a function
that calls TensorFlow.js operations. When calling tf.time(f),
the function f will be executed and timed. Each backend is
responsible for timing functions, as timing may be device
specific. For example, the WebGL backend measures the
exact GPU time, excluding time for uploading and down-
loading the data.

A more generic API, tf.profile(f), similarly takes a function
f and returns an object representing the function’s effect
on memory. The object contains the number of newly allo-
cated tensors and bytes created by executing the function,
as well as the peak tensors and memory allocated inside the
function. Understanding peak memory usage is especially
important when running on devices with limited memory
such as mobile phones.

3.9 Performance

While performance was not the single most important goal,
it was critical in enabling real-world ML in JS. In the
browser, TensorFlow.js utilizes the GPU using the WebGL
API to parallelize computation. By using WebGL for nu-
merical computation, we were able to achieve 2 orders of
magnitude speedup, which is what fundamentally enabled
running real-world ML models in the browser. On the server-
side, TensorFlow.js binds directly to the TensorFlow C API,
which takes full advantage of native hardware acceleration.

Table 1 shows the speedups of these implementations rela-
tive to the plain JS CPU counterpart. We measure a single
inference of MobileNet v1 1.0 (Howard et al., 2017) with
an input image of size 224x224x3, averaged over 100 runs.
All measurements, other than those mentioning GTX 1080,
are measured on a MacBook Pro 2014 laptop, while the
GTX 1080 measurements are done on a desktop machine.
Note that the WebGL and the Node.js CPU backends are
two orders of magnitude faster than the plain JS backend,
while those utilizing the capable GTX 1080 graphics card
are three orders of magnitude faster.

Since the launch of TensorFlow.js, we have made signifi-
cant progress on improving our WebGL utilization. One
notable improvement is packing, where we store floating
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Backend Time (ms) Speedup
Plain JS 3426 1x
WebGL (Intel Iris Pro) 49 71x
WebGL (GTX 1080) 10 342x
Node.js CPU w/ AVX2 87 39x
Node.js CUDA (GTX 1080) 3 1105x

Table 1. Speedups of the WebGL and Node.js backends over the
plain JS implementation. The time shows a single inference of
MobileNet v1 1.0 (Howard et al., 2017), averaged over 100 runs.

point values in all 4 channels of a texel (instead of using
only 1 channel). Packing resulted in 1.3-1.4x speedup of
models such as PoseNet (Oved, 2018) across both mobile
and desktop devices.

While we will continue to work on our WebGL implemen-
tation, we observed a 3-10x gap in performance between
WebGL and CUDA (see WebGL GTX 1080 vs CUDA GTX
1080 in Table 1). We believe the gap to be due to WebGL’s
lack of work groups and shared memory access, which are
available in general-purpose computing (GPGPU) frame-
works like CUDA (Nickolls et al., 2008) and OpenGL Com-
pute shaders (Shreiner et al., 2013). As we discuss below in
Section 4.3, we believe that the upcoming WebGPU (Jack-
son, 2017) standard is a promising avenue for bridging the
gap in performance.

4 IMPLEMENTATION

This section describes the specific constraints and imple-
mentations of the various backends that are supported by
TensorFlow.js.

4.1 Browser and WebGL

With the advent of deep learning and scientific comput-
ing in general, and advances in modern GPU architectures,
the use of GPGPU has grown tremendously. While mod-
ern JS virtual machines can optimize plain JS extensively,
its performance is far below the computational power that
GPUs provide (see Table 1). In order to utilize the GPU,
TensorFlow.js uses WebGL, a cross-platform web standard
providing low-level 3D graphics APIs. Unlike OpenCL and
CUDA, the WebGL API is based on OpenGL ES specifica-
tion (Shreiner et al., 2013) which has no explicit support for
GPGPU.

Among the three TensorFlow.js backends, the WebGL back-
end has the highest complexity. This complexity is justified
by the fact that it is two orders of magnitude faster than
our CPU backend written in plain JS. The realization that
WebGL can be re-purposed for numerical computation is
what fundamentally enabled running real-world ML models

in the browser.

To work around the limitations and the complexities of We-
bGL, we wrote a layer of abstraction called the GPGPUCon-
text which executes WebGL fragment shaders representing
computation. In a graphics program, fragment shaders are
typically used to generate the colors for the pixels to be
rendered on the screen. Fragment shaders run for each pixel
independently and in parallel; TensorFlow.js takes advan-
tage of this parallelization to accelerate ML computation.

In the WebGL backend, the draw pipeline is set up such
that the scene geometry represents a unit square. When
we execute a fragment shader program, we bind the texture
that backs the output tensor to the frame buffer and execute
the fragment shader program. This means that the fragment
shader main() function is executed in parallel for each output
value, as shown in 4. For simplicity, we only use the red
channel of the texture that backs the tensor (shown as ‘R’
in the figure). On WebGL 2.0 devices, we use the gl.R32F
texture type which allows us to avoid allocating memory for
the green, blue, and alpha channels (shown as ‘G’, ‘B’, and
‘A’ respectively). In future work, TensorFlow.js will take
advantage of all channels for WebGL 1.0 devices, which
will better utilize the GPU’s sampler cache.

Figure 4. The addition of two equally shaped matrices as executed
by the WebGL backend, and the GLSL code of the fragment shader
that represents the element wise addition computation. The GLSL
function, main(), runs in the context of each output value and in
parallel, with no shared memory.

Writing OpenGL Shading Language (GLSL) code can be
error prone and difficult. To make it significantly easier
to write and debug GPGPU programs, we wrote a shader
compiler. The shader compiler provides high-level GLSL
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functions that the shader author can call. Listing 2 shows
the GLSL source code for matrix multiplication where the
shared dimensionN is assumed to be a multiple of 4 for sim-
plicity. The functions marked with bolded font are provided
by our shader compiler.

Using the higher level functions generated by the shader
compiler has multiple benefits. First, the user-defined
GLSL code operates in high-dimensional ‘logical’ space
instead of the physical 2D texture space. For example, the
GLSL implementation of tf.conv2d() uses the auto-generated
getA(batch, row, column, depth) method to sample from a
4D tensor. This makes the user code simpler, more readable
and less error-prone.

Second, the separation of logical and physical shape allows
the framework to make intelligent decisions about mem-
ory layout, avoiding device-specific size limits of WebGL
textures.

Third, we can optimize the mapping from high-dimensional
space to the 2D space. For example, assume the logical
shape of tensor A is 4D with shape 1x3x1x2. When A gets
uploaded to the GPU, the backend will allocate a physical
3x2 texture and the compiler will generate a getA(a, b, c, d)
method whose implementation ignores a and c and directly
maps b and d into the 2D texture space. We observed that
this optimization leads to 1.3x speedup on average.

Last, there is a single GLSL implementation of tf.matMul()
regardless of the browser’s WebGL capabilities. In Chrome
we render to a 32bit single-channel floating texture, while in
iOS Safari we render to a 16bit single-channel floating point
texture. In both cases, the user code is the same, using the
high-level setOutput(value) GLSL method with the browser-
specific implementation generated by the compiler.

void main() {
ivec2 coords = getOutputCoords();
int aRow = coords.x;
int bCol = coords.y;
float result = 0.0;
for (int i=0; i <${N}; i+=4) {

vec4 a = vec4(
getA(aRow, i), getA(aRow, i+1),
getA(aRow, i+2), getA(aRow, i+3));

vec4 b = vec4(
getB(i, bCol), getB(i+1, bCol),
getB(i+2, bCol), getB(i+3, bCol));

result += dot(a, b);
}
setOutput(result);

}

Listing 2. GLSL code for matrix multiplication using the higher-
level utility functions marked in bold font.

4.1.1 Asynchronous execution

With WebGL, programs get scheduled by the CPU and run
on the GPU, which is a separate thread from the main JS
thread. This means that while programs are running on the
GPU, the CPU is free to respond to events and run other JS
code.

When the user calls an operation, we enqueue a program
onto the GPU command queue, which typically takes sub-
millisecond time, and immediately return a handle to the re-
sulting tensor despite the computation not being done. Users
can later retrieve the actual data by calling tensor.dataSync()
or tensor.data(), which returns a TypedArray.

As mentioned in Section 3.6, we encourage the use of the
asynchronous tensor.data() method, which avoids blocking
the main thread, and returns a promise that resolves when the
computation is done (see Figures 2 and 3). However, to re-
trieve the underlying data of a texture, the WebGL API only
provides a blocking gl.readPixels() method. To get around
this limitation, we approximate when the GPU is done exe-
cuting the operations, postponing the call to gl.readPixels(),
which releases the main thread in the meantime.

Approximating when the GPU has finished executing pro-
grams can be done in a couple of ways. The first approach
taken in TensorFlow.js, for WebGL 1.0 devices, uses the
EXT disjoint timer query WebGL extension. This exten-
sion can be used to accurately measure the GPU time of
programs, but also implicitly has a bit that gets flipped when
a program is done executing. The second approach, for We-
bGL 2.0 devices, uses the gl.fenceSync() API by inserting a
‘fence’ into the GPU command queue and polling a query
which returns true when the fence has flipped.

4.1.2 Memory management

Disposing and re-allocating WebGL textures is relatively
expensive, so we don’t release memory when a tensor gets
disposed. Instead, we mark the texture for reuse. If another
tensor gets allocated with the same physical texture shape,
we simply recycle the texture. The texture recycler gives us
significant performance wins since multiple passes through
the same ML model often generate tensors of the same
shapes.

One of the common problems with manual memory man-
agement is memory leaks, where a program with a loop
creates one or more tensors during each tick that never get
disposed. This will eventually cause the application to run
out of memory and crash. Since one of our primary design
principles is easy-of-use over performance, we provide built-
in heuristics to avoid crashing the application. Specifically,
we automatically page WebGL textures to the CPU when
the total amount of GPU memory allocated exceeds a thresh-
old which can be estimated from the screen size. At the



TensorFlow.js: Machine Learning for the Web and Beyond

same time, the paging logic will not take effect for users that
explicitly manage memory using tf.tidy() or tensor.dispose().

4.1.3 Device support

While WebGL is a slow-evolving web standard, it has ubiq-
uitous support. TensorFlow.js can run on desktop, tablet and
mobile devices. The WebGL backend requires a WebGL
1.0 compatible device that supports the OES texture float
extension which enables uploading and reading from float-
ing point textures. According to WebGLStats.com (we-
bglstats.com, 2018), a website that tracks the WebGL ca-
pabilities of devices and their market share on the web,
TensorFlow.js can run on 99% of desktop devices, 98% of
iOS and Windows mobile devices, and 52% of Android
devices. We believe that the reason for the significant An-
droid discrepancy is due to a large number of older Android
devices that have no GPU hardware, and that this gap will
gradually close as users migrate to newer Android devices.

While WebGL has wide support on different platforms, not
all browsers have the exact same implementation of the
WebGL specification. This leads to problems with the nu-
merical stability of the library. For example, on iOS devices,
the WebGL API is explicit about the lack of 32bit float
support, reverting to 16bit floats, which is aligned with the
underlying capability of mobile GPUs. On the other hand,
mobile Chrome hides that detail by allowing developers to
upload and write in 32bit float regardless of the underly-
ing precision. This led to numerical precision problems on
Android devices: log(x + ε) resulted in log(x + 0) since
the default ε = 1× 10−8 was not representable in 16bit
float and implicitly rounded to 0. To solve this problem, we
adjust the global ε value according to the device capabilities.

4.2 Node.js

With the advent of Node.js and event-driven programming,
the use of JS in server-side applications has been steadily
growing (Tilkov & Vinoski, 2010). While the browser as an
execution platform has significant limitations, server-side
JS has full access to the filesystem, native operating system
kernels, and existing C and C++ libraries.

To support the use-case of server-side ML in JS, we provide
a Node.js backend that binds to the official TensorFlow C
API using the N-API (Nodejs.org, 2017). While the internal
backend has a different implementation than the WebGL
backend, they share the same user-facing API, enabling full
portability between the server and the web browser.

The Node.js backend has distinct advantages. Since Node.js
and Google’s V8 JS engine exposes finalization APIs, it
eliminates the need for manual memory management, re-
ducing the cognitive overhead for our users. Binding to the
TensorFlow C library means full advantage of the flexibil-

ity and performance of TensorFlow. Under the hood, we
utilize hardware acceleration both on the CPU, with AVX
instructions, and the GPU with the CUDA and CuDNN li-
braries (Nickolls et al., 2008). Binding to the TensorFlow
C API means that TensorFlow.js will support TPUs (Tensor
Processing Units) in a future release of the Node.js binding.

4.3 Future backends

Two new web standards, WebAssembly and WebGPU, have
potential to improve TensorFlow.js performance.

WebAssembly is a binary instruction format for the web,
designed as a potential target for compilation of languages
like C and C++. At present, WebAssembly is enabled in
most major browsers. By shipping lower-level instructions,
WebAssembly compiled from C can see performance gains
over vanilla JS. Moreover, WebAssembly will allow writing
SIMD code in C, which speeds up linear algebra by comput-
ing dot products of vectors in a single instruction. Currently,
WebAssembly does not support SIMD.

WebGPU is the working name for a future web standard
and JS API for accelerated graphics and compute. WebGPU
provides a more generic way to express parallelizable com-
putation on the GPU, which would allow us to write more
optimized linear algebra kernels than the ones with the We-
bGL backend.

5 ECOSYSTEM INTEGRATION

This section describes how TensorFlow.js fits into the
broader TensorFlow ecosystem.

5.1 Model Converter

There is a plethora of pre-trained, open-sourced models,
developed in TensorFlow, that are targeted for edge devices.
TensorFlow.js offers a model converter that can load and
execute pre-trained TensorFlow SavedModels and Keras
models, allowing these models to be available in JS.

To port an existing model to TensorFlow.js, the user runs a
Python script that converts the existing format to the Tensor-
Flow.js web format. TensorFlow.js optimizes the model by
pruning unnecessary operations (e.g. training operations)
and packs weights into 4MB files, optimizing for browser
auto-caching. The user can also quantize the weights, re-
ducing the model size by 4X. After the conversion, in the
JS application the user can call tf.loadModel(url) to load the
model, providing a URL where the web files are hosted.

5.2 Models repo

One of the major benefits of the JS ecosystem is the ease
at which JS code and static resources can be shared. Ten-
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sorFlow.js takes advantage of this by hosting an official
repository of useful pretrained models, serving the weights
on a publicly available Google Cloud Storage bucket. This
makes it easy for beginners to integrate these models into
their existing applications.

Furthermore, to address our core goal of enabling ML be-
ginners, we provide wrapper APIs that hide tensors from the
user. The model prediction methods always take native JS
objects like DOM elements or primitive arrays and return JS
objects that represent human-friendly predictions. Listing 3
shows an example application using PoseNet (Oved, 2018),
a model hosted in the repository that computes human pose
estimations from an image. Note that the user does not need
to use tf.Tensor to use the PoseNet model.

One of our core design principles is not to sacrifice func-
tionality for simplicity. For these reasons, we expose APIs
to work with tensors for expert users. For these users, these
models can be used in a transfer learning setting, enabling
personalized applications with on-device training with rela-
tively little user data.

const imageElement =
document.getElementById(’person’);

// Estimate a single pose from the image.
posenet.estimateSinglePose(imageElement)

.then(pose => console.log(pose));

Console output:
{
"score": 0.32,
"keypoints": [

{
"position": {"x": 253.37, "y": 76.29},
"part": "nose",
"score": 0.99

},
...

]
}

Listing 3. An example showing the PoseNet API which allows
passing an HTMLImageElement to the pose estimate method and
returns a JS object with the predictions.

6 EXAMPLES AND USAGE

Since launching TensorFlow.js publicly in March 2018, we
have seen excitement about TensorFlow.js in a few different
domains which we outline in this section.

6.1 Education and Learning

The in-browser implementation of TensorFlow makes it
easy to get started with (Anonymous, 2018). Educators can
deploy interactive lessons to students without the additional
burden of software installation. One early success we saw

with TensorFlow.js in the educational deep learning space
was Teachable Machine (Google, 2017), an application that
allows visitors to build their own image classifier directly in
the browser using their webcam, no coding required. The
site saw over 450,000 unique visits, and the GitHub code
has over 3000 stars. Another successful education applica-
tion is GAN Lab (Kahng et al., 2018) 1, a tool that enables
interactive visual exploration of Generative Adversarial Net-
works (GANs). Targeted towards non-experts, it helps users
develop a greater intuitive sense of how GANs work during
training and inference.

TensorFlow.js extends the deep learning ecosystem to the
JS communities that are unfamiliar with Python and C. Dan
Shiffman, at NYUs Interactive Telecommunications Pro-
gram, has made both an online video course on ML with JS,
and a JS ML library called ML5 (ml5js.org, 2018), built on
top of TensorFlow.js. ML5 aims to provide ‘friendly ML for
the web’ and is geared towards artists, creative coders and
students, empowering them to innovate in new ways. The
ML5 team identified installation issues as the first barrier
that beginners face when trying to approach ML (Shiffman,
2018) and built upon TensorFlow.js to overcome that barrier.

The Deep Learning Practicum at MIT (Abelson & Lao,
2018) is another example of the value of TensorFlow.js in
an educational setting. This course provides undergraduate
students with hands-on experience building deep learning
models in JS while they learn the theory and concepts behind
the algorithms they are working with.

We also see a great deal of self-directed learning and explo-
ration using TensorFlow.js. Many people who had a passing
interest in ML, but found it difficult to access, use Tensor-
Flow.js as an opportunity to learn about the new technology
with fewer barriers to entry. This includes people building
simple demos and training their own object recognizers, to
those exploring cutting edge topics such as NeuroEvolution
(Thebe, 2018) and Reinforcement Learning (Neveu, 2018).
These demos were built by the authors to develop their ML
skills and also to allow others to easily experiment without
the infrastructure typically associated with these types of
algorithms. These use cases demonstrate a trade-off be-
tween accessibility and performance where a bias towards
accessibility is acceptable and even embraced. Many more
examples of this type of application have been built and are
accessible through our community project gallery 2: Simple
MNIST GAN (Chang, 2018), Emotion Extractor (Sudol,
2018), Next Word Predictor (Malviya, 2018) and more.

1https://poloclub.github.io/ganlab/
2https://github.com/tensorflow/tfjs/blob/master/GALLERY.md
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6.2 Gestural Interfaces

Real time applications that make use of gestural inputs with
the webcam is another area where TensorFlow.js has seen
promising results. TensorFlow.js users have built applica-
tions that enable sign language to speech translation (Singh,
2018), enable individuals with limited motor ability control
a web browser with their face (Ramos, 2018), and perform
real-time facial recognition and pose-detection (Friedhoff &
Alvarado, 2018). Each of these examples is powered by a
pre-trained image model, usually MobileNet (Howard et al.,
2017), that is fine-tuned for the project, or expose interactive
fine-tuning interfaces to the end user.

6.3 Research Dissemination

TensorFlow.js has also enabled ML researchers to make their
algorithms more accessible to others. For example, the Ma-
genta.js (Roberts et al., 2018) library provides in-browser ac-
cess to generative music models developed by the Magenta
team and ported to the web with TensorFlow.js. Magenta.js
has increased the visibility of their work with their target
audience, namely musicians. This has unleashed a wide
variety of ML powered music apps built by the community
such as Latent Cycles (Parviainen, 2018a) and Neural Drum
Machine (Parviainen, 2018b). These and more examples
can be found at https://magenta.tensorflow.org/demos.

We have also seen TensorFlow.js used to power interac-
tive client-side ML in web-based scholarly articles (Ha &
Schmidhuber, 2018) (Carter & Nielsen, 2017), offering a
richer communication medium where dynamic behaviour of
models can be demonstrated in real time and manipulated
by the reader.

6.4 Numeric Applications

Another category of applications that TensorFlow.js enables
is GPU accelerated tools for numerical computation. An
example is tfjs-tsne (Pezzotti et al., 2018), a novel linear
time approximation of the t-SNE algorithm that runs in the
browser. TensorFlow.js’s GPU acceleration primitives make
it practical to run it interactively in the browser for datasets
of tens of thousands of points.

6.5 Desktop and Production Applications

An emerging area where JS has been applied is in desktop
and production applications, demonstrating the wide reach
of the JS ecosystem.

Node Clinic is an open source Node.js performance profil-
ing tool that recently integrated a TensorFlow.js model to
separate CPU usage spikes caused by the user from those
caused by Node.js internals (e.g. garbage collection) (Near-
form.com, 2018).

Mood.gg Desktop (Farza, 2018), created by a student, is a
desktop application powered by Electron, a popular frame-
work for writing cross-platform desktop apps in JS. It uses
a TensorFlow.js model trained to detect which character
the user is playing in a popular team based game called
Overwatch, by looking at the user’s screen. This is used
to play a custom soundtrack from a music streaming site,
Mood.gg, that matches the music to the playing style of
the in-game character (e.g. ‘death metal’ for the character
called ‘Reaper’). The character prediction from the pixels
of the screen happens entirely client-side, preserving the
privacy of the player and highlighting a key advantage of
client-side ML. The author reports that over 500,000 people
use the site.

7 CONCLUSION AND FUTURE WORK

TensorFlow.js is a high-performance deep learning toolkit
in JS that runs both on the client and the server. It is an
accessible on-ramp for deep learning to a community that
often focuses on the end user. As such, TensorFlow.js has
the potential to greatly broaden the set of people who can
take advantage of modern ML techniques. We have already
seen a rich variety of applications of TensorFlow.js.

A key technical contribution of TensorFlow.js is the set of
techniques used to repurpose the web platform’s graphics
APIs for high-performance numeric computing while main-
taining compatibility with a large number of devices and
execution environments.

We believe there are a number of opportunities to extend and
enhance TensorFlow.js. Given the rapid progress of browser
development, it seems likely that additional GPU program-
ming models may become available. In particular, we see
conversations by browser vendors to implement general pur-
pose GPU programming APIs (Apple, 2017) (W3C, 2017)
that will make these kinds of toolkits more performant and
easier to maintain.

Future work will focus on improving performance, contin-
ued progress on device compatibility (particularly mobile
devices), and increasing parity with the Python TensorFlow
implementation. We also see a need to provide support for
full machine learning workflows, including data input, out-
put, and transformation. More generally, we see a broad
opportunity for contributing to the burgeoning JS data sci-
ence ecosystem (Davis, 2018), with the goal of decreasing
the difficulty of ML development, increasing participation in
the ML community, and allowing new types of applications.
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