
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

A CONSTRAINTS IN THE DATA SCHEMA

message Feature {
...

// Limits the distribution drift between training
// and serving data.
FeatureComparator skew_comparator;

// Limits the distribution drift between two
// consecutive batches of data.
FeatureComparator drift_comparator;

}

Figure 8. Extensions to the Feature message of Schema to
check for distribution drifts.

We explain some of these feature level characteristics below
using an instance of the schema shown in Figure 3:

Feature type: One of the key invariants of a feature
is its data type. For example, a change in the data
type from integer to string can easily cause the trainer
to fail and is therefore considered a serious anomaly.
Our schema allows specification of feature types as INT,
FLOAT, and BYTES, which are the allowed types in the
tf.train.Example (tfe) format. In Figure 3, the fea-
ture “event” is marked as of type BYTES. Note that fea-
tures may have richer semantic types, which we capture in
a different part of the schema (explained later).

Feature presence: While some features are expected to
be present in all examples, others may only be expected
in a fraction of the examples. The FeaturePresence
field can be used to specify this expectation of presence.
It allows specification of a lower limit on the fraction
of examples that the feature must be present. For in-
stance, the property presence: {min fraction:
1} for the “event” feature in Figure 3 indicates that this
feature is expected to be present in all examples.

Feature value count: Features can be single valued or lists.
Furthermore, for features that are lists, they may or may
not all be of the same length. These value counts are
important to determine how the values can be encoded into
the low-level tensor representation. The ValueCount
field in the schema can be used to express such properties.
In the example in Figure 3, the feature “event” is indicated
to be a scalar as expressed using the min and max values
set to 1.

Feature domains: While some features may not have a re-
stricted domain (for example, a feature for “user queries”),
many features assume values only from a limited domain.
Furthermore, there may be related features that assume
values from the same domain. For instance, it makes sense
for two features like “apps installed” and “apps used” to
be drawn from the same set of values. Our schema allows
specification of domains both at the level of individual
features as well as at the level of the schema. The named

domains at the level of schema can be shared by all rele-
vant features. Currently, our schema only supports shared
domains for features with string domains.

A domain can also encode the semantic type of the data,
which can be different than the raw type captured by the
TYPE field. For instance, a bytes features may use the val-
ues “TRUE” or “FALSE” to essentially encode a boolean
feature. Another example is an integer feature encoding
categorical ids (e.g., enum values). Yet another example is
a bytes feature that encodes numbers (e.g., values of the
sort “123”). These patterns are fairly common in produc-
tion and reflect common practices in translating structured
data into the flat tf.train.Example format. These
semantic properties are important for both data validation
and understanding, and so we allow them to be marked
explicitly in the domain construct of each feature.

Feature life cycle: The feature set used in a machine
learning pipeline keeps evolving. For instance, ini-
tially a feature may be introduced only for experimen-
tation. After sufficient trials, it may be promoted to a
beta stage before finally getting upgraded to be a pro-
duction feature. The gravity of anomalies in the fea-
tures at different stages is different. Our schema al-
lows tagging of features with the stage of life cycle that
they are currently in. The current set of stages sup-
ported are UNKNOWN_STAGE, PLANNED, ALPHA, BETA,
PRODUCTION, DEPRECATED, and DEBUG_ONLY

Figure 2 only shows only a fragment of the constraints that
can be expressed by our schema. For instance, our schema
can encode how groups of features can encode logical se-
quences (e.g., the sequence of queries issued by a user where
each query can be described with a set of features), or can
express constraints on the distribution of values over the
feature’s domain. We will cover some of these extensions
in Section 4, but we omit a full presentation of the schema
in the interest of space.

B ADDITIONAL CASE STUDIES

Product B This product employs ML to optimize the col-
lection of customer feedback within apps. The team set
up a pipeline for end-to-end ML training and serving and
was able to diagnose several data errors: (a) serving data
had more features than the training data, (b) one feature
had unexpected string values over a large percentage of the
examples in training, and (c) another feature had values
that were present in the serving data, but never in the train-
ing data. The first two anomalies pointed to bugs in the
data-generation code for serving and training, respectively.
However, the show-stopper was the last anomaly since it
resulted in significant training-serving skew that ultimately
affected model quality. By inspecting the offending feature

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

the team was able to diagnose that the string feature was
taking lower-case values in the serving data and camel-case
values in the training data. This is a typical bug that results
from having separate code paths for training- and serving-
data generation. The fix was again easy (the team added
a lower-casing transform during training) and resulted in a
measurable improvement in model quality.

Product C This product generates lists that are “similar”
to a remarketing seed list in the hope of reaching out to
the most relevant audience outside of the seed list. The
team was migrating their machine learning infrastructure
from one machine learning platform to another. During
this migration, validation detected that a significant fraction
of training data had missing features, which prompted the
team to investigate further and discover a bug in the data
generation pipeline.

14


