
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

OPTIMIZING DNN COMPUTATION WITH RELAXED GRAPH SUBSTITUTIONS

Anonymous Authors1

ABSTRACT
Existing deep learning frameworks optimize the computation graph of a DNN model by performing greedy rule-
based graph transformations, which generally only consider transformations that improve runtime performance.
As a result, complex graph optimizations that involve temporarily decreasing the runtime performance as an
intermediate step are not considered in existing frameworks.

To address this limitation, we propose relaxed graph substitutions that enable the exploration of complex graph
optimizations by relaxing the performance improvement constraint of existing systems. Relaxing this constraint
greatly increases the space of computation graphs that can be found by repeatedly applying substitution rules to
an input computation graph, ultimately including more efficient graphs in the search space. To effectively explore
this large search space, we introduce a backtracking search algorithm over a set of relaxed graph substitutions
to find optimized networks and use a flow-based graph split algorithm to recursively split a computation graph
into smaller subgraphs to allow efficient search. We implement MetaFlow, to the best of our knowledge, the
first relaxed graph substitution optimizer for DNNs and show that MetaFlow improves the inference and training
performance by up to 1.6× and 1.2× respectively over existing deep learning frameworks.

1 INTRODUCTION

Deep neural networks (DNNs) have driven advances
in many practical problems, such as image classifica-
tion (Krizhevsky et al., 2012; He et al., 2016), machine
translation (Wu et al., 2016; Bahdanau et al., 2014), and
game playing (Silver et al., 2016). Over time, state-of-
the-art DNNs have gotten substantially larger and deeper,
resulting in greatly increased computational requirements.

To mitigate the increasing computational requirements it
is standard to optimize the DNN computation, which is
defined by a computation graph of mathematical operators
(e.g., matrix multiplication, convolution, etc). Existing deep
learning systems such as TensorFlow, PyTorch, and TVM
optimize an input computation graph by performing greedy
rule-based substitutions on the graph (Abadi et al. (2016);
pyt (2017); Chen et al. (2018)). Each substitution replaces a
subgraph satisfying a specific pattern with a new subgraph
that computes the same result. For example, operator fusion
combines a few operators into a single operator, which can
eliminate intermediate results and increases the granularity
of the operators, thereby reducing system overheads.

Existing deep learning optimizers only consider perfor-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Systems and Machine
Learning (SysML) Conference. Do not distribute.

mance improving substitutions, which they greedily apply
to an input computation graph until no further substitutions
can be applied. More involved sequences of transformations
where not all intermediate states are strict improvements
are not considered. Unfortunately, this means that current
optimizers miss many more complex optimization oppor-
tunities. Instead, we show that exploring a larger space of
substitutions can improve the performance of widely used
DNNs by up to 1.6× over existing rule-based optimizers.

In this paper, we propose relaxed graph substitutions with
a cost-based backtracking search to address this limitation.
We increase the space of computation graphs considered
by relaxing the performance constraint of existing systems
and allowing substitutions that may decrease runtime perfor-
mance in addition to using the widely used performance im-
proving substitutions. Although seemingly counter-intuitive,
we observe that these “downgrading” graph substitutions are
useful as intermediate steps in transforming graph architec-
tures and discovering new graphs with significantly better
runtime performance. To efficiently explore this larger space
of computation graphs, we introduce a backtracking search
over a set of relaxed graph substitutions to find improved
networks after multiple transformation steps.

As a motivating example, we show how we can optimize a
real DNN using relaxed graph substitutions. Figure 1 shows
a sequence of relaxed graph substitutions on a ResNet mod-
ule (He et al., 2016). The leftmost graph shows an optimized
graph after greedy operator fusions, which combine a convo-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Optimizing DNN Computation with Relaxed Graph Substitutions

conv3x3x256	
+	relu	

conv1x1x256	
+	relu	

input	

conv3x3x256	

add	

relu	

conv3x3x256	
+	relu	

conv3x3x256	
+	relu	

input	

conv3x3x256	

add	

relu	

input	

conv3x3x512	
+	relu	

conv3x3x256	

add	

relu	

split	

input	

conv3x3x512	
+	relu	

conv3x3x256	

relu	

input	

conv3x3x512	
+	relu	

conv3x3x256	
+	relu	

enlarge	
	conv	kernel	

fuse	conv	
ops	

fuse	conv	
and	add	 fuse	conv	

and	relu	

Figure 1. A sequence of relaxed graph substitutions on a ResNet module (He et al., 2016). Each arrow is a graph substitution, and the
dotted subgraphs in the same color indicate the source and target graph of a substitution. “conv axbxc” indicates a convolution with kernel
size a× b and c output channels. The final graph (right-most) is 1.5x faster than the original graph (left-most) on a NVIDIA P100 GPU.

lution and a following activation (i.e., relu) to a “convolution
with activation”. However, by adaptively applying relaxed
graph substitutions (shown as the arrows in the figure), it
is possible to generate a final graph (rightmost) that is 1.5x
faster than the original graph (leftmost) on a NVIDIA P100
GPU. Note that the first graph substitution increases a con-
volution’s kernel size from 1x1 to 3x3 by padding the kernel
with extra 0’s. This temporarily downgrades runtime per-
formance (since a convolution with a larger kernel runs
slower) but enables potential graph substitutions to further
improve runtime performance. Section 3 describes other
graph substitutions in Figure 1 in detail.

Adding relaxed graph substitutions to existing systems and
applying them greedily could easily result in degraded per-
formance. For example, the enlarge operator substitution
in Figure 1 will likely degrade performance if the resulting
convolution cannot be fused with another operator. While
one could attempt to address this by adding special case
rules and heuristics to an existing system, we believe such
an approach would be error prone and brittle in the face of
new architectures and new substitution rules. Instead we
used a cost-based backtracking search to effectively explore
the large space of computation graphs generated by applying
relaxed graph substitutions.

First we introduce a cost model that incorporates multiple
cost dimensions (e.g., FLOPs, execution time, memory us-
age, etc) and can accurately estimate the performance of
different computation graphs. The cost model allows us to
quickly compare different graphs.

Second, we propose a backtracking search algorithm that
quickly finds efficient solutions for small graphs. However,
the computation graphs of state-of-the-art DNNs are too
large to efficiently search directly. Therefore, we use a flow-

based recursive graph split algorithm that splits an original
computation graph into individual subgraphs with reason-
able sizes. The graph is split in a way that minimizes the
number of graph substitutions spanning different subgraphs
and is computed by solving a max-flow problem (Cormen
et al., 2009). These subgraphs are optimized by the back-
tracking search and then stitched back together to form the
final optimized graph.

We design, implement, and evaluate MetaFlow, to the best
of our knowledge, the first relaxed graph substitution opti-
mizer for DNNs. In addition to automatically generating
high-performance computation graphs for generic DNN
models, MetaFlow is also a framework-oblivious optimizer.
We show that existing deep learning frameworks such as
TensorFlow and TensorRT can directly use MetaFlow’s op-
timized graphs, which improve the inference and training
performance by up to 1.3× and 1.2×, respectively.

We evaluate MetaFlow on five real-world DNNs, including
Inception-v3 (Szegedy et al., 2016), SqueezeNet (Iandola
et al., 2016), ResNet-34 (He et al., 2016) for image classi-
fication, RNN Text Classification (Kim, 2014), and Neural
Machine Translation (Wu et al., 2016). MetaFlow is able
to optimize each of these DNNs in under 5 minutes We
show that MetaFlow outperforms existing deep learning
frameworks with speedups ranging from 1.1× to 1.6×. The
performance improvement is achieved by discovering effi-
cient computation graphs that decrease the overall memory
usage by up to 1.7× and the total number of kernel launches
by up to 3.7×.

To summarize, our contributions are:

• We introduce relaxed graph substitutions, which en-
ables the exploration of complex graph optimizations

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Optimizing DNN Computation with Relaxed Graph Substitutions

BatchNorm	

Convolution	

FullyConnected	

Softmax	

Prediction	
(output)	

Inference	Data	
(input)	

(a) Inference

Softmax	

Training	Labels	
(input)	

Training	Samples	
(input)	

Softmax	
(Backward)	

Derivatives	
(output)	

Derivatives	
(output)	

Derivatives	
(output)	FullyConnected	

BatchNorm	

Convolution	 Convolution	
(Backward)	

BatchNorm	
(Backward)	

FullyConnected	
(Backward)	

(b) Training

Figure 2. The inference and training graphs of an 4-layer example
CNN model. Dotted edges are the inputs and outputs of each
computation graph.

that are missing in existing deep learning frameworks.

• We propose a cost-based search algorithm that uses a
max-flow algorithm to recursively split a large compu-
tation graph into smaller subgraphs, and uses a back-
tracking search algorithm to optimize individual sub-
graphs.

• We implement MetaFlow, the first relaxed graph sub-
stitution optimizer for DNNs. We show that MetaFlow
can increase the inference and training performance
by up to 1.6× and 1.2× over existing deep learning
frameworks.

2 OVERVIEW

Similar to existing deep learning systems (Abadi et al., 2016;
Chen et al., 2018; pyt, 2017), MetaFlow uses a computation
graph G to define computation and state in a DNN model.
Each node is a mathematical operator (e.g., matrix multi-
plication, convlution, etc), and each edge is a tensor (i.e.,
a n-dimensional array) between two operators. MetaFlow
labels the inputs I and outputs O of a computation graph
and defines computation in a DNN model as O = G(I).

We define two computation graphs G and G′ to be equiva-
lent if G and G′ compute mathematically equivalent outputs
for any inputs (i.e., G(I) = G′(I)). For a given computa-
tion graph G, MetaFlow automatically finds an equivalent
computation graph G′ with optimized runtime performance.

For a DNN model, the inference and training procedures
are defined by different computation graphs, as shown in
Figure 2. An inference graph includes a single input and
one or more outputs, while a training graph generally has
two inputs (i.e., training samples and labels) and multiple

Input Comp.
Graph

Independent
Subgraphs

Flow-based
Graph Split

Optimized
Subgraphs

Optimized
Comp. Graph

Search-based
Graph Subst.

Final Graph
Generation

Figure 3. MetaFlow Overview.

outputs (i.e., derivatives for trainable parameters in each
operator). MetaFlow merely treats inference and training
as different input graphs to optimize and uses the same
techniques to optimize both graphs.

The main components of MetaFlow are shown in Figure 3.
MetaFlow first divides an input computation graph into
smaller individual subgraphs by using a flow-based recur-
sive graph split algorithm. After that, each subgraph is opti-
mized by performing a backtracking search on the search
space defined by repeated application of relaxed graph sub-
stitutions to the subgraph. Finally, MetaFlow generates
an optimized computation graph of the input graph by us-
ing the optimized subgraphs as building blocks. MetaFlow
also serves as a framework-independent optimizer: an opti-
mized computation graph can be executed on various deep
learning runtimes, including the MetaFlow runtime, Tensor-
Flow (Abadi et al., 2016), and TensorRT (trt, 2017).

3 RELAXED GRAPH SUBSTITUTIONS

This section introduces relaxed graph substitutions, each of
which consists of a source graph that can map to particular
subgraphs in a DNN and a target graph that defines how to
create a new subgraph to replace a mapped subgraph.

Source graph. The source graph describes which sub-
graphs are valid candidates for this substitution. Each node
in a source graph is associated with a type and can only be
mapped to an operator of the same type. A source graph
can also include wildcard nodes that can be mapped to any
single operator. The wildcard nodes are useful when the
type of an operator does not affect the substitution procedure
and allow us to use a single source graph to describe many
substitution scenarios. In addition to the type constraints, a
graph substitution also defines additional constraints on one
or multiple operators to further restrict mapping. Figure 4a
shows a substitution to fuse two convolutions, which defines
constraints on conv1 and conv2 to check they have the
same kernel size, stride, and padding.

Edges in a source graph describe data dependencies between
operators. A graph substitution requires the mapped sub-
graph to have the same data dependencies as the source

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Optimizing DNN Computation with Relaxed Graph Substitutions

op1	

conv1	 conv2	

op2	

conv3	

split	

#	Constraints	on	the	source	graph:	
conv1.kernel	==	conv2.kernel		
conv1.stride	==	conv2.stride	
conv1.padding	==	conv2.padding	

Source Graph Target Graph

#	Construct	the	target	graph:	
op2._	=	op1._	
conv3._	=	conv1._	
conv3.outChannels	=	conv1.outChannels	+	conv2.outChannels	
conv3.weights	=	concat(conv1.weights,	conv2.weights)	
split.sizes	=	[conv1.outChannels,	conv2.outChannels]	

couv2.out	

op1.out	

couv1.out	

(a) Fuse two convolutions.

split	

conv1	
conv2	

add	

#	Constraints	on	the	source	graph:	
conv1.stride	==	(1,	1)	

#	Construct	the	target	graph:	
conv2.inChannels	=	conv1.inChannels	+	conv1.outChannels	
conv2.outChannels	=	conv1.outChannels	
#	I	is	an	identity	matrix	
conv2.weights	=	concat(conv1.weights,	I)	

add.out	
Source Graph Target Graph

(b) Fuse a convolution and an add.

Figure 4. The source and target graphs of the relaxed graph substi-
tutions used in Figure 1.

graph. Each operator can optionally have a hyper edge
(shown as dotted edges in Figure 4) that can map to zero,
one, or multiple edges connecting to external operators of
the source graph. A hyper edge indicates that the operator’s
output can be accessed by external operators and must be
preserved in the substitution.

Target graph. The target graph describes how to create
a new graph to substitute for the mapped subgraph. For
each newly created operator, a target graph defines how
to set parameters and compute weights of the operator by
using parameters and weights of the source graph. For each
hyper edge in the source graph, there is a corresponding
hyper edge in the target graph (shown as a pair of dotted
edges). Any external operator originally connecting to a
mapped operator in the source graph should now connect to
the corresponding operator in the target graph.

Correctness. We define a graph substitution to be valid if
its source and target graphs compute the same output for
each hyper edge. This definition is similar to our definition
of equivalent computation graphs if each hyper edge is con-
sidered as an output of the graph. It is easy to prove that
performing valid graph substitutions preserves equivalence
among generated computation graphs.

Composition. Our search procedure (described in Sec-
tion 4.2) is able to perform complex optimizations on com-
putation graphs by repeatedly applying a fairly small set of
simple substitutions. For example, the following simplifica-
tion of the computation in a recurrent unit (Equation 2 and
4 in (Lei et al., 2017)) can be achieved by repeatedly apply-
ing substitution rules that distribute multiplications, reorder
commutative operators, and factor out common terms.

~x⊗ ~y + (~1− ~x)⊗ ~z (4 operators)

⇒ ~x⊗ ~y +~1⊗ ~z − ~x⊗ ~z (5 operators)
⇒ ~x⊗ ~y − ~x⊗ ~z + ~z (4 operators)
⇒ ~x⊗ (~y − ~z) + ~z (3 operators)

Some of these substitutions may temporarily reduce perfor-
mance, but they will still be explored.

4 SEARCH ALGORITHM

Relaxed graph substitutions can describe a comprehensive
search space of potential computation graphs that are equiv-
alent to an initial computation graph but have different run-
time performance. Finding efficient graphs in the search
space is challenging, since the search space can be infinite
depending on which substitution rules are used. This makes
it infeasible to exhaustively enumerate the search space for
today’s DNN models.

This section describes a number of techniques to prune the
search space and efficiently find high-performance graphs.
In particular, Section 4.1 introduces a cost model that incor-
porates multiple cost dimensions (e.g., FLOPs, execution
time, memory usage, etc) and can accurately predict runtime
performance of various computation graphs. Section 4.2
introduces a backtracking search algorithm that effectively
finds an optimized candidate graph in the search space un-
der the cost model. Because the computation graphs of
state-of-the-art DNNs are too large to efficiently search di-
rectly, we use a flow-based recursive graph split algorithm
(Section 4.3) that divides a computation graph into smaller
individual subgraphs while maximizing the graph substitu-
tion opportunities.

4.1 Cost Model

We introduce a cost model that incorporates multiple dimen-
sions to evaluate the runtime performance of a computation

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Optimizing DNN Computation with Relaxed Graph Substitutions

Algorithm 1 A Backtracking Search Algorithm

1: Input: An initial computation graph G0, a cost model Cost(·),
and a list of valid graph substitutions {S1, ..., Sm}

2:
3: Q = {G0} // a priority queue of graphs sorted by Cost(·).
4: whileQ 6= {} do
5: G = Q.dequeue()
6: for i = 1 to m do
7: G′ = Si(G)
8: if Cost(G′) < Cost(Gopt) then
9: Gopt = G′

10: end if
11: if Cost(G′) < α× Cost(Gopt) then
12: Q.enqueue(G′)
13: end if
14: end for
15: end while
16: return Gopt

graph. The cost model computes metrics for each operator
in a graph and combines them appropriately to obtain a total
cost. This includes both metrics that can be computed stat-
ically (e.g., FLOPs, memory usage, and number of kernel
launches) as well as dynamic metrics that usually require
measurements on specific hardware (e.g., execution time on
a particular GPU or CPU). For dynamic metrics, previous
work (Jia et al., 2018) shows that it is possible to accurately
predict the execution time of a computation graph by only
measuring a few representative operators on the hardware.
For example, once we have measured and stored the execu-
tion time for a convolution with particular kernel size, stride,
padding, input channels, and output channels, we can use
that execution time for any other convolution with the same
parameters.

Our cost model can optimize a single cost dimension (e.g.,
minimizing overall FLOPs) as well as incorporate multiple
cost dimensions, such as minimizing execution time while
maintaining a memory usage limit (by returning an infinite
cost if the memory usage limit is exceeded). We observe
that many graph substitutions result in a tradeoff among sev-
eral cost dimensions instead of improving all of them. For
example, the graph substitution in Figure 4b reduces mem-
ory accesses and kernel launches at the cost of increasing
FLOPs.

4.2 Backtracking Search

We now describe a backtracking search algorithm to find
an efficient graph using the cost model and a set of re-
laxed graph substitutions. Algorithm 1 shows the pseu-
docode. The search algorithm uses a parameter α (line 11
in the algorithm) to tradeoff between the search time and
the best-discovered solution. By setting α = 1, the search
algorithm becomes a simple greedy algorithm and only con-
siders graph substitutions that strictly reduce cost. As α

Algorithm 2 A Recursive Graph Split Algorithm.
1: Input: An initial computation graph G
2: function GRAPHSPLIT(G)
3: if |G| ≤ threshold then
4: return G
5: else
6: // MIN-CUT(·) returns a minimum vertex cut.
7: C = MIN-CUT(G)
8: G1 = {oi ∈ G|oi is reachable from C}
9: G2 = G − G1

10: return GRAPHSPLIT(G1) || GRAPHSPLIT(G2)
11: end if
12: end function

increases, the search algorithm explores a larger part of the
search space.

4.3 Flow-Based Recursive Graph Split

The backtracking approach described in Section 4.2 is too
slow to run on the entire computation graph of state-of-
the-art DNNs. Since graph substitutions are generally per-
formed on a few locally connected operators, splitting the
computation graph of a DNN model into smaller individual
subgraphs can preserve most graph substitutions. Based on
this observation, we propose a flow-based recursive graph
split algorithm to divide a computation graph into smaller in-
dividual subgraphs that are amenable to backtracking search.

To split a graph into two disjoint subgraphs, we minimize the
number of graph substitutions spanning the subgraphs, since
these graph substitutions cannot be performed on either
subgraph. For each operator oi ∈ G, we define its capacity
Cap(oi) to be the number of graph substitutions that map to
at least one in-edge and one out-edge of operator oi. These
graph substitutions are disabled if operator oi is used to split
the graph. By using Cap(oi) as the weight for each operator,
we map the graph split problem to a minimum vertex cut
problem (Cormen et al., 2009) and can use any max-flow
algorithm to find a minimum cut.

The above flow-based algorithm splits an arbitrary graph
into two subgraphs by minimizing spanning graph substi-
tutions. Algorithm 2 shows a recursive algorithm that uses
the max-flow algorithm as a subroutine to split an entire
computation graph into individual subgraphs smaller than a
threshold.

After running the backtracking search on each subgraph
individually, we stitch the subgraphs back together to get
an optimized computation graph. Finally, we run a small
search around the points where the subgraphs are joined to-
gether for substitutions we may have missed at the boundary
between subgraphs.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Optimizing DNN Computation with Relaxed Graph Substitutions

Table 1. DNNs used in our experiments.
DNN Description

Convolutional Neural Networks (CNNs)
Inception-v3 A 102-layer CNN with Inception modules
SqueezeNet A 42-layer CNN with fire modules
ResNet34 A 34-layer CNN with residual modules

Recurrent Neural Networks (RNNs)
RNNTC A 3-layer RNN for text classification
NMT A 4-layer RNN for neural machine translation

5 IMPLEMENTATION

MetaFlow is implemented as a framework-independent opti-
mizer for arbitrary computation graphs. The MetaFlow cost
model and runtime use existing deep learning libraries (e.g.,
cuDNN (Chetlur et al., 2014) and cuBLAS (cub, 2016))
to estimate the execution time of a computation graph and
perform real executions. MetaFlow accepts a user-defined
cost function that incorporates one or multiple cost dimen-
sions and finds a computation graph optimizing the cost
function. An optimized graph can be transformed to for-
mats that are accepted by existing deep learning frameworks,
including TensorFlow and TensorRT. This allows existing
deep learning frameworks to directly use MetaFlow’s opti-
mized graphs as inputs to improve runtime performance. In
particular, we show that MetaFlow can further improve the
runtime performance of TensorFlow and TensorRT by up to
1.3×, though these systems internally perform rule-based
graph transformations before executing an input computa-
tion graph.

6 EVALUATION

This section evaluates the performance of MetaFlow by
answering the following questions:

• How does MetaFlow compare to existing deep learning
frameworks that rely on rule-based graph transforma-
tions?

• Can MetaFlow’s graph optimization be used to im-
prove the runtime performance of these deep learning
frameworks?

• Can MetaFlow improve both the inference and training
performance of different real-world DNNs?

6.1 Experimental Setup

Table 1 summarizes the DNNs used in our experiments. We
use three representative CNNs (i.e., Inception-v3 (Szegedy
et al., 2016), SqueezeNet (Iandola et al., 2016) and
ResNet34 (He et al., 2016)) for image classification. They
use different DNN modules to improve model accuracy and
exhibit different graph architectures. RNNTC and NMT

are sequence-to-sequence RNN models from (Lei et al.,
2017) for text classification and neural machine translation,
respectively. RNNTC uses an embedding layer, a recurrent
layer with a hidden size of 1024, and a softmax layer. NMT
includes an encoder and a decoder, both of which consist
of an embedding layer and two recurrent layers each with
a hidden size of 1024. We follow previous work and use
SRU (Lei et al., 2017) as the recurrent units for RNNTC and
NMT. All experiments were performed on a GPU node with
a 10-core Intel E5-2600 CPU and 4 NVIDIA Tesla P100
GPUs.

In all experiments, MetaFlow considers all key graph sub-
stitutions in TensorFlow XLA as well as the graph substitu-
tions described in Section 3 and Figure 4. Unless otherwise
stated, we use α = 1.05 as the pruning parameter for our
backtracking search algorithm. The graph split algorithm
recursively splits subgraphs with more than 30 operators.
This allows MetaFlow’s search procedure to complete in
less than 5 minutes for all the experiments.

6.2 Inference Performance

End-to-end performance. We first compare the end-to-end
inference performance between MetaFlow and existing deep
learning frameworks, including TensorFlow, TensorFlow
XLA, and TensorRT, on a NVIIDA P100 GPU. MetaFlow
can automatically transform optimized computation graphs
to standard formats accepted by TensorFlow and TensorRT.
Therefore, we also evaluate the performance of TensorFlow,
TensorFlow XLA and TensorRT with MetaFlow’s optimized
graphs.

The results are shown in Figure 5. The blue lines show the
best performance achieved among the three existing frame-
works without using MetaFlow’s optimized graphs, and
the red lines show the MetaFlow performance. MetaFlow
outperforms existing deep learning inference engines with
speedups ranging from 1.1× to 1.6×. In addition, when ap-
plied the optimized graphs to those frameworks, MetaFlow
also improves the inference performance of TensorFlow,
TensorFlow XLA and TensorRT by up to 1.3×. Note that all
existing systems internally perform rule-based graph trans-
formations before executing a computation graph, therefore
the performance improvement comes from other graph opti-
mizations beyond rule-based graph transformations.

We further study the performance difference between
MetaFlow and existing rule-based deep learning frameworks
on multiple cost dimensions, including the overall memory
accesses, the total amount of FLOPs, the number of kernel
launches and the device utilization. For this experiment, we
use TensorRT as the baseline as it has the best performance
among existing deep learning systems. For TensorRT, the
cost metrics are collected through its IProfiler inter-
face.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Optimizing DNN Computation with Relaxed Graph Substitutions

Inception-v3
0

2

4

6

8

10

12

14

SqueezeNet
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ResNet-34
0

1

2

3

4

5

6

RNNTC
0.0

0.5

1.0

1.5

2.0

NMT
0

1

2

3

4

5

6

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
)

TensorFlow

TensorFlow w/
MetaFlow graph opt.

TensorFlow XLA

TensorFlow XLA w/
 MetaFlow graph opt.

TensorRT

TensorRT w/
MetaFlow graph opt.

MetaFlow

Figure 5. End-to-end inference performance comparison among MetaFlow, TensorFlow, TensorFlow XLA, TensorRT, and TVM. For
TensorFlow, TensorFlow XLA and TensorRT, we also measure the performance with MetaFlow’s optimized graphs. The experiments
were performed on a NVIDIA P100 GPU. For each DNN model, the blue and red lines indicate the performance achieved by the best
existing systems and MetaFlow, respectively.

Table 2. Performance comparison between MetaFlow and TensorRT on multiple cost dimensions. For TensorRT, the cost metrics are
collected through its Profiler interface. The device utilization is computed by normalizing the FLOPs by the execution time (TFLOPs
per second). For each cost dimension, a number in bold shows the one with better performance.

DNN Execution Time (ms) Memory Accesses (GB) Launched Kernels FLOPs (GFLOPs) Device Utilization
TensorRT MetaFlow TensorRT MetaFlow TensorRT MetaFlow TensorRT MetaFlow TensorRT MetaFlow

Inception-v3 6.9 6.1 103.4 70.2 138 115 5.7 6.1 0.82 0.90
SqueezeNet 1.35 1.06 69.7 45.4 54 38 0.67 1.00 0.49 0.92
ResNet34 2.48 2.37 32.3 21.8 46 38 0.86 1.24 0.35 0.52
RNNTC 0.9 0.61 2.65 2.34 220 83 0.22 0.2 0.16 0.40
NMT 1.9 1.21 10.07 7.7 440 135 0.84 0.78 0.44 0.64

Tables 2 compares the cost dimensions between TensorRT
and MetaFlow. Compared to TensorRT, MetaFlow reduces
the overall memory accesses by 1.6× and the number of
kernel launches by up to 3.7×. For the CNNs in our experi-
ments, MetaFlow achieves performance improvement at the
cost of the increasing computation (i.e., FLOPs) in a compu-
tation graph. This provides opportunities to potentially fuse
multiple operators to reduce memory accesses and kernel
launches. Figure 6 shows how MetaFlow optimizes the com-
putation graph of an Inception module. MetaFlow enlarges
a conv1x3 and a conv3x1 operator both to conv3x3
operators to fuse them to a single conv3x3 operator. This
reduces both memory accesses and kernel launches.

For RNNs, MetaFlow can also decrease the FLOPs com-
pared TensorRT. Section 3 shows how MetaFlow transforms
the computation in a recurrent unit from 4 element-wise op-
erators to 3 by composing a few simple substitutions. This is
a potential but currently missing optimization in TensorRT
(v4.0.1, the latest version as of Sep 2018).

Subgraph performance. We evaluate whether MetaFlow
can improve the performance of individual subgraphs in a
DNN. Figure 7 compares the performance of TensorRT and
MetaFlow on individual subgraphs in Inception-v3. The
figure shows that MetaFlow can consistently find faster
computation graphs than TensorRT, which leads to an end-

to-end performance improvement of 25%.

Comparison with kernel code generation. In Fig-
ure 8, we compare MetaFlow-optimized graphs (which use
cuDNN operator kernels) against graphs with operator ker-
nels generated by TVM (Chen et al., 2018). TVM is able to
generate high-performance kernels, especially for convolu-
tions, making it competitive on some benchmarks despite
its lack of the higher-level graph optimizations MetaFlow
provides. The optimizations in TVM operate at a lower level
than the optimizations in MetaFlow, so they could easily
be composed. In the future, we plan to integrate TVM as
a backend for MetaFlow so that we can achieve maximum
performance via both graph optimization and individual
kernel code generation.

6.3 Training Performance

The idea of relaxed graph substitutions of MetaFlow is
designed for generic computation graphs including both
inference and training. We also evaluate how MetaFlow
improves the training performance of different DNNs. We
use TensorFlow to run both the baseline computation graphs
and the optimized graphs from MetaFlow. We follow the
suggestions in TensorFlow Benchmarks (ten, 2017) and use
synthetic data to benchmark the training performance. The

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Optimizing DNN Computation with Relaxed Graph Substitutions

input	

conv1x1x320	
relu	

conv1x1x384	
relu	

conv1x1x448	
relu	 pool3x3	

conv1x3x384	
relu	

conv3x1x384	
relu	

conv3x3x384	
relu	

conv3x3x384	
relu	

conv3x1x384	
relu	

conv1x1x192	
relu	

concat	

concat	

(a) Original.

input	

pool3x3	

conv3x3x1152	
relu	

conv3x3x768	
relu	

conv1x1x192	
relu	

conv1x1x1152	
relu	

split	

split	

concat	

(b) Optimized.

Figure 6. The original and the MetaFlow optimized computation
graphs of an Inception module (Szegedy et al., 2016). The op-
timized computation graph increases the FLOPs by 3% while
reduces the overall memory accesses by 1.6× and the number of
kernel launches by 2×.

experiments were performed on four NVIDIA P100 GPUs
of a single compute node, with data parallelism and a global
batch size of 64.

Figure 9 shows the comparison of the training throughput.
A training graph generally involves more outputs and data
dependencies than an inference graph, as shown in Figure 2.
As a result, the gains are relatively smaller. However, re-
laxed graph substitutions still discover computation graphs
that are up to 1.2 × faster than the original graphs.

6.4 Search Algorithm

We first compare our backtracking search algorithm (de-
scribed in Section 4.2) with a baseline exhaustive search
algorithm that enumerates all potential computation graphs
in the search space. To allow the exhaustive search to com-
plete in reasonable time, we use small DNN models includ-
ing AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan
& Zisserman, 2014), ResNet18 and an Inception module
shown in Figure 6a.

Table 3 compares the execution time of the two algorithms.

A B C D E F G H I J K
0.0

0.5

1.0

1.5

2.0

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
)

Rule-based Operator Fusion

Relaxed Graph Substitutions

Figure 7. Performance comparison between MetaFlow and Ten-
sorRT on individual subgraphs in Inception-v3 (Szegedy et al.,
2016). The experiments were performed on a NVIDIA P100 GPU.

Inception-v3SqueezeNetResNet-34 RNNTC NMT
0

2

4

6

8

10

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
)

TVM

MetaFlow

Figure 8. Performance comparison between MetaFlow and TVM
on a NVIDIA P100 GPU.

Compared to the baseline exhaustive search, our backtrack-
ing search finds the same optimal results for the four DNNs
and reduces the execution time by orders of magnitude over
the baseline.

Second, we evaluate the performance of our backtracking
search algorithm with different pruning parameters α. Fig-
ure 10 shows the performance of the best discovered graphs
and the end-to-end search time for different α. The figure
show that using a relatively small α allows us to find an op-
timized computation graph for the Inception model within a
few seconds.

7 RELATED WORK

Greedy rule-based graph transformation has been
widely used by existing deep learning systems (e.g., Ten-
sorFlow XLA (xla, 2017), TensorRT (trt, 2017)) to improve
the runtime performance of a computation graph. Existing

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Optimizing DNN Computation with Relaxed Graph Substitutions

Inception ResNet-50 SqueezeNet
0

500

1000

1500

2000
T
ra

in
in

g
 T

h
ro

u
g

h
p

u
t

(i
m

a
g

e
s
 p

e
r

s
e
c
o
n

d
)

TensorFlow

TensorFlow w/ MetaFlow graph opt.

Figure 9. Training performance comparison between TensorFlow
and TensorFlow w/ MetaFlow’s optimized computation graphs.
The experiments were performed on 4 NVIDIA P100 GPUs with
data parallelism and a global batch size of 64.

Table 3. Performance comparison between MetaFlow’s backtrack-
ing search (with α = 1.05) and a baseline exhaustive search on
AlexNet, VGG16, ResNet18 and an Inception module shown in
Figure 6a. A check mark indicates the backtracking search find the
same optimal result as the exhaustive search under the cost model.

Graph Exhaustive Backtracking Same
Search Search Result?

AlexNet 5.0 seconds 0.1 seconds X
VGG16 2.3 minutes 0.2 seconds X
InceptionE 12.8 minutes 0.29 seconds X
ResNet18 3.1 hours 0.99 seconds X

1.0 1.02 1.04 1.06 1.08 1.1 1.12

α

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

P
e
rf

o
rm

a
n
ce

 o
f

B
e
st

 D
is

co
v
e
re

d
 G

ra
p
h

(I
n
fe

re
n
ce

 T
im

e
 i
n
 m

s)

Best discovered graph

End-to-end search time

0

5

10

15

20

25

30

E
n
d
-t

o
-e

n
d
 S

e
a
rc

h
 T

im
e
 (

m
in

u
te

s)

Figure 10. The performance of the best discovered graphs (shown
as the red line) and the end-to-end search time for different α.

systems typically require each rule to improve the runtime
performance, which prevents a large number of potential
graph substitutions from being considered by rule-based
operator fusion. The key different between existing DL
frameworks and MetaFlow is that MetaFlow considers re-
laxed graph substitutions and uses a novel search algorithm

to discover efficient computation graphs in the search space.

Automatic kernel generation. Recent work has pro-
posed deep learning frameworks (e.g., Tensor Comprehen-
sion (Vasilache et al., 2018), TVM (Chen et al., 2018),
Halide (Ragan-Kelley et al., 2013)) that automatically gener-
ate high performance kernels for dedicated hardware. These
kernel generation techniques solve an orthogonal problem of
how to improve performance of individual operators, while
MetaFlow aims at optimizing computation graphs using
relaxed graph substitutions. We believe it is possible to
combine relaxed graph substitutions with automatic code
generation and leave this as future work.

8 CONCLUSION

Existing deep learning optimizers use a greedy algorithm
to optimize computation graphs by applying graph substi-
tutions that are strictly performance increasing. This ap-
proach misses potential performance gains from more com-
plex transformations where some intermediate states are
not improvements. We identify the potential of performing
such transformations, and propose relaxed graph substitu-
tions to achieve them. We provide a system, MetaFlow, for
optimizing DNN computation graphs using relaxed graph
substitutions, and show that MetaFlow can achieve up to
1.6× performance improvements on DNNs. Finally, we
demonstrate that relaxed graph substitutions are widely ap-
plicable as we show that adding them to existing optimizers
such as TensorFlow XLA and TensorRT results in further
performance improvements.

REFERENCES

Dense Linear Algebra on GPUs.
https://developer.nvidia.com/cublas,
2016.

Tensors and Dynamic neural networks in Python with strong
GPU acceleration. https://pytorch.org, 2017.

TensorFlow Benchmarks.
https://www.tensorflow.org/performance/benchmarks,
2017.

NVIDIA TensorRT: Programmable inference accelerator.
https://developer.nvidia.com/tensorrt,
2017.

Tensorflow xla overview.
https://www.tensorflow.org/performance/xla,
2017.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Optimizing DNN Computation with Relaxed Graph Substitutions

Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. Tensorflow: A system for
large-scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI, 2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
CoRR, abs/1409.0473, 2014.

Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E. Q.,
Wang, L., Hu, Y., Ceze, L., Guestrin, C., and Krish-
namurthy, A. TVM: end-to-end optimization stack for
deep learning. CoRR, abs/1802.04799, 2018. URL
http://arxiv.org/abs/1802.04799.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran,
J., Catanzaro, B., and Shelhamer, E. cudnn: Efficient
primitives for deep learning. CoRR, abs/1410.0759, 2014.
URL http://arxiv.org/abs/1410.0759.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR, 2016.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model
size. CoRR, abs/1602.07360, 2016.

Jia, Z., Lin, S., Qi, C. R., and Aiken, A. Exploring
hidden dimensions in parallelizing convolutional neu-
ral networks. CoRR, abs/1802.04924, 2018. URL
http://arxiv.org/abs/1802.04924.

Kim, Y. Convolutional neural networks for sentence
classification. CoRR, abs/1408.5882, 2014. URL
http://arxiv.org/abs/1408.5882.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
classification with deep convolutional neural networks.
In Proceedings of the 25th International Conference on
Neural Information Processing Systems, NIPS, 2012.

Lei, T., Zhang, Y., and Artzi, Y. Training rnns as
fast as cnns. CoRR, abs/1709.02755, 2017. URL
http://arxiv.org/abs/1709.02755.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand,
F., and Amarasinghe, S. Halide: A language and compiler
for optimizing parallelism, locality, and recomputation in
image processing pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, 2013.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 529:484–489, 2016.

Simonyan, K. and Zisserman, A. Very deep con-
volutional networks for large-scale image recog-
nition. CoRR, abs/1409.1556, 2014. URL
http://arxiv.org/abs/1409.1556.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., De-
Vito, Z., Moses, W. S., Verdoolaege, S., Adams, A., and
Cohen, A. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser,
L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens,
K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J.,
Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes,
M., and Dean, J. Google’s neural machine translation
system: Bridging the gap between human and machine
translation. CoRR, abs/1609.08144, 2016.

