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TERNARY HYBRID NEURAL-TREE NETWORKS FOR HIGHLY CONSTRAINED
IOT APPLICATIONS
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ABSTRACT
Machine-learning based applications are increasingly prevalent in IoT devices. The power and storage constraints
of these devices make it particularly challenging to run modern neural networks, limiting the number of new
applications that can be deployed on an IoT system. A number of compression techniques have been proposed,
each with its own trade-offs. We propose a hybrid network which combines the strengths of current neural-
and tree-based learning techniques in conjunction with ternary quantization, and show a detailed analysis of
the associated model design space. Using this hybrid model we obtained a 11.1% reduction in the number of
computations and a 45.8% reduction in the model size on a state-of-the-art keyword-spotting neural network with
no loss in accuracy.

1 INTRODUCTION

Machine learning is increasingly deployed in Internet-of-
Things (IoT) devices. Popular applications include speech
interfaces in smart-home devices, predictive maintenance
for commercial and industrial machines, health-monitoring
in wearables, etc. However, due to the energy, power, stor-
age, and compute limitations of highly-constrained IoT de-
vices, their intelligence is frequently limited to simplistic
tasks, while more sophisticated requests are off-loaded to
a more capable device or to a server. IoT devices tend to
continuously run in the background, the microcontrollers
enabling these devices typically have very little SRAM, and
the devices usually have a constrained power supply. Be-
cause of these constraints, reducing the computation and
storage required by ML models for IoT applications is of
paramount importance in order to ensure a longer battery
life.

To enable this computation and size compression of ML
models, one particularly effective technique has been the
use of depthwise-separable (DS) convolutional layers. We
see these layers being used in a large, image classification
application (Howard et al., 2017) and also on a ubiquitous
keyword-spotting application (Zhang et al., 2017), show-
ing state-of-the-art or near-state-of-the-art accuracy in both
cases.

While DS convolutional layers have been transformative,
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even further compression is still valuable in order to target
the most constrained microcontrollers or to make a wider
range of applications available on IoT devices. Recent work
has shown that this might be possible through the use of
binary- and ternary-weight networks (Rastegari et al., 2016;
Alemdar et al., 2016; Li & Liu, 2016; Tschannen et al.,
2018). In such networks, multiplications are replaced with
additions, relying on binary (-1,1) or ternary (-1,0,1) weight
matrices. This enables an energy-efficient and faster net-
work architecture with fewer expensive multiplications but
at the cost of modest to significant drop in prediction accu-
racy when compared to their full-precision counterparts. Re-
cent work on StrassenNets (Tschannen et al., 2018) presents
a more mathematically profound way to approximate matrix
multiplication computation (and, in turn, convolutions) us-
ing mostly ternary weights and a few full-precision weights.
It demonstrates no loss in predictive performance when
compared to full-precision models. The effectiveness of
StrassenNets is quite variable, however, depending on the
neural network architecture. We observe, for example, that
while strassenifying is effective in reducing the model size
of DS convolutional layers, this might come with a pro-
hibitive increase in the number of operations, reducing the
energy efficiency of neural network inference.

The interest in reducing complexity has also expanded be-
yond neural networks. Recent research around tree-based
learning algorithms has shown immense potential to perform
classification and regression in the IoT setting with signif-
icantly lower computation and storage budget than their
neural counterparts, while maintaining acceptable model
accuracy. More specifically, Bonsai decision trees (Kumar
et al., 2017) make this possible by learning a single, shallow,



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Ternary Hybrid Neural-Tree Networks for Highly Constrained IoT Applications

sparse tree to reduce model size but with powerful nodes
for accurate prediction. Branching decisions made by more
powerful branching functions than the axis-aligned hyper-
planes in standard decision trees, coupled with non-linear
predictions made by internal and leaf nodes on a single, shal-
low decision tree learned in a low-dimensional space allow
Bonsai trees to learn complex non-linear decision bound-
aries using a compact representation. While the results
in (Kumar et al., 2017) show promising results for smaller
applications, our observations were that the techniques do
not scale when extended to a more complex use-case, show-
ing poor prediction accuracy even when with a large model
footprint.

We now, therefore, have two ways of compressing models
but each with its own advantages and limitations:

• StrassenNets are effective at reducing the size of a
neural network model but at a potentially significant
cost of more addition operations.

• Bonsai trees are effective at reducing the number of
operations for simple models but cannot easily be ex-
tended to larger models.

Motivated by these observations, we propose a hybrid net-
work architecture capable of giving start-of-the-art accuracy
levels, while requiring a fraction of the model parameters
and considerably fewer operations per inference. The hybrid
architecture makes this possible by leveraging a few neural
DS convolutional layers for feature extraction and then re-
lying on a compute-efficient, shallow Bonsai decision tree
to perform the classification. It then applies StrassenNets
over the overall neural-tree network to reduce its memory
footprint significantly thus enabling a compact compute-
efficient architecture. We apply this hybrid architecture to a
state-of-the-art keyword-spotting model based on DS con-
volutions. The hybrid network achieves a 98.89% reduction
in multiplications, a 12.22% reduction in additions (overall
11.1% reduction in the number of operations), and a 45.8%
reduction in the model size on a state-of-the-art keyword-
spotting neural model with no loss in accuracy. The final
network is well within the constrained compute budget of
typical microcontrollers.

The remainder of the paper is organized as follows. Sec-
tion 2 elaborates on the incentives behind this hybrid net-
work architecture for microcontrollers and provides a brief
overview of the neural and tree-based learning algorithms
that it attempts to hybridize along with our observations of
applying them to a representative IoT application. Failing
to find a good balance between accuracy and computation
costs shifts our focus towards designing a hybrid neural-tree
network. Section 3 describes our hybrid network. Section 4
presents results and Section 5 concludes the paper.

2 MODEL COMPRESSION LIMITATIONS
FOR AN IOT APPLICATION

2.1 StrassenNets

Given two 2× 2 matrices, Strassen’s matrix multiplication
algorithm computes their product using 7 multiplications
instead of the 8 required with a naı̈ve implementation of
matrix multiplication. It essentially converts the matrix
multiplication operation to a 2-layer sum-product network
(SPN) computation as shown below.

vec(C) =Wc[(Wbvec(B))� (Wavec(A))] (1)

Wa, Wb ∈ Kr×n2

and Wc ∈ Kn2×r are ternary matrices
with K ∈ {−1, 0, 1}, vec(A) and vec(B) are the vectoriza-
tion of the two input square matrices A, B ∈ Rn×n; and
vec(C) represents the vectorized form of the productA×B.
� denotes the element-wise product. The (Wbvec(B)) and
(Wavec(A)) of the SPN compute r intermediate factors
each from additions, and/or subtractions of elements of
A and B realized by the two associated ternary matrices
Wa and Wb respectively. The two generated r intermedi-
ate factors are then element-wise multiplied to produce r
element-wide (Wbvec(B)) � (Wavec(A)). The outmost
ternary matrix Wc later combines the r elements of this
product (Wbvec(B)) � (Wavec(A)) in different ways to
generate the vectorized form of product matrix C. There-
fore, the width of the hidden layer of the SPN r decides the
number of multiplications required for the Strassen’s matrix
multiplication algorithm. For example, given two 2 × 2
matrices, ternary matrices Wa and Wb with sizes of 7× 4
can multiply them using 7 multiplications and 36 additions.
It is important to note that Strasssen’s algorithm requires a
hidden layer with 7 units here to compute the exact product
matrix that naı̈ve matrix multiplication algorithm can obtain
using 8 multiplications.

Building on top of Strassen’s matrix multiplication algo-
rithm, the StrassenNets work (Tschannen et al., 2018) in-
stead realizes approximate matrix multiplications in DNN
layers using fewer hidden layer units compared to the
standard Strassen’s algorithm to achieve the exact prod-
uct matrix. StrassenNets makes this possible by training a
SPN-based DNN framework end-to-end to learn the ternary
weight matrices from the training data. The learned ternary
weight matrices can then approximate the otherwise exact
matrix multiplications of the DNN layers with significantly
fewer multiplications than a naı̈ve Strassen’s algorithm. The
approximate transforms realized by the SPNs, adapted to the
DNN architecture and application data under consideration,
can enable precise control over the number of multiplica-
tions and additions used at inference, creating an opportu-
nity to tune DNN models to strike an optimal balance be-
tween accuracy and computational complexity. The success
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Table 1. Test accuracy along with the number of multiplications,
additions, operations and model size for state-of-the-art DS-CNN
and strassenified DS-CNN (ST-DS-CNN) on KWS. r is the hidden
layer width of a strassenified convolution layer, cout is the number
of output channels of the corresponding convolution layer.

NETWORK ACC. MULS, MACS OPS MODEL
(%) ADDS SIZE (KB)

DS-CNN 94.4 - 2.7M 2.7M 38.6
ST-DS-CNN 93.18 0.05M, 2.85M - 2.9M 23.98
(r = 0.5cout )
ST-DS-CNN 94.09 0.06M, 4.09M - 4.15M 27.64
(r = 0.75cout )
ST-DS-CNN 94.03 0.07M, 5.32M - 5.39M 31.29
(r = cout )
ST-DS-CNN 94.74 0.11M, 10.25M - 10.36M 45.92
(r = 2cout )

of StrassenNets in achieving significant compression for
3× 3 convolutions (Tschannen et al., 2018) and increasing
visibility of DS convolutions in resource-constrained IoT
networks (Zhang et al., 2017) inspired us to apply Strassen-
Nets over already compute-efficient IoT networks domi-
nated with DS layers to reduce their computational costs
and model size even further. Further compression of DS lay-
ers will not only enable more energy-efficient IoT networks
leading to longer lasting batteries, but also will open up the
opportunities for more complex IoT use-cases to fit in the
limited memory budget of tiny microcontrollers.

As a representative benchmark for exploring different com-
pression algorithms, we have chosen a keyword spot-
ting (KWS) model from (Zhang et al., 2017). The DS
convolution-based model (DS-CNN) shown in (Zhang et al.,
2017) has state of the art accuracy on the realistic Google
speech commands dataset (Warden, 2018). Furthermore,
when compared to traditional CNN or other RNN ap-
proaches, the model size is smaller and the number of oper-
ations required per inference is fewer as well.

2.1.1 StrassenNets for KWS

We observe that although strassenifying DS convolution re-
duces multiplications significantly as expected, it increases
additions considerably in order to achieve an accuracy to
that of the state-of-the-art DS-CNN. Table 1 captures our
observation with strassenifying the DS layers of the un-
compressed DS-CNN KWS model. Multiply, addition,
and multiply-accumulate (MAC) operations typically in-
cur similar execution latencies in modern microprocessors,
but different models have different ratios of these operations.
They are, therefore, counted individually and aggregated
in the “Ops” column. The strassenified network with the
r = 0.75cout configuration incurs a negligible loss in accu-
racy of 0.31% while reducing multiplications by 97.7% but
increasing additions by 51.4% (2.7M MACs of DS-CNN
vs. 0.06M multiplications and 4.09M additions of ST-DS-

CNN with r = 0.75cout). That means the strassenified
network with r = 0.75cout configuration actually increases
the number of total operations to 4.15M when compared
to 2.7M operations in the uncompressed DS-CNN network.
As shown in Table 1, a number of potential values for the
hidden layer width (r) were explored and a value of at
least 0.75cout was needed to achieve a comparable accu-
racy to that of the full-precision DS-CNN model. Using
fewer hidden units (r = 0.5cout) than this incurs an ac-
curacy loss of 1.22%, whereas wider strassenified hidden
layers (r = 2cout) recover the negligible accuracy loss of
the r = 0.75cout configuration. For sufficiently large r
values, the strassenified network can even out-perform the
uncompressed DS-CNN model in accuracy, albeit with a sig-
nificant increase (about 280% for r = 2cout) in the number
of additions than the DS-CNN model.

2.1.2 Compute inefficiency of StrassenNets for models
with DS convolutions

It is important to note here that although the number of
additions does increase marginally with strassenifying stan-
dard 3× 3 or 5× 5 convolutional layers (Tschannen et al.,
2018), that trend does not hold true with strassenifying DS
layers. This stems from the fact that strassenifying a 1× 1
pointwise convolution requires executing two equal-sized
(for r = cout) 1 × 1 convolution operations (with ternary
weight filters) unlike strassenifying 3× 3 convolutions and
in a convolutional neural network with DS layers, point-
wise convolution dominates the compute bandwidth (Zhang
et al., 2017; Howard et al., 2017). In contrast to that, a 3× 3
strassenified convolution with r = cout instead executes
a 3 × 3 convolution and a 1 × 1 convolution with ternary
weight filters under the hood, causing a marginal increase in
additions compared to the execution of the standard 3× 3
convolution (Tschannen et al., 2018). This overhead of addi-
tion operations with strassenified DS convolutions increases
in proportion to the width of the strassenified hidden layers,
i.e. to the size of the ternary convolution operations, as
observed in Table 1. As a result, a strassenified DS convolu-
tion layer may incur enough overhead to offset the benefit
of strassenifying a DS convolution layer at all.

While (Tschannen et al., 2018) demonstrates better trade-
offs when strassenifying ResNet-18, this is not likely to
continue once a larger network dominated with DS convolu-
tions (e.g. MobileNets (Howard et al., 2017)) is strassenified.
(Tschannen et al., 2018) observes the ResNet-18 architec-
ture with strassenified 3× 3 convolutions to achieve compa-
rable accuracy to that of the uncompressed ResNet-18 on
ImageNet dataset with r = 2cout configuration while requir-
ing a modest (29.63%) increase in additions. A strassenified
MobileNets with r = 2cout configuration for the DS layers
will give rise to about 300% increase in additions compared
to the uncompressed MobileNets architecture. This increase
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in computational costs associated with strassenified DS con-
volutions in conjunction with the high accuracy and low
latency requirements of IoT applications call for a network
architecture exploration that can leverage the compute effi-
ciency of DS layers and model size reduction of strassenified
convolutions owing to their ternary weights while maintain-
ing acceptable or no increase in additions. As tree-based
learning techniques from recent works (Kumar et al., 2017)
on IoT paradigm exhibit accuracy on par with neural models
while requiring significantly fewer MAC operations, this
motivates us to explore the model accuracy and compute-
efficiency of these tree-based techniques for representative
IoT applications.

2.2 Bonsai Decision Trees

Piecewise axis-aligned decision boundaries coupled with
constant predictions at just the leaf nodes restrict the pre-
diction accuracy of typical tree models when compared to
their neural counterparts. Tree ensembles are commonly
used to improve the accuracy, but they hog significantly
larger memory footprint than is available in typical micro-
controllers. Recent work on tree models attempt to learn
more complex decision boundaries by moving away from
learning axis-aligned hyperplanes at internal nodes and con-
stant predictors at the leaves. Bonsai decision trees (Kumar
et al., 2017) fall into this paradigm. Using more power-
ful branching functions than axis-aligned hyperplanes of
standard decision trees in conjunction with non-linear pre-
diction scores in both internal and leaf nodes allow Bonsai
to learn a single, shallow tree that can achieve accuracy
on par with small neural-based models. For a multi-class
classification problem with L targets, Bonsai learns matri-
ces WD̂×L and VD̂×L at both leaf and internal nodes so
that each node now predicts a non-linear prediction score
W>Zx◦tanh(σV >Zx). Bonsai reduces model size by pro-
jecting eachD-dimensional input feature vector x into a low
D̂-dimensional space using a projection matrix ZD̂ ×D in
which the tree is learned. Once an input feature is projected
to a low-dimensional space, Bonsai adds the individual node
predictions along the path traversed by the projected input to
derive the overall prediction. Owing to a single, shallow tree
with powerful nodes and branching functions learned in a
low-dimensional space, Bonsai can achieve impressive com-
putation reduction over a typical DNN, while preserving
DNN-level accuracy for very small models.

2.2.1 Bonsai tree for KWS

When applied to the KWS application, Bonsai shows poor
prediction accuracy even with a significantly large tree with
many internal and leaf nodes. As shown in Table 2, Bonsai
trees achieve poor accuracies, saturating at about 84%, even
when the tree architecture is scaled up with wider projection

Table 2. Test accuracies for DS-CNN and Bonsai tree variants on
KWS. D̂ = projected dimension, T = depth of tree.

NETWORK ACC. (%) MACS OPS MODEL SIZE

DS-CNN 94.4 2.7M 2.7M 38.6KB
BONSAI (D̂=64, T=2) 80.20 0.02M 0.02M 140.75KB
BONSAI (D̂=64, T=4) 82.92 0.04M 0.04M 287.75KB
BONSAI (D̂=128, T=2) 81.56 0.04M 0.04M 281.5KB
BONSAI (D̂=128, T=4) 84.38 0.07M 0.07M 575.5KB

layers, more tree nodes and trained longer1. Furthermore, a
major fraction of the model size (e.g. 69.63% of Bonsai tree
with D̂=64 and T=2) is attributed to the fully-connected
(FC) layer used in projecting the incoming input data to
low-dimensional space. Clearly weight quantization2 and
aggressive pruning will reduce the model size further, as
described in (Kumar et al., 2017), however it will not be able
to recover the significant accuracy loss of Bonsai trees when
compared to the neural models for KWS (e.g. DS-CNN). It
is worth emphasizing that although Bonsai occupies large
memory footprint, its computational costs are very low in
comparison to those neural models.

2.2.2 The limitations of Bonsai trees for KWS

While (Kumar et al., 2017) shows the effectiveness of Bon-
sai trees for the applications they considered, our results
show that for more complex applications, there might be
a fundamental limitation in the expressiveness of Bonsai
trees. More specifically, the simple projection matrix that is
made of a FC layer in a Bonsai tree is likely not effective
in compressing KWS’s initial speech inputs to extract rich
useful features. This observation is further corroborated by
prior works (Zhang et al., 2017; Arik et al., 2017; Sainath
& Parada, 2015) on designing state-of-the-art neural net-
works for small-footprint KWS that leverages convolutional
layers instead to compress complex speech inputs of KWS
applications to extract few rich meaningful features.

Based on these results, we can conclude that StrassenNets
and Bonsai trees, while effective at reducing model com-
plexity for some models, have limitations when applied to
a representative IoT application. This motivates the use
of a potential hybrid model - one that can use the feature
extraction capabilities of a convolutional network while also
reducing the amount of compute required for subsequent
classification of these features. This hybrid model proposed
in this paper exploits Bonsai tree’s strength as a compute-
efficient classifier given rich features and couples that with
StrassenNets to achieve significant reduction in model size.

1Bonsai trees in Table 2 are trained significantly longer than the
other networks in this work. The learning rate is initially chosen
as 0.001, and later gradually reduced after every 100 epochs.

2Each Bonsai tree weight in Table 2 requires 4 bytes to store.
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Figure 1. Hybrid neural-tree architecture.

3 HYBRID NEURAL-TREE
ARCHITECTURE

We propose a hybrid neural-tree architecture that can lever-
age a few convolutional layers to extract the minimal set
of necessary local features, and then can rely on powerful
branching functions and non-linear Bonsai tree nodes to
find global correlation between features and to perform the
required classification. As the tree section of the hybrid
network is significantly compute-efficient in terms of MAC
operations, use of it to find the global interaction between
local features and classifying the voice commands should
result in an overall reduction of computational costs com-
pared to a neural-only state-of-the-art network for KWS
without compromising its accuracy. DS convolutional lay-
ers are used in particular for feature extraction in the hybrid
network. Additionally, the matrix multiplications associated
with entire hybrid network are strassenified to reduce mul-
tiplications and the overall memory footprint to enable a
more compact network.

Architecture. Figure 1 shows the hybrid neural-tree ar-
chitecture optimized for KWS application with the corre-
sponding parameters. The raw time-domain speech signal
is converted to 2-D MFCC (Mel-frequency cepstral coeffi-
cients) inputs for succinct representation and efficient train-
ing. Speech features are first extracted from the MFCC
inputs by one standard convolutional layer followed by two
DS convolutional layers which greatly reduce dimension-
ality of the original speech signal. The low-dimensional
compressed speech features are then fed to a single depth
2 Bonsai tree with 3 internal and 4 leaf nodes to provide
global interaction and to identify the appropriate keyword
in the detected voice command.

Note that the branching functions of the tree’s internal
nodes output a probability to influence whether the low-

dimensional speech sample should be branched to a node’s
left or right child. During inference, non-linear prediction
scores are computed for all tree nodes regardless of the most
probable tree path traversed by the compressed sample. The
tree nodes from the least probable paths contribute insignifi-
cantly to the overall prediction score. Computing prediction
scores for all nodes certainly increases prediction costs. As
the hybrid network for KWS has a shallow depth 2 tree,
the incremental costs from computing prediction scores for
all nodes is marginal in comparison to the computational
costs of the overall hybrid network. However, evaluating
the entire tree ensures that the tree computation does not
incur any control-flow overhead in the processor from unpre-
dictable branching in internal nodes. This in turn results in
a more resource-efficient, data-parallel computation pattern
and a more efficient utilization of any available SIMD units.
In Figure 1, a low-dimensional speech feature sample D̂
finds the leftmost tree path most probable to traverse and
as a result the three tree nodes farthest to the left contribute
the most to the overall prediction score, even though the
prediction scores for all tree nodes are computed during
inference.

End-to-end training. The three convolutional layers along
with all the tree nodes of the hybrid network are trained
jointly so as to maximize accuracy. A gradient-descent (GD)
based training algorithm is used to train the hybrid network
end-to-end. Note that the path traversed by a training point
in a standard decision tree is a sharply discontinuous func-
tion of parameters of internal branching nodes thereby mak-
ing gradient based techniques ineffective. In order to make
effective use of GD algorithm with a differentiable loss
function, the training of a Bonsai tree begins with smooth
activation functions of internal branching nodes to allow
points to traverse multiple paths in the tree. As training
progresses, activation functions of internal branching nodes
are tuned to ensure that points gradually start traversing at
most a single path.

Strassenified hybrid network. Finally, in order to reduce
the hybrid network’s memory footprint, we apply strasseni-
fied matrix multiplications to its convolution layers and tree
section to create the strassenified hybrid network. Note that
each of the tree nodes of the hybrid network learns two
matrices W and V to compute a non-linear prediction score.
Computation of this prediction scores at the tree nodes in-
volves matrix multiplications, which are strassenified as
well. The hidden layer width (r) of the strassenified hybrid
network is set 0.75cout for convolution layers(cout is the
number of output channels of a convolution layer), whereas
the r for the tree nodes is set to the number of targets (L) of
the multi-class KWS classification problem.

Training a network with strassenified matrix multiplications
essentially involves learning ternary Wa, Wb and Wc ma-
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trices for each strassenified network layer. We employ the
training procedure described in the StrassenNets (Tschannen
et al., 2018) work to train the strassenified hybrid network.
Training of the strassenified hybrid network begins with
full precision Wa, Wb, and Wc. Once the network is suf-
ficiently trained with full-precision Wa, Wb, and Wc, the
elements of these three strassen matrices are quantized to
ensure ternary-valued weights in them and the training con-
tinues. Quantization converts the full-precision Wb to a
ternary-valued W t

b along with a scaling factor (Wb = scal-
ing factor * W t

b ). Wa and Wc are quantized the same way.
Once the training recovers the accuracy loss with quantized
strassen matrices, the three strassen matrices are fixed and
the scaling factors associated with them are absorbed by
full-precision vec(A) portion of strassenified matrix mul-
tiplication. Note that in the context of strassenified matrix
multiplications of a network layer, A is associated with the
weights or filters of the layer and B is associated with the
corresponding activations or feature maps. As a result, af-
ter training, Wa and vec(A) can be collapsed into a vector
â =Wavec(A), as they are both fixed during inference. We
follow the weight quantization procedure described in the
StrassenNets (Tschannen et al., 2018) work for quantizing
all strassen matrices of the hybrid network.

Furthermore, in order to recover any accuracy loss of the
hybrid network compressed with strassenified matrix com-
putations, knowledge distillation (KD) is exploited during
training, as described in (Tschannen et al., 2018)3. Using
KD, an uncompressed teacher network can transfer its pre-
diction ability to a compressed student network by navigat-
ing its training. We use the uncompressed hybrid network
as the teacher network and the compressed strassenified
network as the student network in this work.

In short, the strassenified hybrid neural-tree architecture es-
sentially combines the strengths of DS convolutions, Bonsai
trees, and strassenified matrix computations, with additional
strategies applied during training to improve the overall
performance, while keeping a small-footprint size.

4 EXPERIMENTS AND RESULTS

Datasets. We evaluate the hybrid neural-tree architecture
on the Google speech commands dataset (Warden, 2018)
and compare it against the state-of-the-art DS-CNN (Zhang
et al., 2017), BinaryCmd (Fernndez-Marqus et al., 2018)
and other baseline network architectures for KWS from
literature (Arik et al., 2017; Sun et al., 2016; Sainath &
Parada, 2015; Chen et al., 2014) analysed in (Zhang et al.,
2017). The entire dataset consists of 65K different samples
of 1-second long audio clips of 30 keywords, collected from

3We apply KD while training the strassenified DS-CNN net-
works in Section 2 as well. The results reported for strassenified
networks in Table 1 are obtained using KD.

thousands of different people. The length of each audio
clip is 1 second, which is sufficiently long to capture one
keyword. The corresponding 40 MFCC features are ob-
tained from a speech frame of length 40ms with a stride of
20ms, yielding an input dimensionality of 49× 10 features
for 1 second of audio. The different network architectures
are trained to classify the incoming audio into one of the
10 keywords - “Yes” “No” “Up” “Down” “Left” “Right”
“On” “Off” “Stop” “Go” along with “silence” (i.e. no word
spoken) and “unknown” word, which is the remaining 20
keywords from the dataset. The dataset is split into 80%
for training, 10% for validation and 10% for testing. Train-
ing samples are augmented by applying background noise
and random timing jitter to provide robustness against noise
and alignment errors. We follow the input data processing
procedure described in (Zhang et al., 2017) for training the
baseline and hybrid networks presented here.

Hybrid network training. We use the Adam optimization
algorithm to train the networks in the Tensorflow frame-
work (Abadi et al., 2016). We use multi-class hinge loss
to train the hybrid network4. The Adam optimizer with
hinge loss achieves marginally better accuracy for the hy-
brid network than with cross-entropy loss. The network
architectures are trained on the full training set and eval-
uated based on the classification accuracy on the test set.
With a batch size of 20, the hybrid network is trained for 135
epochs with initial learning rate of 0.001 and progressively
smaller learning rates after every 45 epochs. The training
time for the hybrid network is restricted to 135 epochs to
match against the epochs required in training the baseline
DS-CNN network.

Hybrid network evaluation. The resulting testing accu-
racy along with the model size and the number of multipli-
cations, additions in the matrix-multiplication operations
of the hybrid network is shown in Table 3 and compared
against the prior works. The hybrid network achieves an
accuracy of 94.54% when compared to DS-CNN’s accu-
racy of 94.4% while reducing the number of operations by
44.4%. The reduction in operations of the hybrid network
stems from its compute-efficient tree portion. Note that all
the baseline networks in Table 3 require 1 byte to store their
weights and activations as opposed to 4 bytes required in
storing the weights and activations of our uncompressed
hybrid network. Consequently the uncompressed hybrid
network requires a larger model size of 94.25KB when
compared to other baselines in Table 3. Clearly straight-
forward quantization of weights of the hybrid network
to low-precision values will result in reducing its model
size. However, as discussed in this work, we instead apply
StrassenNets over the entire hybrid network to reduce its

4We use hinge loss to train baseline Bonsai trees in Sec-
tion 2.2.1, whereas we use standard cross-entropy loss to train
strassenified DS-CNN networks in Section 2.1.1.
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Table 3. Comparison of hybrid neural-tree network (HybridNet)
against DS-CNN, the current state-of-the-art for KWS application,
and other baselines presented in (Zhang et al., 2017).

NETWORK ACC. (%) MACS OPS MODEL SIZE

DS-CNN 94.4 2.7M 2.7M 38.6KB
CRNN 94.0 1.5M 1.5M 79.7KB
GRU 93.5 1.9M 1.9M 78.8KB
LSTM 92.9 1.95M 1.95M 79.5KB
BASIC LSTM 92.0 2.95M 2.95M 63.3KB
CNN 91.6 2.5M 2.5M 79.0KB
DNN 84.6 0.08M 0.08M 80.0KB
HYBRIDNET 94.54 1.5M 1.5M 94.25KB

full-precision (4 bytes) parameters and resultant model size.
An important point to note here is that use of fewer than
three convolutional layers (one standard and two DS layers)
in the hybrid network observes an accuracy of 91.72%, a
considerable accuracy loss in comparison to DS-CNN.

Strassenified hybrid network training. We begin by
training the strassenified hybrid network with full-precision
strassen matrices (Wa, Wb, and Wc) for 135 epochs. The
learning rate is initially chosen as 0.001, and later gradually
reduced after every 45 epochs. We then activate quanti-
zation for these strassen matrices and the training contin-
ues. Finally, we fix the strassen matrices to their learned
ternary values and continue training for another 135 epochs
to ensure that the scaling factors associated with these ma-
trices can be absorbed by full-precision vec(A) portion of
strassenified matrix multiplication.

Strassenified hybrid network evaluation. The testing
accuracy of the strassenified hybrid network is shown in
Table 4, along with the reduction in the number of oper-
ations, and the model size in comparison to the uncom-
pressed hybrid network. The strassenified hybrid network
achieves similar accuracy to that of the uncompressed hy-
brid network and the baseline DS-CNN while reducing the
number of multiplications and additions by 98.89% and
12.22%, respectively, over the baseline DS-CNN network.
Of particular note is that it reduces the number of addi-
tions to about 2.37M when compared to 4.09M additions
of strassenified DS-CNN network described in Section 2.
This, in turn, results in fewer overall operations, 2.4M, for
the strassenified hybrid network when compared to 2.7M
operations of the baseline DS-CNN and 4.15M operations
of the strassenified DS-CNN. This reduction in operations
is primarily attributed to strassenifying a few (three) con-
volutional layers and a compute-efficient tree as opposed
to strassenifying the five convolutional layers found in the
baseline DS-CNN model. Owing to the ternary weights ma-
trices, the strassenified hybrid network reduces the model
size to 20.92KB when compared to 38.6KB of the baseline
DS-CNN network thus enabling a 45.8% saving in model
size for KWS. Out of 20.92KB, 8.9KB is attributed to the

Table 4. Comparison of the strassenified hybrid neural-tree net-
work (ST-HybridNet) against the uncompressed hybrid network,
DS-CNN, and strassenified DS-CNN network (ST-DS-CNN) pre-
sented in Section 2.

NETWORK ACC. MULS, ADDS MACS OPS MODEL
(%) SIZE

DS-CNN 94.4 - 2.7M 2.7M 38.6KB
ST-DS-CNN 94.09 0.06M, 4.09M - 4.15M 27.64KB
(r = 0.75cout )
HYBRIDNET 94.54 - 1.5M 1.5M 94.25KB
ST-HYBRIDNET 94.51 0.03M, 2.37M - 2.4M 20.92KB
(WITHOUT KD)
ST-HYBRIDNET 94.41 0.03M, 2.37M - 2.4M 20.92KB
(WITH KD)

batch normalization parameters (beta, moving mean, and
moving variance) of the strassenified hyrbid network, where
each batch normalization parameters requires 4 bytes to
store. Note that our strassenified hybrid network does not
incur any accuracy loss than the baseline DS-CNN unlike
the strassenified DS-CNN network with r = 0.5cout in
Table 1 while achieving reduction in computational costs
and model size. The use of KD in training the strassenified
hybrid network does not result in any tangible change in
accuracy. Recent work on BinaryCmd (Fernndez-Marqus
et al., 2018) reduces the memory footprint of a KWS model
to 15.8KB but at the cost of more than 3% accuracy loss
compared to the baseline DS-CNN network. In summary,
the strassenified hybrid network achieves similar accuracy
to that of the state-of-the-art DS-CNN for KWS while signif-
icantly reducing the number of operations and the memory
footprint during inference.

5 CONCLUSION AND FUTURE WORK

We have presented a hybrid network architecture for key-
word spotting application capable of giving start-of-the-art
accuracy levels while requiring a fraction of the model pa-
rameters and considerably fewer operations per inference
pass. The hybrid architecture makes this possible by lever-
aging a few neural DS layers to extract features from the
audio input and feeding those features to a shallow Bonsai
decision tree to perform the classification. Furthermore,
StrassenNets are used to significantly reduce the model size.
The reduction in computation from the Bonsai tree, the
parameter-efficiency of the DS convolutional layers, and
the model footprint reduction provided by StrassenNets all
combine to make the KWS model much more amenable to
run on a highly constrained IoT device.

In the next iterations of this work, we will explore different
algorithmic ways to constrain the number of additions in a
strassenified network dominated with DS layers or specifi-
cally pointwise convolutions (e.g. MobileNets architecture)
and develop architectures or specialized hardware suitable
for such changes. This will not only enable a more homo-
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geneous network architecture, but also will pave the way
for incorporating StrassenNets into the next generation mi-
crocontrollers while maintaining acceptable computational
costs and model size. We leave this exploration for future
work.
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